

Advanced Machine Learning Lecture 11

Dirichlet Processes 28.11.2012

Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de/

leibe@vision.rwth-aachen.de

This Lecture: Advanced Machine Learning

- Regression Approaches
 - Linear Regression
 - Regularization (Ridge, Lasso)
 - Kernels (Kernel Ridge Regression)
 - Gaussian Processes

Bayesian Estimation & Bayesian Non-Parametrics

B. Leibe

- Prob. Distributions, Approx. Inference
- » Mixture Models & EM
- Dirichlet Processes
- Latent Factor Models
- » Beta Processes

Learning Winter'12

Advanced Machine

- SVMs and Structured Output Learning
 - SV Regression, SVDD
 - Large-margin Learning

 $f: \mathcal{X} \to \mathcal{Y}$

Topics of This Lecture

• Finite Bayesian Mixture Models

- > Recap
- > Approximate inference

Dirichlet Processes

- Motivation
- > Definition
- Polya Urn Process
- > Chinese Restaurant Process
- Stick-breaking construction
- Discussion

• Dirichlet Process Mixture Models

- Comparison to finite mixture models
- Efficient sampling
- > Applications

Recap: Bayesian Mixture Models

- Let's be Bayesian about mixture models
 - Place priors over our parameters
 - > Again, introduce variable z_n as indicator which component data point x_n belongs to.

 $\mathbf{z}_n | \boldsymbol{\pi} \sim \operatorname{Multinomial}(\boldsymbol{\pi})$

$$\mathbf{x}_n | \mathbf{z}_n = k, \boldsymbol{\mu}, \boldsymbol{\Sigma} \sim \mathcal{N}(\boldsymbol{\mu}_k, \Sigma_k)$$

Introduce conjugate priors over parameters

$$\boldsymbol{\pi} \sim \operatorname{Dirichlet}(\frac{\alpha}{K}, \dots, \frac{\alpha}{K})$$
$$\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k \sim H = \mathcal{N} - \mathcal{IW}(0, s, d, \phi)$$

Recap: Bayesian Mixture Models

- Full Bayesian Treatment
 - > Given a dataset, we are interested in the cluster assignments

$$p(\mathbf{Z}|\mathbf{X}) = \frac{p(\mathbf{X}|\mathbf{Z})p(\mathbf{Z})}{\sum_{\mathbf{Z}} p(\mathbf{X}|\mathbf{Z})p(\mathbf{Z})}$$

where the likelihood is obtained by marginalizing over the parameters θ

$$p(\mathbf{X}|\mathbf{Z}) = \int p(\mathbf{X}|\mathbf{Z}, \boldsymbol{\theta}) p(\boldsymbol{\theta}) d\boldsymbol{\theta}$$

$$= \int \prod_{n=1}^{N} \prod_{k=1}^{K} p(\mathbf{x}_{n}|z_{nk}, \boldsymbol{\theta}_{k}) p(\boldsymbol{\theta}_{k}|H) d\boldsymbol{\theta}$$

- The posterior over assignments is intractable!
 - > Denominator requires summing over all possible partitions of the data into K groups!
 - \Rightarrow We will see efficient approximate inference methods later on...,

RWTHAACHEN UNIVERSITY Recap: Mixture Models with Dirichlet Priors

• Integrating out the mixing proportions π

$$p(\mathbf{z}|\alpha) = \int p(\mathbf{z}|\boldsymbol{\pi}) p(\boldsymbol{\pi}|\alpha) d\boldsymbol{\pi}$$
$$= \frac{\Gamma(\alpha)}{\Gamma(N+\alpha)} \prod_{k=1}^{K} \frac{\Gamma(N_k + \alpha/K)}{\Gamma(\alpha/K)}$$

- Conditional probabilities
 - > Examine the conditional of \mathbf{z}_n given all other variables \mathbf{z}_{n}

$$p(z_{nk} = 1 | \mathbf{z}_{-n}, \alpha) = \frac{p(z_{nk} = 1, \mathbf{z}_{-n} | \alpha)}{p(\mathbf{z}_{-n} | \alpha)}$$
$$= \frac{N_{-n,k} + \alpha/K}{N - 1 + \alpha} \qquad N_{-n,k} \stackrel{\text{def}}{=} \sum_{i=1, i \neq n}^{N} z_{ik}$$

 \Rightarrow The more populous a class is, the more likely it is to be joined!

