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RWTH
This Lecture: Advanced Machine Learning

o Regression Approaches f X —- R
» Linear Regression 1 1 v | e
. Regularization (Ridge, Lasso) \
> Kernels (Kernel Ridge Regression)

> @Gaussian Processes

e Bayesian Estimation & Bayesian Non-Parametrics
> Prob. Distributions, Approx. Inference (= __ ) ;

e
S

Y
N

> Mixture Models & EM o\ Fgue
> Dirichlet Processes Xn M

~ Latent Factor Models W
> Beta Processes

e SVMs and Structured Output Learning
~ SV Regression, SVDD f : X — y

> Large-margin Learning
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Topics of This Lecture

e Finite Bayesian Mixture Models
> Recap
> Approximate inference

e Dirichlet Processes
> Motivation
> Definition
> Polya Urn Process
> Chinese Restaurant Process
~ Stick-breaking construction
> Discussion

e Dirichlet Process Mixture Models
> Comparison to finite mixture models
~ Efficient sampling
- Applications
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RWNTH
Recap: Bayesian Mixture Models

e Let’s be Bayesian about mixture models
~ Place priors over our parameters

- Again, introduce variable z  as indicator
which component data point x,, belongs to.

Zn|T™ ~ Multinomial ()
Xn‘zn — ka”’a 2~ N(uka Zk)

> Introduce conjugate priors over parameters

MOIROSO
B-®

84 84
_, e o o ,

~ Dirichlet —
s iric e(K K)
P, X ~ H=N—-IW(0,s,d, ) n

“Normal - Inverse Wishart”
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Recap: Bayesian Mixture Models

e Full Bayesian Treatment
> Given a dataset, we are interested in the cluster assignments
p(X|Z)p(Z
p(zx) = LEEPE)
>z p(X[Z)p(Z)

where the likelihood is obtained by marginalizing over the
parameters 0

p(X|Z) = / p(X|Z,0)p(6)d6

= [ TL T pcalznes 003061l 1)0

n=1k=1

e The posterior over assignments is intractable!

» Denominator requires summing over all possible partitions of the
data into K groups!
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= We will see efficient approximate inference methods later on...
B. Leibe
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RWTH
Recap: Mixture Models with Dirichlet Priors

e Integrating out the mixing proportions

p(zla) = / plzlm)p(m|a)dn

Nk;—l—Oé/K)
B N—I—oz H I'a/K)

e Conditional probabilities

- Examine the conditional of z  given all other variables z_,
p(znk = 1,2_|q)

p(Z—n|c)

N—n,k + o/ K def _
N N—1+£¢ N_nk_@;é?k

= The more populous a class is, the more likely it is to be joined!
6

p(znkz — 1|Z—na a) —
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RWTH
Recap: Infinite Dirichlet Mixture Models

e Conditional probabilities: Finite K

N nr+a/K def
p(znk = 1lz_p,a) = ’ : N_pnr = Z Zik
N—-1+a i=1,i%n
™
N « Conditional probabilities: Infinite K
% > Taking the limit as KX — oc yields the conditionals
c
'c ( N—n,k .
§ N—1ia if k represented
:I: p(an — 1|Z—?’Laa) = 9
c .
£ \ n—175 ifall k£ notrepresented
=
§ ~ Left-over mass a = countably infinite number of indicator
§ settings
<

Slide adapted from Zoubin Gharamani B. Leibe



Note
e Why this term if all £ are not represented?
( A],V__ffa if k& represented
p(znk = 1lz_p,a) = 4

o \ v fall k not represented
s
=
= ~ The total probability assigned to all unoccupied clusters is
g determined by the complement of existing cluster weights:
c
§ . al N—'n, k
E Klgxéop(zn#zm for all n £ ml|z_,,a) = 1_ZN—1;L()¢
£ k=1
S _ N-l+a - (N-1)
k5 N -1+«
= o
g —
3 N—-1+«

B. Leibe
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Topics of This Lecture

e Finite Bayesian Mixture Models
> Recap
> Approximate inference

B. Leibe




RWNTH
Gibbs Sampling for Finite Mixtures

e We need approximate inference here
~ Gibbs Sampling: Conditionals are simple to compute

