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This Lecture: Advanced Machine Learning 

• Regression Approaches 

 Linear Regression 

 Regularization (Ridge, Lasso) 

 Kernels (Kernel Ridge Regression) 

 Gaussian Processes 
 

• Bayesian Estimation & Bayesian Non-Parametrics  

 Prob. Distributions, Approx. Inference 

 Mixture Models & EM 

 Dirichlet Processes 

 Latent Factor Models  

 Beta Processes 
 

• SVMs and Structured Output Learning 

 SV Regression, SVDD 

 Large-margin Learning 
B. Leibe 
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Topics of This Lecture 

• Dirichlet Processes 
 Recap: Definition 

 Dirichlet Process Mixture Models 

 Pólya Urn scheme 

 Chinese Restaurant Process 

 Stick-Breaking construction 
 

• Applying DPMMs 
 Efficient sampling 

 Applications 

6 
B. Leibe 
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Recap: Dirichlet Processes 

• Gaussian Processes 

 Gaussian Processes (GP) define a distribution over functions 

 
 

where ¹ is the mean function and c is the covariance function. 

 We can think of GPs as “infinite-dimensional” Gaussians. 
 

• Dirichlet Processes 

 Dirichlet Processes (DP) define a distribution over distributions  

(a measure on measures) 

 
 

 Where ®>0 is a scaling parameter and G0 is the base measure. 

 We can think of DPs as “infinite-dimensional” Dirichlet 

distributions. 

7 
B. Leibe Slide credit: Zoubin Gharamani 
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Sidenote: Bayesian Nonparametric Methods 

• Bayesian Nonparametric Methods (BNPs) 

 Both Gaussian Processes and Dirichlet Processes are examples of 

BNPs. 

 

• What does that mean? 

 Nonparametric: does NOT mean there are no parameters! 

 It means (very roughly) that the number of parameters grows 

with the number of data points. 

 

• Parametric methods:  

 Get data  build model  predict using model 
 

• Nonparametric methods 

 Get data  predict directly based on data 

8 
B. Leibe 
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• Definition      [Ferguson, 1973] 

 Let  be a measurable space, G0 be a probability measure on , 

and ® a positive real number.  

 For all (A1,…,AK) finite partitions of , 

 

 

means that  

 

 
 

• Translation 

 A random probability distribution G on  is drawn from a 

Dirichlet Process if its measure on every finite partition follows 

a Dirichlet distribution. 

Recap: Dirichlet Processes 

9 
B. Leibe Slide credit: Zoubin Gharamani Image source: Zoubin Gharamani 
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Recap: Dirichlet Processes 

• Important property           [Blackwell] 

 Draws from a DP will always place all their mass on a countable 

set of points, the so-called atoms ±µk. 

 

 
 

where ±µk is a Dirac delta at µk, and µk » G0(¢). 
 

 Samples from DP are discrete with probability one. 

 

 
 

 

10 
B. Leibe Slide adapted from Zoubin Gharamani Image source: Zoubin Gharamani 
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• Consider a DP with a Gaussian as base measure G0  

 G0 is continuous, so the probability that any two samples are 

equal is precisely zero. 

 However, G is a discrete distribution, made up of a countably 

infinite number of point masses. 

 There is always a non-zero probability of two samples colliding. 

 This is what allows us to use DPs for clustering! 

Recap: Dirichlet Processes 

11 
B. Leibe Slide adapted from Khalid El-Arini Image source: Khalid El-Arini 
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Recap: Dirichlet Process Properties 

• Sampling 

 Since G is a probability measure, we can draw samples from it 

 

 

 

• Posterior of G given observations µ1,…,µN ? 

 The usual Dirichlet-multinomial conjugacy carries over to the 

nonparametric DP as well.  

 Posterior is again a DP. 

12 
B. Leibe Slide adapted from Yee Whye Teh 
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Existence of Dirichlet Processes 

• Summary so far 

 A probability measure is a function from subsets of a space   

to [0,1] satisfying certain properties. 

 A DP is a distribution over probability measures such that 

marginals on finite partitions are Dirichlet distributed. 
 

• How do we know that such an object exists? 

 Kolmogorov Consistency Theorem: If we can prescribe consistent 

finite dimensional distributions, then a distribution over 

functions exists. 

 De Finetti’s Theorem: If we have an infinite exchangeable 

sequence of random variables, then a distribution over measures 

exists making them independent. 

 Pólya’s urn, Chinese Restaurant Process 

 Stick-breaking Construction: just construct it. 