Slide adapted from Zoubin Gharamani

6

Recap: Infinite Dirichlet Mixture Models

• Conditional probabilities: Finite K

$$p(z_{nk} = 1 | \mathbf{z}_{-n}, \alpha) = \frac{N_{-n,k} + \alpha/K}{N - 1 + \alpha}, \qquad N_{-n,k} \stackrel{\text{def}}{=} \sum_{i=1, i \neq n}^{N} z_{ik}$$

- Conditional probabilities: Infinite K
 - Taking the limit as $K o\infty$ yields the conditionals

$$p(z_{nk} = 1 | \mathbf{z}_{-n}, \alpha) = \begin{cases} \frac{N_{-n,k}}{N-1+\alpha} & \text{if } k \text{ represented} \\ \frac{\alpha}{N-1+\alpha} & \text{if all } k \text{ not represented} \end{cases}$$

> Left-over mass $\alpha \Rightarrow$ countably infinite number of indicator settings

Advanced Machine Learning Winter'12

 ΛT

Note

• Why this term if all k are not represented?

$$p(z_{nk} = 1 | \mathbf{z}_{-n}, \alpha) = \begin{cases} \frac{N_{-n,k}}{N-1+\alpha} & \text{if } k \text{ represented} \\ \frac{\alpha}{N-1+\alpha} & \text{if all } k \text{ not represented} \end{cases}$$

The total probability assigned to all unoccupied clusters is determined by the complement of existing cluster weights:

$$\lim_{K \to \infty} p(\mathbf{z}_n \neq \mathbf{z}_m \text{ for all } n \neq m | \mathbf{z}_{-n}, \alpha) = 1 - \sum_{k=1}^K \frac{N_{-n,k}}{N - 1 + \alpha}$$
$$= \frac{N - 1 + \alpha - (N - 1)}{N - 1 + \alpha}$$
$$= \frac{\alpha}{N - 1 + \alpha}$$

Topics of This Lecture

• Finite Bayesian Mixture Models

- Recap
- > Approximate inference
- Dirichlet Processes
 - Motivation
 - > Definition
 - Polya Urn Process
 - > Chinese Restaurant Process
 - > Stick-breaking construction
 - > Discussion
- Dirichlet Process Mixture Models
 - > Comparison to finite mixture models
 - > Efficient sampling
 - > Applications

Gibbs Sampling for Finite Mixtures

- We need approximate inference here
 - Gibbs Sampling: Conditionals are simple to compute

$$p(\mathbf{z}_n = k | \text{others}) \propto \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

 $\boldsymbol{\pi} \mid \mathbf{z} \sim \text{Dir}(N_1 + \alpha/K, \dots, N_K + \alpha/K)$

$$\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k | \text{others} \sim \mathcal{N} - \mathcal{IW}(v', s', d', \phi')$$

Recap: Gibbs Sampling

- Approach
 - MCMC-algorithm that is simple and widely applicable.
 - May be seen as a special case of Metropolis-Hastings.

• Idea

- > Sample variable-wise: replace z_i by a value drawn from the distribution $p(z_i | z_{i})$.
 - This means we update one coordinate at a time.
- Repeat procedure either by cycling through all variables or by choosing the next variable.

Properties

- The algorithm always accepts!
- Completely parameter free.
- > Can also be applied to subsets of variables.

Gibbs Sampling for Finite Mixtures

- Standard finite mixture sampler
 - > Given mixture weights $\pi^{(t-1)}$ and cluster parameters $\left\{ \theta_k^{(t-1)} \right\}_{k=1}^K$ from the previous iteration, sample new parameters as follows
 - 1. Independently assign each point \mathbf{x}_n to one of the K clusters by sampling the variables \mathbf{z}_n from the multinomial distributions

$$\mathbf{z}_{n}^{(t)} \sim \frac{1}{Z_{n}} \sum_{k=1}^{K} z_{nk}^{(t-1)} \pi_{k}^{(t-1)} p(\mathbf{x}_{n} | \theta_{k}^{(t-1)}) \qquad Z_{n} = \sum_{k=1}^{K} \pi_{k}^{(t-1)} p(\mathbf{x}_{n} | \theta_{k}^{(t-1)})$$

2. Sample new mixture weights from the Dirichlet distribution

$$\boldsymbol{\pi}^{(t)} \sim \operatorname{Dir}(N_1 + \alpha/K, \dots, N_K + \alpha/K)$$
 $N_k = \sum z_{nk}^{(t)}$