K
p(z, = k|others) Zm]\f(xn\p,k, k)

k=1
w | z~Dir(Ny +a/K,..., Nk +a/K)

Yy, Xi|others ~ N = IW(', s, d', @) @
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Recap: Gibbs Sampling

e Approach
- MCMC-algorithm that is simple and widely applicable.
~ May be seen as a special case of Metropolis-Hastings.

e ldea
- Sample variable-wise: replace z; by a value drawn from the
distribution p(z;| z\;).
- This means we update one coordinate at a time.

- Repeat procedure either by cycling through all variables or by
choosing the next variable.

e Properties §
» The algorithm always accepts!
> Completely parameter free.
> Can also be applied to subsets of variables.

Slide adapted from Bernt Schiele B. Leibe
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RWTH
Gibbs Sampling for Finite Mixtures

e Standard finite mixture sampler

. Given mixture weights 7(-1) and cluster parameters {9( B )} -

from the previous iteration, sample new parameters as follows

1. Independently assign each point x, to one of the K clusters by

sampling the variables z, from the multinomial distributions
K

1 1 1 1 1 1)
o)~ D Ul ) 2, = Zw“ p(xal0} )
" k=1
2. Sample new mixture weights from the Dlrlchlet distribution
N
7" ~ Dit(N; + a/K, ..., Nk + a/K) Ne =Y 2
n=1

3. For each of the K clusters, independently sample new
parameters from the conditional of the assigned observations

01 ~ p(Ok| {xn 20k = 1}, H)

. 12
Slide adapted from Erik Sudderth B. Leibe



Standard Sampler: 2 Iterations

log p(x | 7, 8) = -539.17
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Slide credit: Erik Sudderth

log p(x | 7, 8) = —497.77

13
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Standard Sampler: 10 Iterations

log p(x | &, ©) = —404.18 log p(x | &, 8) = —454.15
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Standard Sampler: 50 Iterations

N . ' s
« . . S o'
“dhj R ;@-
= L A .
; -. .
(o)) hd -. ~ ..- .

£ fo Ta% NE

E b s * . .

()

-

()

=

L

®

S log p(x I 7, 8) = —397.40 log p(x | @, 6) = —442.89
©

(]

(3]

c

©

=

<
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RWTH
Gibbs Sampling for Finite Mixtures

e We need approximate inference here
~ Gibbs Sampling: Conditionals are simple to compute

K
p(z, = k|others) Zm]\/'(xn\p,k, k)

k=1
w | z~Dir(Ny +a/K,..., Nk +a/K)

K, Xy lothers ~ N —IW(v', s, d', ¢')

e However, this will be rather inefficient...

~ In each iteration, algorithm can only change @ @
the assignment for individual data points. ; ;
Q]

~ There are often groups of data points that are
associated with high probability to the same
component. = Unlikely that group is moved.

~ Better performance by collapsed Gibbs sampling
which integrates out the parameters m, u, 3.
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RWTH
Collapsed Finite Bayesian Mixture

 More efficient algorithm
~ Conjugate priors allow analytic integration of some parameters

~ Resulting sampler operates on reduced space of cluster
assignments (implicitly considers all possible cluster shapes)

e Necessary steps

> The model implies the factorization
P(2Zn|Z—n, X, 0, H) X p(2n|2—n, a)p(Xn|2, X0, H)

> Derive @ @

plzla) = / p(a|m)p(mla)d s e

ol H) = [ 30 suun(x,l00p(0:] a0, | L
=

= Conjugate prior, Normal - Inverse Wishart i=L..n
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RWTH
Collapsed Finite Mixture Sampler

e Algorithm
1. Sample a random permutation 7 (-) of the integers {1,...,N}.
2. Set z = z(*1), For each n € {7(1),...,7(N)}, sequentially
resample z_ as follows

a) For each of the K clusters, determine the predictive likelihood
(this can be computed from cached sufficient statistics)

pkz(xn‘z—na H) — p(xn‘{xm‘zmk — 17 m ?é n}v H)
b) Sample a new assignment z, from the multinomial distribution

N Z an N_nk ‘f‘Gi/K)pk(Xn‘z—na )
N_ n,j +a/K)p3(Xn‘Z—na )

c) Update cached sufficient statistics to reflect assignment 2 ;.

