

Advanced Machine Learning Lecture 12

Dirichlet Processes II

03.12.2012

Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de/

leibe@vision.rwth-aachen.de

This Lecture: Advanced Machine Learning

- Regression Approaches
 - Linear Regression
 - Regularization (Ridge, Lasso)
 - Kernels (Kernel Ridge Regression)
 - Gaussian Processes

Bayesian Estimation & Bayesian Non-Parametrics

B. Leibe

- Prob. Distributions, Approx. Inference
- » Mixture Models & EM
- Dirichlet Processes
- Latent Factor Models
- » Beta Processes

Learning Winter'12

Advanced Machine

- SVMs and Structured Output Learning
 - SV Regression, SVDD
 - Large-margin Learning

 $f: \mathcal{X} \to \mathcal{Y}$

Topics of This Lecture

• Dirichlet Processes

- Recap: Definition
- Dirichlet Process Mixture Models
- › Pólya Urn scheme
- > Chinese Restaurant Process
- Stick-Breaking construction

Applying DPMMs

- Efficient sampling
- Applications

- Gaussian Processes
 - Gaussian Processes (GP) define a distribution over functions

 $f \sim \mathrm{GP}(\cdot|\mu,c)$

where μ is the mean function and c is the covariance function.

- \Rightarrow We can think of GPs as "infinite-dimensional" Gaussians.
- Dirichlet Processes
 - Dirichlet Processes (DP) define a distribution over distributions (a measure on measures)

$$G \sim \mathrm{DP}(\cdot | G_0, \alpha)$$

- > Where $\alpha > 0$ is a scaling parameter and G_0 is the base measure.
- ⇒ We can think of DPs as "infinite-dimensional" Dirichlet distributions.

Advanced Machine Learning Winter'12

RWTHAACHEN UNIVERSITY Sidenote: Bayesian Nonparametric Methods

- Bayesian Nonparametric Methods (BNPs)
 - Both Gaussian Processes and Dirichlet Processes are examples of BNPs.
- What does that mean?
 - Nonparametric: does NOT mean there are no parameters!
 - It means (very roughly) that the number of parameters grows with the number of data points.
- Parametric methods:
 - > Get data \rightarrow build model \rightarrow predict using model
- Nonparametric methods
 - > Get data \rightarrow predict directly based on data

Definition

[Ferguson, 1973]

- > Let Θ be a measurable space, G_0 be a probability measure on Θ , and α a positive real number.
- > For all (A_1, \ldots, A_K) finite partitions of Θ ,

 $G \sim \mathrm{DP}(\cdot | G_0, \alpha)$

means that

 $(G(A_1),\ldots,G(A_K)) \sim \operatorname{Dir}(\alpha G_0(A_1),\ldots,\alpha G_0(A_K))$

Translation

➤ A random probability distribution G on Θ is drawn from a Dirichlet Process if its measure on every finite partition follows a Dirichlet distribution.

Important property

[Blackwell]

> Draws from a DP will always place all their mass on a countable set of points, the so-called atoms $\delta_{\theta k}$.

$$G(\theta) = \sum_{k=1}^{\infty} \pi_k \delta_{\theta_k}(\theta) \qquad \sum_{k=1}^{\infty} \pi_k = 1$$

where $\delta_{ heta k}$ is a Dirac delta at $heta_k$, and $heta_k \sim G_0(\cdot)$.

 \Rightarrow Samples from DP are discrete with probability one.

• Consider a DP with a Gaussian as base measure G_0

- > G_0 is continuous, so the probability that any two samples are equal is precisely zero.
- However, G is a discrete distribution, made up of a countably infinite number of point masses.
- \Rightarrow There is always a non-zero probability of two samples colliding.
- \Rightarrow This is what allows us to use DPs for clustering!