 13 
B. Leibe Slide adapted from Yee Whye Teh 
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Topics of This Lecture 

• Dirichlet Processes 
 Recap: Definition 

 Dirichlet Process Mixture Models 

 Pólya Urn scheme 

 Chinese Restaurant Process 

 Stick-Breaking construction 
 

• Applying DPMMs 
 Efficient sampling 

 Applications 

15 
B. Leibe 
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Dirichlet Process Mixture Models 

• During this lecture, we will use 

the following two forms for DPMMs… 

16 
B. Leibe 

“Indicator variable 

representation” 

“Distributional form” 

Image sources: Yee Whye The, Kurt Miller 
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Dirichlet Process Mixture Models 

 

 

 

 

 

 

 
 

• Indicator variable representation 

 Form of an infinite mixture model 

 The DP is implicit through the choice of priors 

 We will use this form whenever we want to make the assignment 

of points to clusters explicit ( use for clustering). 

17 
B. Leibe Image sources: Yee Whye The 
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Dirichlet Process Mixture Models 

 

 

 

 

 

 

 

 

 
 

• Distributional form 

 Explicit representation of the DP through the node G. 

 Useful when we want to use the DPMM’s predictive distribution. 
18 

B. Leibe Image sources: Yee Whye The 

Base distribution G0 

Infinite discrete 

distribution on £,  

defines the clusters 

Parameters of the 

cluster that gene- 

rates xn  

Likelihood of xn  

given the cluster 
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Topics of This Lecture 

• Dirichlet Processes 
 Recap: Definition 

 Dirichlet Process Mixture Models 

 Pólya Urn scheme 

 Chinese Restaurant Process 

 Stick-Breaking construction 
 

• Applying DPMMs 
 Efficient sampling 

 Applications 

19 
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Recap: Pólya’s Urns   [Blackwell & MacQueen, 1973] 

• Can we sample observations without constructing G? 

 
 

• Yes, by a variation of the classical balls-in-urns analogy 

 Assume that G0 is a distribution over colors, and that each µn 

represents the color of a single ball placed in the urn. 

 Start with an empty urn. Repeat for N steps: 

1. With probability proportional to α, draw µn » G0  

and add a ball of that color to the urn. 

2. With probability proportional to n – 1 (i.e., the  

number of balls currently in the urn), pick a ball  

at random from the urn. Record its color as µn  

and return the ball into the urn, along with a  

new one of the same color. 

 
20 

B. Leibe Slide adapted from Khalid El-Arini Image source: Yee Whye Teh 
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Pólya’s Urns: Discussion 

• Pólya Urn scheme  

 Simple generative process for the predictive distribution of a DP 

 Consider a set of N observations             taking K  

distinct values             . The predictive distribution  

of the next observation is then   

 

 

 
 

• Remarks 

 This procedure can be used to sample observations from a DP 

without explicitly constructing the underlying mixture. 

 DPs lead to simple predictive distributions that can be evaluated 

by caching the number of previous observations taking each 

distinct value. 

 

 

 

21 
B. Leibe 
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De Finetti’s Theorem           [De Finetti, 1935] 

• Theorem 

 For any infinitely exchangeable sequence of random variables 

{xi}
1:1, xi 2 X, there exists some space  of probability 

measures and corresponding distribution P(µ) such that the 

joint probability of any N observations has a mixture 

representation  

 

 

• Interpretation 

 If you assert exchangeability, it is reasonable to act as if there is 

an underlying parameter, there is a prior on this parameter, and 

the data are i.i.d. given that parameter. 

 In order for this to work, we need to allow µ to range over 

measures, in which case P(µ) is a distribution over measures. 

– As we know, the Dirichlet Process is a distribution on measures! 
22 

B. Leibe Slide adapted from Erik Sudderth, Mike Jordan 
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Pólya Urn Scheme 

• Existence proof for DP 

 Starting with a DP, we constructed Pólya’s urn scheme. 

 The reverse is possible using De Finetti’s theorem: 

 Since the µn are i.i.d. » G, their joint distribution is invariant  

to permutations, thus µ1, µ2,… are exchangeable. 

 Thus a distribution over measures must exist making them i.i.d. 

 This is the DP. 

 

• We have just (informally) proven that DPs exist 

 Hooray! 