3. For each of the K clusters, independently sample new parameters from the conditional of the assigned observations $\theta_k^{(t)} \sim p(\theta_k | \{\mathbf{x}_n | z_{nk} = 1\}, H)$

B. Leibe

N

Standard Sampler: 2 Iterations

Slide credit: Erik Sudderth

Standard Sampler: 10 Iterations

Slide credit: Erik Sudderth

Standard Sampler: 50 Iterations

Slide credit: Erik Sudderth

Gibbs Sampling for Finite Mixtures

- We need approximate inference here
 - Gibbs Sampling: Conditionals are simple to compute

$$p(\mathbf{z}_n = k | \text{others}) \propto \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

 $\boldsymbol{\pi} \mid \mathbf{z} \sim \text{Dir}(N_1 + \alpha/K, \dots, N_K + \alpha/K)$

$$\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k | \text{others} \sim \mathcal{N} - \mathcal{IW}(v', s', d', \phi')$$

However, this will be rather inefficient...

- In each iteration, algorithm can only change the assignment for individual data points.
- ➤ There are often groups of data points that are associated with high probability to the same component. ⇒ Unlikely that group is moved.
- > Better performance by collapsed Gibbs sampling which integrates out the parameters π , μ , Σ .

Slide adapted from Yee Whye Teh

16 Image source: Yee Whye Teh

 α

 z_i

 x_i

Collapsed Finite Bayesian Mixture

- More efficient algorithm
 - Conjugate priors allow analytic integration of some parameters
 - Resulting sampler operates on reduced space of cluster assignments (implicitly considers all possible cluster shapes)
- Necessary steps
 - > The model implies the factorization

 $p(\mathbf{z}_n | \mathbf{z}_{-n}, \mathbf{x}, \alpha, H) \propto p(\mathbf{z}_n | \mathbf{z}_{-n}, \alpha) p(\mathbf{x}_n | \mathbf{z}, \mathbf{x}_{-n}, H)$

> Derive

$$p(\mathbf{z}|\alpha) = \int p(\mathbf{z}|\boldsymbol{\pi}) p(\boldsymbol{\pi}|\alpha) d\boldsymbol{\pi}$$

$$p(\mathbf{x}_n|\mathbf{z}_n, H) = \int \sum_{k=1}^{K} z_{nk} p(\mathbf{x}_n|\boldsymbol{\theta}_k) p(\boldsymbol{\theta}_k|H) d\boldsymbol{\theta}$$

 \Rightarrow Conjugate prior, Normal - Inverse Wishart

Slide adapted from Erik Sudderth

17 Image source: Yee Whye Teh

Н

Collapsed Finite Mixture Sampler

- Algorithm
 - 1. Sample a random permutation $au\left(\cdot
 ight)$ of the integers $\{1,\ldots,N\}$.
 - 2. Set $\mathbf{z}=\mathbf{z}^{(t\text{-}1)}$. For each $n\in\{\tau(1),\ldots,\tau(N)\}$, sequentially resample \mathbf{z}_n as follows
 - a) For each of the K clusters, determine the predictive likelihood (this can be computed from cached sufficient statistics)

$$p_k(\mathbf{x}_n | \mathbf{z}_{-n}, H) = p(\mathbf{x}_n | \{\mathbf{x}_m | z_{mk} = 1, m \neq n\}, H)$$

b) Sample a new assignment \mathbf{z}_n from the multinomial distribution $\mathbf{z}_n \sim \sum_{k=1}^{K} \frac{z_{nk}(N_{-n,k} + \alpha/K)p_k(\mathbf{x}_n | \mathbf{z}_{-n}, H)}{\sum_{j=1}^{K} (N_{-n,j} + \alpha/K)p_j(\mathbf{x}_n | \mathbf{z}_{-n}, H)}$

c) Update cached sufficient statistics to reflect assignment z_{nk} .

3. Set $z^{(t)} = z$. Optionally, mixture parameters may be sampled via steps 2-3 of the standard finite mixture sampler.

Standard vs. Collapsed Samplers

\Rightarrow Collapsed sampler converges much more quickly.

> Theorem (Rao-Blackwell)

"Analytical marginalization of some variables from a joint distribution always reduces the variance of later estimates."