Recap: Dirichlet Process Properties

- Sampling
 - \succ Since G is a probability measure, we can draw samples from it

 $G \sim \mathrm{DP}(G_0, \alpha)$

 $\theta_1, ..., \theta_N | G \sim G$

- Posterior of G given observations $\theta_1, \ldots, \theta_N$?
 - The usual Dirichlet-multinomial conjugacy carries over to the nonparametric DP as well.
 - \Rightarrow Posterior is again a DP.

$$G|\theta_1, ..., \theta_N \sim \mathrm{DP}\left(\alpha + N, \frac{\alpha G_0 + \sum_{n=1}^N \delta_{\theta_n}}{\alpha + N}\right)$$

Existence of Dirichlet Processes

Summary so far

- ➤ A probability measure is a function from subsets of a space to [0,1] satisfying certain properties.
- A DP is a distribution over probability measures such that marginals on finite partitions are Dirichlet distributed.

• How do we know that such an object exists?

- Kolmogorov Consistency Theorem: If we can prescribe consistent finite dimensional distributions, then a distribution over functions exists.
- De Finetti's Theorem: If we have an infinite exchangeable sequence of random variables, then a distribution over measures exists making them independent.
- \Rightarrow Pólya's urn, Chinese Restaurant Process
- Stick-breaking Construction: just construct it.

Topics of This Lecture

• Dirichlet Processes

- Recap: Definition
- > Dirichlet Process Mixture Models
- › Pólya Urn scheme
- > Chinese Restaurant Process
- Stick-Breaking construction
- Applying DPMMs
 - > Efficient sampling
 - > Applications

Dirichlet Process Mixture Models

 During this lecture, we will use the following two forms for DPMMs...

"Indicator variable representation"

 G_0

"Distributional form"

Dirichlet Process Mixture Models

Indicator variable representation

- Form of an infinite mixture model
- > The DP is implicit through the choice of priors
- > We will use this form whenever we want to make the assignment of points to clusters explicit (\Rightarrow use for clustering).

Dirichlet Process Mixture Models

 α

Base distribution G_0

Infinite discrete distribution on Θ , defines the clusters

Parameters of the cluster that generates \mathbf{x}_n

Likelihood of \mathbf{x}_n given the cluster

- Distributional form
 - \succ Explicit representation of the DP through the node G.
 - > Useful when we want to use the DPMM's predictive distribution.

Topics of This Lecture

• Dirichlet Processes

- Recap: Definition
- Dirichlet Process Mixture Models
- › Pólya Urn scheme
- > Chinese Restaurant Process
- Stick-Breaking construction
- Applying DPMMs
 - > Efficient sampling
 - > Applications

Recap: Pólya's Urns [Blackwell & MacQueen, 1973]

- Can we sample observations without constructing G? $G \sim \mathrm{DP}(G_0, \alpha) \quad \bar{\theta}_n \sim G$
- Yes, by a variation of the classical balls-in-urns analogy
 - > Assume that G_0 is a distribution over colors, and that each θ_n represents the color of a single ball placed in the urn.
 - > Start with an empty urn. Repeat for N steps:
 - 1. With probability proportional to α , draw $\theta_n \sim G_0$ and add a ball of that color to the urn.
 - 2. With probability proportional to n 1 (i.e., the number of balls currently in the urn), pick a ball at random from the urn. Record its color as θ_n and return the ball into the urn, along with a new one of the same color.

RWTHAACHEN UNIVERSITY

α

Pólya's Urns: Discussion

- Pólya Urn scheme
 - > Simple generative process for the predictive distribution of a DP
 - Consider a set of N observations \$\overline{\theta}_n \$\$ < G\$ taking \$K\$ distinct values \$\$ \$\{\theta_k\}_{k=1}^K\$. The predictive distribution of the next observation is then</p>

$$p(\bar{\theta}_N = \theta | \bar{\theta}_{1:N-1}, \alpha, H) = \frac{\alpha H(\theta) + \sum_{k=1}^K N_k \delta(\theta, \theta)}{N - 1 + \alpha}$$

Remarks

- This procedure can be used to sample observations from a DP without explicitly constructing the underlying mixture.
- ⇒ DPs lead to simple predictive distributions that can be evaluated by caching the number of previous observations taking each distinct value.

