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This Lecture: Advanced Machine Learning 

• Regression Approaches 

 Linear Regression 

 Regularization (Ridge, Lasso) 

 Kernels (Kernel Ridge Regression) 

 Gaussian Processes 
 

• Bayesian Estimation & Bayesian Non-Parametrics  

 Prob. Distributions, Approx. Inference 

 Mixture Models & EM 

 Dirichlet Processes 

 Latent Factor Models  

 Beta Processes 
 

• SVMs and Structured Output Learning 

 SV Regression, SVDD 

 Large-margin Learning 
B. Leibe 
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Topics of This Lecture 

• Finite Bayesian Mixture Models 
 Recap 

 Approximate inference 
 

• Dirichlet Processes 
 Motivation 

 Definition 

 Polya Urn Process 

 Chinese Restaurant Process 

 Stick-breaking construction 

 Discussion 
 

• Dirichlet Process Mixture Models 
 Comparison to finite mixture models 

 Efficient sampling 

 Applications 
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Recap: Bayesian Mixture Models 

• Let’s be Bayesian about mixture models 

 Place priors over our parameters 

 Again, introduce variable zn as indicator 

which component data point xn belongs to. 

 

 

 
 

 Introduce conjugate priors over parameters 

4 
B. Leibe Slide inspired by Yee Whye Teh 

“Normal – Inverse Wishart” 
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Recap: Bayesian Mixture Models 

• Full Bayesian Treatment 

 Given a dataset, we are interested in the cluster assignments 

 

 
 

where the likelihood is obtained by marginalizing over the 

parameters µ  

 

 

 

 

• The posterior over assignments is intractable!  

 Denominator requires summing over all possible partitions of the 

data into K groups! 

 We will see efficient approximate inference methods later on... 
5 
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Recap: Mixture Models with Dirichlet Priors 

• Integrating out the mixing proportions ¼  

 

 

 

 

 
 

• Conditional probabilities 

 Examine the conditional of zn given all other variables z-n  

 

 

 

 
 

 The more populous a class is, the more likely it is to be joined! 

 6 
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Recap: Infinite Dirichlet Mixture Models 

• Conditional probabilities: Finite K 

 

 

 

 

• Conditional probabilities: Infinite K  

 Taking the limit as K ! 1 yields the conditionals 

 

 

 

 
 

 Left-over mass ®  countably infinite number of indicator 

settings 

7 
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Note 

• Why this term if all k are not represented? 

 

 

 

 

 The total probability assigned to all unoccupied clusters is 

determined by the complement of existing cluster weights: 

8 
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Topics of This Lecture 

• Finite Bayesian Mixture Models 
 Recap 

 Approximate inference 
 

• Dirichlet Processes 
 Motivation 

 Definition 

 Polya Urn Process 

 Chinese Restaurant Process 

 Stick-breaking construction 

 Discussion 
 

• Dirichlet Process Mixture Models 
 Comparison to finite mixture models 

 Efficient sampling 

 Applications 
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Gibbs Sampling for Finite Mixtures 

• We need approximate inference here 

 Gibbs Sampling: Conditionals are simple to compute 
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Recap: Gibbs Sampling 

• Approach 

 MCMC-algorithm that is simple and widely applicable. 

 May be seen as a special case of Metropolis-Hastings. 
 

• Idea 

 Sample variable-wise: replace zi by a value drawn from the 

distribution p(zi|z\i). 

– This means we update one coordinate at a time. 

 Repeat procedure either by cycling through all variables or by 

choosing the next variable. 
 

• Properties 

 The algorithm always accepts! 

 Completely parameter free. 