Discussion

- Collapsed Gibbs sampling
 - > Integrates out the parameters π , μ , Σ .

$$p(z_{nk} = 1 | \text{others}) \propto \frac{(N_{-n,k} + \alpha/K)}{N - 1 + \alpha} p_k(\mathbf{x}_n | \mathbf{z}_{-n}, H)$$

Properties

- > Can change all assignments in each iteration.
- \Rightarrow Able to move entire groups between clusters.
- \Rightarrow Faster convergence.
- However, similar worst-case performance as standard sampler, may get stuck in local optima for many iterations.

Topics of This Lecture

- Finite Bayesian Mixture Models
 - Recap
 - > Approximate inference

• Dirichlet Processes

- Motivation
- Definition
- Polya Urn Process
- > Chinese Restaurant Process
- Stick-breaking construction
- Discussion
- Dirichlet Process Mixture Models
 - > Comparison to finite mixture models
 - > Efficient sampling
 - > Applications

Dirichlet Processes

- Gaussian Processes
 - Gaussian Processes (GP) define a distribution over functions

 $f \sim \mathrm{GP}(\cdot|\mu,c)$

where μ is the mean function and c is the covariance function.

- \Rightarrow We can think of GPs as "infinite-dimensional" Gaussians.
- Dirichlet Processes
 - Dirichlet Processes (DP) define a distribution over distributions (a measure on measures)

$$G \sim \mathrm{DP}(\cdot | G_0, \alpha)$$

- > Where $\alpha > 0$ is a scaling parameter and G_0 is the base measure.
- ⇒ We can think of DPs as "infinite-dimensional" Dirichlet distributions.

Dirichlet Processes

Definition

[Ferguson, 1973]

- > Let Θ be a measurable space, G_0 be a probability measure on Θ , and α a positive real number.
- \succ For all (A_1,\ldots,A_K) finite partitions of Θ ,

 $G \sim \mathrm{DP}(\cdot | G_0, \alpha)$

means that

 $(G(A_1),\ldots,G(A_K)) \sim \operatorname{Dir}(\alpha G_0(A_1),\ldots,\alpha G_0(A_K))$

Translation

 A random probability distribution G on *Θ* is drawn from a Dirichlet Process if its measure on every finite partition follows a Dirichlet distribution.

Slide credit: Zoubin Gharamani

Dirichlet Processes

Definition

[Ferguson, 1973]

- > Let Θ be a measurable space, G_0 be a probability measure on Θ , and α a positive real number.
- > For all (A_1, \ldots, A_K) finite partitions of Θ ,

 $G \sim \mathrm{DP}(\cdot | G_0, \alpha)$

means that

$$(G(A_1),\ldots,G(A_K)) \sim \operatorname{Dir}(\alpha G_0(A_1),\ldots,\alpha G_0(A_K))$$

Slide credit: Zoubin Gharamani

24 Image source: Zoubin Gharamani

Dirichlet Processes

Important property

[Blackwell]

> Draws from a DP will always place all their mass on a countable set of points. $C(\theta) = \sum_{n=1}^{\infty} \pi_n \delta_n (\theta) = \sum_{n=1}^{\infty} \pi_n - 1$

$$G(\theta) = \sum_{k=1}^{\infty} \pi_k \delta_{\theta_k}(\theta) \qquad \sum_{k=1}^{\infty} \pi_k = 1$$

- » Where $\delta_{ heta k}$ is a Dirac delta at $heta_k$, and $heta_k \sim G_0(\cdot)$.
- \Rightarrow Samples from DP are discrete with probability one.

Dirichlet Processes: Discussion

• Consider a DP with a Gaussian as base measure G_0

- > G_0 is continuous, so the probability that any two samples are equal is precisely zero.
- However, G is a discrete distribution, made up of a countably infinite number of point masses.
- \Rightarrow There is always a non-zero probability of two samples colliding.
- \Rightarrow This is what allows us to use DPs for clustering!