De Finetti's Theorem

Theorem

> For any infinitely exchangeable sequence of random variables $\{\mathbf{x}_i\}^{1:\infty}, \mathbf{x}_i \in \mathcal{X}$, there exists some space Θ of probability measures and corresponding distribution $P(\theta)$ such that the joint probability of any N observations has a mixture representation

$$p(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N) = \int_{\Theta} \prod_{n=1}^N p(\mathbf{x}_n | \theta) dP(\theta)$$

Interpretation

Advanced Machine Learning Winter'12

- If you assert exchangeability, it is reasonable to act as if there is an underlying parameter, there is a prior on this parameter, and the data are i.i.d. given that parameter.
- > In order for this to work, we need to allow θ to range over measures, in which case $P(\theta)$ is a distribution over measures.
 - As we know, the **Dirichlet Process** is a distribution on measures!

Pólya Urn Scheme

- Existence proof for DP
 - > Starting with a DP, we constructed Pólya's urn scheme.
 - > The reverse is possible using De Finetti's theorem:
 - > Since the θ_n are i.i.d. $\sim G$, their joint distribution is invariant to permutations, thus $\theta_1, \theta_2, \ldots$ are exchangeable.
 - > Thus a distribution over measures must exist making them i.i.d.
 - > This is the DP.
- We have just (informally) proven that DPs exist
 - Hooray!
 - > Now, let's move on to see how we can use them...

Big Picture: Pólya Urns and the DP

Advanced Machine Learning Winter'12

Slide adapted from Kurt Miller, Mike Jordan

Topics of This Lecture

• Dirichlet Processes

- Recap: Definition
- Dirichlet Process Mixture Models
- › Pólya Urn scheme
- > Chinese Restaurant Process
- Stick-Breaking construction
- Applying DPMMs
 - > Efficient sampling
 - > Applications

Sidenote on Partitions

- Problem with partitions
 - If our goal is clustering, the output grouping is defined by an assignment of indicator variables

$$\left. \begin{array}{c} \mathbf{z}_n \sim \operatorname{Mult}(\boldsymbol{\pi}) \\ \mathbf{z}_n \sim \operatorname{Cat}(\boldsymbol{\pi}) \end{array} \right\} \boldsymbol{\pi} \sim \operatorname{Dir}(\frac{\alpha}{K}, \dots, \frac{\alpha}{K})$$

- > The number of ways of assigning N data points to K mixtures is K^N .
- > If $K \ge N$, this is much larger than the number of ways of partitioning the data!
- Example: N = 5: 52 partitions vs. 5⁵ = 3125

\Rightarrow Need representation that is invariant to relabeling!

2 4 4 4 6

シオ ナスシ

* * * * *

😧 🕐 🔶 🖄 🕍

ひきいとい

 $\pm \lambda \times \pm \pm$

シルニペク

😒 📢 🚖 🔥 술

* * * * *

- How can DPs support clustering?
- Chinese Restaurant Process
 - Visualize clustering as a sequential process of customers sitting at tables in an (infinitely large) restaurant.

Customers \Leftrightarrow observed data to be clusteredTables \Leftrightarrow distinct blocks of partition, or clusters

- > This will help us see the clustering effect of DPs explicitly
- Relation to the clustering problem
 - We typically don't know the number of clusters and want to learn it from data
 - CRPs address this problem by assuming that there is an infinite number of latent clusters, but that only a finite number of them is used to generate the observed data.

- Procedure
 - Imagine a Chinese restaurant with an infinite number of tables, each of which can seat an infinite number of customers.
 - The 1st customer enters and sits at the first table.
 - > The $N^{\rm th}$ customer enters and sits at table

$$\left\{egin{array}{cc} k & {
m with \ prob} \ rac{N_k}{N-1+lpha} \ {
m for} \ k=1,\ldots,K \ K+1 \ {
m with \ prob} \ rac{lpha}{N-1+lpha} & {
m (new \ table)} \end{array}
ight.$$

where N_k is the number of customers already sitting at table k.

Remark

Metaphor was motivated by the seemingly infinite seating capability of Chinese restaurants in San Francisco...

• Visualization

Slide credit: Teg Grenager

B. Leibe

RWITHAACHEN UNIVERSITY

Chinese Restaurant Process (CRP)

Slide adapted from Erik Sudderth

B. Leibe

Image source: Erik Sudderth

Relationship between CRPs and DPs

- Discussion
 - > DP is a distribution over distributions.
 - > DP results in discrete distributions, so if you draw N points, you are likely to get repeated values.
 - $\,\succ\,$ A DP therefore induces a partitioning of the N points.
 - > The CRP is the corresponding distribution over partitions.
 - We can easily get back from the CRP to the Pólya urn scheme by the following extension:
 - When the first customer sits down at an empty table, he independently chooses a dish θ_k for the entire table from a prior distribution G_0 .