3. Set z(Y) = z. Optionally, mixture parameters may be sampled
via steps 2-3 of the standard finite mixture sampler.

Slide adapted from Erik Sudderth B. Leibe
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RWNTH
Standard vs. Collapsed Samplers

-350 : : -350
~400 S -400f
— ..r .,-.- j'ﬂ/ - g
74
- AL r ) -
© _a50 5 e g T 450
E { 14
X, X
o o
D 5004 A7 D
2 500 2 500
,
5500 550
—— Standard Gibbs Sampler ‘ = Standard Gibbs Sampler
—— Rao-Blackwellized Sampler === Rao-Blackwellized Sampler
600 : : 600 ' :
10° 10° _ 10° 10° 10° 10' _ 10° 10°
lteration Iteration

= Collapsed sampler converges much more quickly.
> Theorem (Rao-Blackwell)

“Analytical marginalization of some variables from a joint
distribution always reduces the variance of later estimates.”
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Discussion

e Collapsed Gibbs sampling

> Integrates out the parameters =, u, 3.

(N_n i + a/K)
N -1+«

p(znk = 1|others) Pr(Xn|Z_n, H)

e Properties
» Can change all assighments in each iteration.
= Able to move entire groups between clusters.
= Faster convergence.

~ However, similar worst-case performance as v
standard sampler, may get stuck in local optima
for many iterations. i=l...n
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Topics of This Lecture

e Dirichlet Processes
> Motivation
> Definition
> Polya Urn Process
> Chinese Restaurant Process
~ Stick-breaking construction
> Discussion

B. Leibe
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Dirichlet Processes

e Gaussian Processes
~ Gaussian Processes (GP) define a distribution over functions

f ~ GP(‘M) C)

where i is the mean function and c is the covariance function.
= We can think of GPs as “infinite-dimensional” Gaussians.

e Dirichlet Processes

> Dirichlet Processes (DP) define a distribution over distributions
(a measure on measures)

G ~ DP(:|Gy, a)

- Where a>0 is a scaling parameter and G|, is the base measure.

= We can think of DPs as “infinite-dimensional” Dirichlet
distributions.
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Dirichlet Processes

e Definition [Ferguson, 1973]

- Let © be a measurable space, G, be a probability measure on O,
and « a positive real number.

- Forall (4;,...,A) finite partitions of O,

G ~ DP(-|Gy, @)

means that

(G(Al), C ey G(AK)) ~ DiI‘(O{Go(Al), c ey O{Go(AK))

e Translation

» A random probability distribution G on ® is drawn from a
Dirichlet Process if its measure on every finite partition follows
a Dirichlet distribution.
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Dirichlet Processes

e Definition [Ferguson, 1973]

- Let © be a measurable space, G, be a probability measure on O,
and « a positive real number.

- Forall (4;,...,A) finite partitions of O,

G ~ DP(-|Gy, @)

means that

(G(Al), C ey G(AK)) ~ DiI‘(O{Go(Al), c ey O{Go(AK))
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Dirichlet Processes

e Important property [Blackwell]
- Draws from a DP will always place all their mass on a countable
set of points. 00 00
G0) =) midp,(0) > mp=1
k=1 k=1

- Where §,, is a Dirac delta at 6,, and 6, ~ G(-).

= Samples from DP are discrete with probability one.

(9|
-
.
Q
P
=
(@))
.E
c
-
®
Q
—
Q
=
N e
(&)
1+
=
©
Q
(&)
c
©
3
<

25

Image source: Zoubin Gharamani

Slide adapted from Zoubin Gharamani B. Leibe



Dirichlet Processes: Discussion

G ~ DP(G(), Oé)

e Consider a DP with a Gaussian as base measure G,
> G, is continuous, so the probability that any two samples are
equal is precisely zero.