 Now, let’s move on to see how we can use them… 

23 
B. Leibe Slide adapted from Yee Whye Teh 
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Big Picture: Pólya Urns and the DP 

24 
B. Leibe 

Pólya urns describe the  

distribution of µ when G 
is marginalized out 

Slide adapted from Kurt Miller, Mike Jordan Image source: Kurt Miller 
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Topics of This Lecture 

• Dirichlet Processes 
 Recap: Definition 

 Dirichlet Process Mixture Models 

 Pólya Urn scheme 

 Chinese Restaurant Process 

 Stick-Breaking construction 
 

• Applying DPMMs 
 Efficient sampling 

 Applications 

25 
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Sidenote on Partitions 

• Problem with partitions 

 If our goal is clustering, the output grouping is 

defined by an assignment of indicator variables 

 

 

 

 The number of ways of assigning N data points 

to K mixtures is KN. 

 If K ¸ N, this is much larger than the number 

of ways of partitioning the data! 

 

 Example: N = 5: 52 partitions vs. 55 = 3125 

 

 Need representation that is invariant to relabeling! 
26 

B. Leibe Slide credit: Erik Sudderth Image source: Wikipedia 
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Chinese Restaurant Process (CRP) 

• How can DPs support clustering? 
 

• Chinese Restaurant Process 

 Visualize clustering as a sequential process of customers sitting 

at tables in an (infinitely large) restaurant. 

Customers  observed data to be clustered 

Tables   distinct blocks of partition, or clusters 
 

 This will help us see the clustering effect of DPs explicitly 
 

• Relation to the clustering problem 

 We typically don’t know the number of clusters and want to 

learn it from data 

 CRPs address this problem by assuming that there is an infinite 

number of latent clusters, but that only a finite number of them 

is used to generate the observed data. 

27 
B. Leibe Slide adapted from Erik Sudderth Image source: Erik Sudderth 
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Chinese Restaurant Process (CRP) 

• Procedure 

 Imagine a Chinese restaurant with an infinite number of tables, 

each of which can seat an infinite number of customers. 

 The 1st customer enters and sits at the first table. 

 The Nth customer enters and sits at table 

 

 

 

 

 where Nk is the number of customers already sitting at table k. 

 

• Remark 

 Metaphor was motivated by the seemingly infinite seating 

capability of Chinese restaurants in San Francisco… 

 

 

 

28 
B. Leibe 

   k    with prob                   for k = 1,…,K  

K+1  with prob                      (new table) 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in

te
r’

1
2

 

Chinese Restaurant Process (CRP) 

• Visualization 

29 
B. Leibe Slide credit: Teg Grenager 
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Chinese Restaurant Process (CRP) 

 

 

 

 

 

 

 

 

 
 

• Resulting conditional distribution 

30 
B. Leibe Slide adapted from Erik Sudderth Image source: Erik Sudderth 
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Relationship between CRPs and DPs 

• Discussion 

 DP is a distribution over distributions. 

 DP results in discrete distributions, so if you draw N points, you 

are likely to get repeated values. 

 A DP therefore induces a partitioning of the N points. 

 The CRP is the corresponding distribution over partitions. 

 We can easily get back from the CRP to the Pólya urn scheme by 

the following extension: 

– When the first customer sits down at an empty table, he 

independently chooses a dish µk for the entire table from a prior 

distribution G0. 

 

 

 

– Dish     parameters of the cluster 

 

 

31 
Image source: Erik Sudderth Slide inspired by: Zoubin Gharamani, Yee Whye Teh 
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Chinese Restaurant Process (CRP) 

 

 

 

 

 

 

 

 

 

• The CRP exhibits the clustering property of the DP. 

 Rich-gets-richer effect implies small number of large clusters. 

 Expected number of clusters is K = O(® log N). 

32 
B. Leibe Slide credit: Yee Whye Teh 
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CRPs & Exchangeable Partitions 

 

 

• Closer analysis 

 Consider the probability of a certain seating arrangement: 

 

 

 

 

 Derivation of the terms 

33 
B. Leibe Slide adapted from Erik Sudderth 

First customer to 

sit at each table 

Other customers 

joining each table 

Normalization  

constants 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in

te
r’

1
2

 

CRPs & Exchangeable Partitions 

• Probability of a seating arrangement 

 

 
 

• Exchangeability property 

 The probability of a seating arrangement of N customers is 

independent of the order they enter the restaurant! 

 The CRP is thus a prior on infinitely exchangeable partitions. 

 (Definition exchangeability: The joint probability underlying the 

data is invariant to permutation.) 

 

• Why is this of importance? 

 Two reasons… 

 

 

 

 

34 
B. Leibe Slide adapted from Erik Sudderth 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in

te
r’

1
2

 

Reason 1: De Finetti’s Theorem 

• Putting all of this together… 

 De Finetti’s theorem tells us that the CRP has an underlying 

mixture distribution with a prior distribution over measures. 