Slide inspired by: Zoubin Gharamani, Yee Whye Teh

• The CRP exhibits the clustering property of the DP.

- Rich-gets-richer effect implies small number of large clusters.
- > Expected number of clusters is $K = \mathcal{O}(\alpha \log N)$.

CRPs & Exchangeable Partitions

$$p(\mathbf{z}_N = \mathbf{z} | \mathbf{z}_1, ..., \mathbf{z}_{N-1}, \alpha) = \frac{1}{N-1+\alpha} \left(\sum_{k=1}^K N_k \delta(\mathbf{z}, k) + \alpha \delta(\mathbf{z}, \bar{k}) \right)$$

• Closer analysis

p

Consider the probability of a certain seating arrangement:

$$(\mathbf{z}_1, ..., \mathbf{z}_N | \alpha) = p(\mathbf{z}_1 | \alpha) p(\mathbf{z}_2 | \mathbf{z}_1, \alpha) \dots p(\mathbf{z}_N | \mathbf{z}_{N-1}, ..., \mathbf{z}_1, \alpha)$$
$$= \frac{\Gamma(\alpha)}{\Gamma(N+\alpha)} \alpha^K \prod_{k=1}^K \frac{\Gamma(N_k)}{\Gamma(N_k)}$$

> Derivation of the terms

 α

$$1\cdot 2\cdots (N_k-1)! = \Gamma(N_k)$$

$$\frac{1}{1+\alpha} \cdot \frac{1}{2+\alpha} \cdots \frac{1}{N-1+\alpha} = \frac{\Gamma(\alpha)}{\Gamma(N+\alpha)}$$

First customer to sit at each table Other customers joining each table Normalization constants

CRPs & Exchangeable Partitions

Probability of a seating arrangement

$$p(\mathbf{z}_1, ..., \mathbf{z}_N | \alpha) = \frac{\Gamma(\alpha)}{\Gamma(N+\alpha)} \alpha^K \prod_{k=1}^K \Gamma(N_k)$$

- Exchangeability property
 - The probability of a seating arrangement of N customers is *independent* of the order they enter the restaurant!
 - The CRP is thus a prior on infinitely exchangeable partitions. \succ
 - (Definition exchangeability: The joint probability underlying the ≻ data is invariant to permutation.)
 - Why is this of importance?
 - Two reasons...

Reason 1: De Finetti's Theorem

- Putting all of this together...
 - De Finetti's theorem tells us that the CRP has an underlying mixture distribution with a prior distribution over measures.
 - The Dirichlet Process is the De Finetti mixing distribution for the CRP.
- Graphical model visualization
 - This means, when we integrate out G, we get the CRP:

$$p(\theta_1,\ldots,\theta_N) = \int \prod_{n=1}^N p(\theta_n|G) dP(G)$$

 \Rightarrow If the DP is the prior on G, then the CRP defines how points are assigned to clusters when we integrate out G.

35 Image source: Kurt Miller

Reason 2: Efficient Inference

- Taking advantage of exchangeability...
 - > In clustering applications, we are ultimately interested in the cluster assignments z_1, \dots, z_N .
 - Equivalent question in the CRP: Where should customer n sit, conditioned on the seating choices of all the other customers?
 - This is easy when customer \boldsymbol{n} is the last customer to arrive:

$$p(\mathbf{z}_N = \mathbf{z} | \mathbf{z}_1, ..., \mathbf{z}_{N-1}, \alpha) = \frac{1}{N-1+\alpha} \left(\sum_{k=1}^K N_k \delta(\mathbf{z}, k) + \alpha \delta(\mathbf{z}, \bar{k}) \right)$$

- (Seemingly) hard otherwise...
- ⇒ Because of exchangeability, we can always swap customer n with the final customer and use the above formula!
 ⇒ We'll use this for efficient Gibbs sampling later on...