- However, (G is a discrete distribution, made up of a countably
infinite number of point masses.

= There is always a non-zero probability of two samples colliding.
=> This is what allows us to use DPs for clustering!
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Dirichlet Processes: Properties

e Moments
A)(1 — A
E[G(A)] — G()(A) V&I‘[G(A)] _ GO( )( GO( ))
a—+1
e Sampling
» Since G is a probability measure, we can draw samples from it
G ~ DP(G(), Oé)
B1,....08|G ~ G

e Posterior of G given observations 6,,...,0,?

» The usual Dirichlet-multinomial conjugacy carries over to the
nonparametric DP as well. = Posterior is again a DP.

N
G|6,,...,05 ~ DP (oz NS D! 5%)

a -+ N

Slide adapted from Yee Whye Teh B. Leibe
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Properties

e Summary so far
> We have seen some of the formal properties of DPs.
> But how can we use them?
- How can we sample from them?

> In the following, we will characterize DPs through several
different constructions in order to highlight key properties...

e Constructions
> Polya Urn scheme
> Chinese Restaurant Process
» Stick-Breaking Construction
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Topics of This Lecture

e Dirichlet Processes
> Motivation
> Definition
> Polya Urn Scheme
> Chinese Restaurant Process
~ Stick-breaking construction
> Discussion

B. Leibe
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RWNTH
Polya’s Urns [Blackwell & MacQueen, 1973]

e Can we sample observations without constructing G?
G ~/ DP(GO, Oé) 9_n ~ G

e Yes, by a variation of the classical balls-in-urns analogy

- Assume that G5, is a distribution over colors, and that each 0,
represents the color of a single ball placed in the urn.

-~ Start with an empty urn. Repeat for [V steps:

1. With probability proportional to a, draw 0, ~ G|,
and add a ball of that color to the urn.

2. With probability proportional to n — 1 (i.e., the
number of balls currently in the urn), pick a ball
at random from the urn. Record its color as 0,

and return the ball into the urn, along with a
new one of the same color.
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Polya’s Urns: Discussion

e Polya Urn scheme
~ Simple generative process for the predictive distribution of a DP

. Consider a set of N observationsd, ~ G taking K
distinct values{f, }2* . . The predictive distribution
of the next observation is then a (G)
_ _ aH(0) + S5 Ny6(6,6))
O =0|01. -1, 0, H) = k=1 .y
p(On 01.8 1,0, H) N—1+a @
e Remarks -

> This procedure can be used to sample observations from a DP
without explicitly constructing the underlying mixture.

= DPs lead to simple predictive distributions that can be evaluated
by caching the nhumber of previous observations taking each
distinct value.
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Topics of This Lecture

e Dirichlet Processes
> Motivation
> Definition
> Polya Urn Scheme
> Chinese Restaurant Process
~ Stick-breaking construction
> Discussion

B. Leibe
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RWNTH
Chinese Restaurant Process (CRP)

e How can DPs support clustering?

e Chinese Restaurant Process

» Visualize clustering as a sequential process of customers sitting
at tables in an (infinitely large) restaurant.

Customers = observed data to be clustered
Tables = distinct blocks of partition, or clusters

> This will help us see the clustering effect of DPs explicitly

e Relation to the clustering problem

> We typically don’t know the number of clusters and want to
learn it from data

~ CRPs address this problem by assuming that there is an infinite
number of latent clusters, but that only a finite number of them
is used to generate the observed data.
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Sidenote on Partitions

e Problem with partitions

N g e gt P
- If our goal is clustering, the output groupingis - / - \.
defined by an assignment of indicator variables “~ 1l: =\~
2 o Mult (7 N s PehAwA
A " () w ~ Dir(—,...,—)
:§ Zn ~ Cat(ﬂ') K K .‘. .’. .’. .‘. ...
| A e S
= » The number of ways of assigning /V data points _.. ... . TS
m ° ° . . =
£ to K mixtures is K%, .
§ . If K > N, this is much larger than the number
@ of ways of partitioning the data! O
= o ! \ '
8 -.. T a.-
= . Example: N = 5: 52 partitions vs. 55 = 3125 RPN ®
@
§ = Need representation that is invariant to relabeling!