Dirichlet Processes: Properties

• Moments

 $\mathbb{E}[G(A)] = G_0(A)$ $\operatorname{var}[G(A)] = \frac{G_0(A)(1 - G_0(A))}{\alpha + 1}$

- Sampling
 - \succ Since G is a probability measure, we can draw samples from it

 $G \sim \mathrm{DP}(G_0, \alpha)$

$$\theta_1, ..., \theta_N | G \sim G$$

- Posterior of G given observations $\theta_1, \dots, \theta_N$?
 - > The usual Dirichlet-multinomial conjugacy carries over to the nonparametric DP as well. \Rightarrow Posterior is again a DP.

$$G|\theta_1, ..., \theta_N \sim \mathrm{DP}\left(\alpha + N, \frac{\alpha G_0 + \sum_{n=1}^N \delta_{\theta_n}}{\alpha + N}\right)$$

Properties

Summary so far

- > We have seen some of the formal properties of DPs.
- But how can we use them?
- How can we sample from them?
- In the following, we will characterize DPs through several different constructions in order to highlight key properties...

Constructions

- Polya Urn scheme
- > Chinese Restaurant Process
- Stick-Breaking Construction

Topics of This Lecture

- Finite Bayesian Mixture Models
 - > Recap
 - > Approximate inference

• Dirichlet Processes

- Motivation
- Definition
- Polya Urn Scheme
- > Chinese Restaurant Process
- Stick-breaking construction
- Discussion
- Dirichlet Process Mixture Models
 - > Comparison to finite mixture models
 - > Efficient sampling
 - > Applications

Polya's Urns

UNIVERSIT [Blackwell & MacQueen, 1973]

- Can we sample observations without constructing G? $G \sim \mathrm{DP}(G_0, \alpha) \quad \bar{\theta}_n \sim G$
- Yes, by a variation of the classical balls-in-urns analogy
 - > Assume that G_0 is a distribution over colors, and that each θ_n represents the color of a single ball placed in the urn.
 - » Start with an empty urn. Repeat for N steps:
 - 1. With probability proportional to α , draw $\theta_n \sim G_0$ and add a ball of that color to the urn.
 - 2. With probability proportional to n 1 (i.e., the number of balls currently in the urn), pick a ball at random from the urn. Record its color as θ_n and return the ball into the urn, along with a new one of the same color.

α

Polya's Urns: Discussion

- Polya Urn scheme
 - Simple generative process for the predictive distribution of a DP
 - > Consider a set of N observations $\bar{\theta}_n \sim G$ taking K distinct values $\{\theta_k\}_{k=1}^K$. The predictive distribution of the next observation is then

$$p(\bar{\theta}_N = \theta | \bar{\theta}_{1:N-1}, \alpha, H) = \frac{\alpha H(\theta) + \sum_{k=1}^K N_k \delta(\theta, \theta)}{N - 1 + \alpha}$$

Remarks

- This procedure can be used to sample observations from a DP without explicitly constructing the underlying mixture.
- ⇒ DPs lead to simple predictive distributions that can be evaluated by caching the number of previous observations taking each distinct value.

Topics of This Lecture

- Finite Bayesian Mixture Models
 - Recap
 - > Approximate inference

Dirichlet Processes

- Motivation
- Definition
- Polya Urn Scheme
- > Chinese Restaurant Process
- Stick-breaking construction
- Discussion
- Dirichlet Process Mixture Models
 - > Comparison to finite mixture models
 - > Efficient sampling
 - > Applications

Chinese Restaurant Process (CRP)

- How can DPs support clustering?
- Chinese Restaurant Process
 - Visualize clustering as a sequential process of customers sitting at tables in an (infinitely large) restaurant.

Customers \Leftrightarrow observed data to be clusteredTables \Leftrightarrow distinct blocks of partition, or clusters

- > This will help us see the clustering effect of DPs explicitly
- Relation to the clustering problem
 - We typically don't know the number of clusters and want to learn it from data
 - CRPs address this problem by assuming that there is an infinite number of latent clusters, but that only a finite number of them is used to generate the observed data.

Sidenote on Partitions

- Problem with partitions
 - If our goal is clustering, the output grouping is defined by an assignment of indicator variables

$$\left. \begin{array}{c} \mathbf{z}_n \sim \operatorname{Mult}(\boldsymbol{\pi}) \\ \mathbf{z}_n \sim \operatorname{Cat}(\boldsymbol{\pi}) \end{array} \right\} \boldsymbol{\pi} \sim \operatorname{Dir}(\frac{\alpha}{K}, \dots, \frac{\alpha}{K})$$

- > The number of ways of assigning N data points to K mixtures is K^N .
- > If $K \ge N$, this is much larger than the number of ways of partitioning the data!
- Example: N = 5: 52 partitions vs. 5⁵ = 3125

\Rightarrow Need representation that is invariant to relabeling!