Big Picture: CRPs and the DP

Slide adapted from Kurt Miller, Mike Jordan

Topics of This Lecture

• Dirichlet Processes

- Recap: Definition
- Dirichlet Process Mixture Models
- › Pólya Urn scheme
- > Chinese Restaurant Process
- Stick-Breaking construction
- Applying DPMMs
 - > Efficient sampling
 - > Applications

UNIVERSITY Stick-Breaking Construction [Sethuraman, 1994]

- Explicit construction for the weights in DP realizations
 - Define an infinite sequence of random variables

$$\beta_k \sim \text{Beta}(1, \alpha)$$
 $k = 1, 2, \dots$

> Then define an infinite sequence of mixing proportions as

$$\pi_1 = \beta_1$$

$$\pi_k = \beta_k \prod_{l=1}^{k-1} (1 - \beta_l) \qquad k = 2, 3, \dots$$

> This can be viewed as breaking off portions of a stick

> When the π_k are drawn this way, we can write $\pi \sim \text{GEM}(\alpha)$. (where GEM stands for Griffiths, Engen, McCloskey)

Slide adapted from Kurt Miller, Mike Jordan

RWTHAACHEN UNIVERSITY

Stick-Breaking Example

Interpretation

- > Mixture weights π_k partition a unit-length "stick" of probability mass among an infinite set of random parameters.
- Note: The weights do not decrease monotonically!

Stick-Breaking Construction

• We now have an explicit formula for each π_k :

$$\pi_k = \beta_k \prod_{l=1}^{\kappa-1} (1-\beta_l)$$

• We can also easily see that $\sum_{k=1}^{\infty}\pi_k=1$:

$$1 - \sum_{k=1}^{K} \pi_{k} = 1 - \beta_{1} - \beta_{2}(1 - \beta_{1}) - \beta_{3}(1 - \beta_{1})(1 - \beta_{2}) - \dots$$
$$= (1 - \beta_{1})(1 - \beta_{2} - \beta_{3}(1 - \beta_{2}) - \dots)$$
$$= \prod_{k=1}^{K} (1 - \beta_{k})$$
$$\to 0 \qquad \text{as } K \to \infty$$

This shows that Dirichlet measures are discrete with probability one (as we already noted before).

 $\Rightarrow G = \sum_{k=1}^{\infty} \pi_k \delta_{\phi_k}$ has a clean definition as a random measure.

Slide adapted from Kurt Miller, Mike Jordan

RWTHAACHEN UNIVERSITY Big Picture: Stick-Breaking and the DP

Graphical Model representation

Slide adapted from Kurt Miller, Mike Jordan

Dirichlet Stick-Breaking

- Sidenote
 - > The Stick-Breaking representation provides another interpretation of the concentration parameter α .
 - > Since $\beta_k \sim \mathrm{Beta}(1,\alpha)$, we can apply standard moment formulas and find

$$\mathbb{E}[\beta_k] = \frac{1}{1+\alpha}$$

⇒ For small α , the first few mixture components are typically assigned the majority of the probability mass.

 \Rightarrow For $\alpha \to \infty$, samples $G \sim DP(\alpha, G_0)$ approach the base measure G_0 by assigning small, roughly uniform weights to a densely sampled set of discrete parameters.

RWTHAACHEN UNIVERSITY Summary: Pólya Urns, CRPs, and Stick-Breaking

Slide adapted from Kurt Miller, Mike Jordan

References and Further Reading

- Unfortunately, there are currently no good introductory textbooks on the Dirichlet Process. We will therefore post a number of tutorial papers on their different aspects.
 - > One of the best available general introductions
 - E.B. Sudderth, "<u>Graphical Models for Visual Object Recognition and</u> <u>Tracking</u>", PhD thesis, Chapter 2, Section 2.5, 2006.
 - > A gentle introductory tutorial (recommended 1st read)
 - S.J. Gershman, D.M. Blei, <u>"A Tutorial on Bayesian Nonparametric</u> <u>Methods</u>", In Journal of Mathematical Psychology, Vol. 56, 2012.
 - Good overview of MCMC methods for DPMMs
 - R. Neal, <u>Markov Chain Sampling Methods for Dirichlet Process</u> <u>Mixture Models</u>. Journal of Computational and Graphical Statistics, Vol. 9(2), p. 249-265, 2000.