 The Dirichlet Process is the De Finetti mixing distribution for the 

CRP. 
 

• Graphical model visualization 

 This means, when we integrate out 

G, we get the CRP: 

 

 

 

 If the DP is the prior on G, then the 

CRP defines how points are assigned 

to clusters when we integrate out G. 

35 
Slide adapted from Kurt Miller, Mike Jordan Image source: Kurt Miller 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in

te
r’

1
2

 

Reason 2: Efficient Inference 

• Taking advantage of exchangeability… 

 In clustering applications, we are ultimately interested in the 

cluster assignments z1,…,zN.  

 Equivalent question in the CRP: Where should customer n sit, 

conditioned on the seating choices of all the other customers? 

– This is easy when customer n is the last customer to arrive: 

 

 

 

– (Seemingly) hard otherwise… 

 

 Because of exchangeability, we can always swap customer n 

with the final customer and use the above formula! 

 We’ll use this for efficient Gibbs sampling later on… 
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Big Picture: CRPs and the DP 
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The CRP describes the  

partitions of µ when G 
is marginalized out 

Slide adapted from Kurt Miller, Mike Jordan Image source: Kurt Miller 
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Topics of This Lecture 

• Dirichlet Processes 
 Recap: Definition 

 Dirichlet Process Mixture Models 

 Pólya Urn scheme 

 Chinese Restaurant Process 

 Stick-Breaking construction 
 

• Applying DPMMs 
 Efficient sampling 

 Applications 
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Stick-Breaking Construction  [Sethuraman, 1994] 

• Explicit construction for the weights in DP realizations 

 Define an infinite sequence of random variables 

 
 

 Then define an infinite sequence of mixing proportions as 

 

 

 

 

 This can be viewed as breaking off portions of a stick 

 

 

 

 When the ¼k are drawn this way, we can write ¼ » GEM(®). 

(where GEM stands for Griffiths, Engen, McCloskey) 
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Stick-Breaking Example 

 

 

 

 

 

 

 

• Interpretation 

 Mixture weights ¼k partition a unit-length “stick” of probability 

mass among an infinite set of random parameters. 

 Note: The weights do not decrease monotonically! 
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Stick-Breaking Construction 

• We now have an explicit formula for each ¼k: 

 

 

• We can also easily see that                   : 

 

 

 

 

 

 
 

 This shows that Dirichlet measures are discrete with probability 

one (as we already noted before). 

                             has a clean definition as a random measure. 
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as K ! 1  
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Big Picture: Stick-Breaking and the DP 

• Graphical Model representation 
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Stick-Breaking allows 

us to sample directly 

from the weights 
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Dirichlet Stick-Breaking 

• Sidenote 

 The Stick-Breaking representation provides another 

interpretation of the concentration parameter ®. 

 Since                           , we can apply standard moment formulas 

and find  

 

 

 

 For small ®, the first few mixture  

components are typically assigned 

the majority of the probability 

mass. 

 For ® ! 1, samples G » DP(®,G0) approach the base measure 

G0 by assigning small, roughly uniform weights to a densely 

sampled set of discrete parameters. 
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E[¯k] =
1

1 + ®

Slide adapted from Erik Sudderth Image source: Erik Sudderth 
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Summary: Pólya Urns, CRPs, and Stick-Breaking 
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The CRP describes the  

partitions of µ when G 
is marginalized out 

Slide adapted from Kurt Miller, Mike Jordan Image source: Kurt Miller 

The Stick-Breaking  

Process describes 

the partition  

weights 
The Pólya urn describes  

the predictive distribu- 

tion of µ when G is mar- 

ginalized out 
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References and Further Reading 

• Unfortunately, there are currently no good introductory 

textbooks on the Dirichlet Process. We will therefore 

post a number of tutorial papers on their different 

aspects.  
 

 One of the best available general introductions 

– E.B. Sudderth, “Graphical Models for Visual Object Recognition and 

Tracking“, PhD thesis, Chapter 2, Section 2.5, 2006. 
 

 A gentle introductory tutorial (recommended 1st read) 

– S.J. Gershman, D.M. Blei, „A Tutorial on Bayesian Nonparametric 

Methods”, In Journal of Mathematical Psychology, Vol. 56, 2012. 
 

 Good overview of MCMC methods for DPMMs 

– R. Neal, Markov Chain Sampling Methods for Dirichlet Process 

Mixture Models. Journal of Computational and Graphical Statistics, 

Vol. 9(2), p. 249-265, 2000.  
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