2 4 4 4 6

シオ ナスシ

* * * * *

😧 🕐 🔶 🖄 🕍

ひきいとい

 $\pm \lambda \times \pm \pm$

シルニペク

😒 📢 🚖 🔥 술

* * * * *

Chinese Restaurant Process (CRP)

- Procedure
 - Imagine a Chinese restaurant with an infinite number of tables, each of which can seat an infinite number of customers.
 - The 1st customer enters and sits at the first table.
 - > The $N^{\rm th}$ customer enters and sits at table

$$\left\{egin{array}{cc} k & {
m with \ prob} \ rac{N_k}{N-1+lpha} \ {
m for} \ k=1,\ldots,K \ K+1 \ {
m with \ prob} \ rac{lpha}{N-1+lpha} & {
m (new \ table)} \end{array}
ight.$$

where N_k is the number of customers already sitting at table k.

Remark

Metaphor was motivated by the seemingly infinite seating capability of Chinese restaurants in San Francisco...

Chinese Restaurant Process (CRP)

• Visualization

Slide credit: Teg Grenager

B. Leibe

Chinese Restaurant Process (CRP)

Slide adapted from Erik Sudderth

B. Leibe

Image source: Erik Sudderth

Chinese Restaurant Process

• The CRP exhibits the clustering property of the DP.

- Rich-gets-richer effect implies small number of large clusters.
- > Expected number of clusters is $K = \mathcal{O}(\alpha \log N)$.

CRPs & Exchangeable Partitions

$$p(\mathbf{z}_N = \mathbf{z} | \mathbf{z}_1, ..., \mathbf{z}_{N-1}, \alpha) = \frac{1}{N-1+\alpha} \left(\sum_{k=1}^K N_k \delta(\mathbf{z}, k) + \alpha \delta(\mathbf{z}, \bar{k}) \right)$$

- Exchangeability property
 - > The probability of a seating arrangement of N customers is independent of the order they enter the restaurant:

$$p(\mathbf{z}_{1},...,\mathbf{z}_{N}|\alpha) = \frac{\Gamma(\alpha)}{\Gamma(N+\alpha)} \alpha^{K} \prod_{k=1}^{K} \Gamma(N_{k})$$
$$(\mathbf{z}_{1},...,\mathbf{z}_{N}|\alpha) = p(\mathbf{z}_{1}|\alpha) p(\mathbf{z}_{2}|\mathbf{z}_{1},\alpha) \dots p(\mathbf{z}_{N}|\mathbf{z}_{N-1},...,\mathbf{z}_{1},\alpha)$$
$$1 \qquad 1 \qquad 1 \qquad \Gamma(\alpha) \qquad \text{normalization}$$

$$\frac{1}{1+\alpha} \cdot \frac{1}{2+\alpha} \cdots \frac{1}{N-1+\alpha} = \frac{\Gamma(\alpha)}{\Gamma(N+\alpha)}$$
$$\alpha$$
$$1 \cdot 2 \cdots (N_k - 1) = (N_k - 1)! = \Gamma(N_k)$$

normalization constants first customer to sit at each table other customers joining each table

p

Discussion

- Relationship between CRPs and DPs
 - > DP is a distribution over distributions.
 - > DP results in discrete distributions, so if you draw N points, you are likely to get repeated values.
 - $\succ\,$ A DP induces a partitioning of the N points

e.g., $(1 \ 3 \ 4) \ (2 \ 5)$, $\mathbf{z}_1 = \mathbf{z}_3 = \mathbf{z}_4 \neq \mathbf{z}6 = \mathbf{z}_2 = \mathbf{z}_5$

CRP is the corresponding distribution over partitions.

References and Further Reading

 More information about EM estimation is available in Chapter 9 of Bishop's book (recommendable to read).

> Christopher M. Bishop Pattern Recognition and Machine Learning Springer, 2006

- Additional information
 - > Original EM paper:
 - A.P. Dempster, N.M. Laird, D.B. Rubin, <u>Maximum-Likelihood from</u> <u>incomplete data via EM algorithm</u>", In Journal Royal Statistical Society, Series B. Vol 39, 1977
 - **EM tutorial:**
 - J.A. Bilmes, "<u>A Gentle Tutorial of the EM Algorithm and its</u> <u>Application to Parameter Estimation for Gaussian Mixture and</u> <u>Hidden Markov Models</u>", TR-97-021, ICSI, U.C. Berkeley, CA,USA