. 35
Slide credit: Erik Sudderth B. Leibe Image source: Wikipedia




RWNTH
Chinese Restaurant Process (CRP)

e Procedure

> Imagine a Chinese restaurant with an infinite number of tables,
each of which can seat an infinite number of customers.

> The 15t customer enters and sits at the first table.
> The N customer enters and sits at table

N
k  with prob N _ 1k+a fork=1,....K
) «
| K41 with prob N_1+a (new table)

where N, is the number of customers already sitting at table k.

e Remark

» Metaphor was motivated by the seemingly infinite seating
capability of Chinese restaurants in San Francisco...
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RWTH
Chinese Restaurant Process (CRP)

e Visualization
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R\WNTH
Chinese Restaurant Process (CRP)

O~P O~ &

g o o-
G~> GO~ ©

o o-
O~ G~ © &
o v o-

e Resulting conditional distribution

K
1 _
p(zy = 2|21, ... ZN 1, ) = N_1:a E Nio(z, k) + aé(z,k))
k=1 38

Slide adapted from Erik Sudderth B. Leibe Image source: Erik Sudderth

(9|
—
.
Q
P
=
(@))
.E
c
-
®
Q
—
Q
=
N e
(&)
1+
=
©
Q
(&)
c
©
3
<




Chinese Restaurant Process

a=30, d=0
200 ‘ .

150~ a; s

00 ' 2000 4000 6000 8000 1 0000
customer

e The CRP exhibits the clustering property of the DP.
» Rich-gets-richer effect implies small number of large clusters.
- Expected number of clusters is K = O(a log N).
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RWNTH
CRPs & Exchangeable Partitions

K
1 _
p(zy = 2|21, ..., ZN 1, Q) = N 17 a ( E Nid(z, k) + afé(z,k))
k=1

e Exchangeability property

» The probability of a seating arrangement of /V customers is
independent of the order they enter the restaurant:

F(&) OzK H F(Nk)

I'(N + a)
p(zla "'7ZN|a) :p(zl‘a)p(ZQ‘Zla (I) " 'p(zN‘ZN—la ...,Zl,O{)

p(z1,...,ZN|a) =

1 . 1 o 1 F(Ct) normalization
l+a 24a N-14+a I'(N+a) constants
o first customer to

sit at each table

other customers
Joining each table

-2 (N = 1) = (N — 1)l = T(N},)

(9|
-
.
Q
P
=
(@))
.E
c
-
®
Q
—
Q
=
N e
(&)
1+
=
©
Q
(&)
c
©
3
<

40

Slide adapted from Erik Sudderth B. Leibe



Discussion

e Relationship between CRPs and DPs
> DP is a distribution over distributions.

~ DP results in discrete distributions, so if you draw NV points, you
are likely to get repeated values.

~ A DP induces a partitioning of the [V points
eg.,(134)(25),2z,=2;=12,+#26=2z,=12
~ CRP is the corresponding distribution over partitions.
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Slide credit: Zoubin Gharamani B. Leibe



RWNTH
References and Further Reading

e More information about EM estimation is available in

Chapter 9 of Bishop’s book (recommendable to read).

P PATTERN RECOGNITION E
g axo MACHINE LEARNING [

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006

o Additional information
~ Original EM paper:
- A.P. Dempster, N.M. Laird, D.B. Rubin, ,,Maximum-Likelihood from

incomplete data via EM algorithm”, In Journal Royal Statistical
Society, Series B. Vol 39, 1977

> EM tutorial:

- J.A. Bilmes, “A Gentle Tutorial of the EM Algorithm and its
Application to Parameter Estimation for Gaussian Mixture and
Hidden Markov Models“, TR-97-021, ICSI, U.C. Berkeley, CA,USA

B. Leibe
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http://www.mmp.rwth-aachen.de/teaching/ml/dempster-em-jrss77.pdf
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