 Can also be applied to subsets of variables. 
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Gibbs Sampling for Finite Mixtures 

• Standard finite mixture sampler 

 Given mixture weights ¼(t-1) and cluster parameters  

from the previous iteration, sample new parameters as follows  
 

1. Independently assign each point xn to one of the K clusters by 

sampling the variables zn from the multinomial distributions 

 

 
 

2. Sample new mixture weights from the Dirichlet distribution 

 

 

3. For each of the K clusters, independently sample new 

parameters from the conditional of the assigned observations 
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Standard Sampler: 2 Iterations 
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Standard Sampler: 10 Iterations 

 

14 
B. Leibe Slide credit: Erik Sudderth Image source: Erik Sudderth 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in

te
r’

1
2

 

Standard Sampler: 50 Iterations 
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Gibbs Sampling for Finite Mixtures 

• We need approximate inference here 

 Gibbs Sampling: Conditionals are simple to compute 

 

 

 

 
 

 

• However, this will be rather inefficient… 

 In each iteration, algorithm can only change 

the assignment for individual data points. 

 There are often groups of data points that are  

associated with high probability to the same 

component.  Unlikely that group is moved. 

 Better performance by collapsed Gibbs sampling 

which integrates out the parameters ¼, ¹, §. 
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Collapsed Finite Bayesian Mixture 

• More efficient algorithm 

 Conjugate priors allow analytic integration of some parameters 

 Resulting sampler operates on reduced space of cluster 

assignments (implicitly considers all possible cluster shapes) 
 

• Necessary steps 

 The model implies the factorization 

 
 

 Derive  

  

 

 

 

 Conjugate prior, Normal - Inverse Wishart 
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Collapsed Finite Mixture Sampler 

• Algorithm 

1. Sample a random permutation ¿ (¢) of the integers {1,…,N}. 
 

2. Set z = z(t-1). For each n 2 {¿(1),…,¿(N)}, sequentially 

resample zn as follows 

a) For each of the K clusters, determine the predictive likelihood  

(this can be computed from cached sufficient statistics) 

 
 

b) Sample a new assignment zn from the multinomial distribution 

 

 
 

c) Update cached sufficient statistics to reflect assignment znk. 
 

3. Set z(t) = z. Optionally, mixture parameters may be sampled 

via steps 2-3 of the standard finite mixture sampler. 

18 
B. Leibe Slide adapted from Erik Sudderth 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in

te
r’

1
2

 

Standard vs. Collapsed Samplers 

 

 

 

 

 

 

 

 
 

 Collapsed sampler converges much more quickly. 

 Theorem (Rao-Blackwell) 

“Analytical marginalization of some variables from a joint 

distribution always reduces the variance of later estimates.” 

19 
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Discussion 

• Collapsed Gibbs sampling 

 Integrates out the parameters ¼, ¹, §. 

 

 

 

 

• Properties 

 Can change all assignments in each iteration. 

 Able to move entire groups between clusters. 

 Faster convergence. 

 However, similar worst-case performance as  

standard sampler, may get stuck in local optima 

for many iterations. 
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Topics of This Lecture 

• Finite Bayesian Mixture Models 
 Recap 

 Approximate inference 
 

• Dirichlet Processes 
 Motivation 

 Definition 

 Polya Urn Process 

 Chinese Restaurant Process 

 Stick-breaking construction 

 Discussion 
 

• Dirichlet Process Mixture Models 
 Comparison to finite mixture models 

 Efficient sampling 

 Applications 
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Dirichlet Processes 

• Gaussian Processes 

 Gaussian Processes (GP) define a distribution over functions 

 
 

where ¹ is the mean function and c is the covariance function. 

 We can think of GPs as “infinite-dimensional” Gaussians. 
 

• Dirichlet Processes 

 Dirichlet Processes (DP) define a distribution over distributions  

(a measure on measures) 

 
 

 Where ®>0 is a scaling parameter and G0 is the base measure. 

 We can think of DPs as “infinite-dimensional” Dirichlet 

distributions. 

22 
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• Definition      [Ferguson, 1973] 

 Let  be a measurable space, G0 be a probability measure on , 

and ® a positive real number.  

 For all (A1,…,AK) finite partitions of , 

 

 

means that  

 

 
 

• Translation 

 A random probability distribution G on  is drawn from a 

Dirichlet Process if its measure on every finite partition follows 

a Dirichlet distribution. 

Dirichlet Processes 
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• Definition      [Ferguson, 1973] 

 Let  be a measurable space, G0 be a probability measure on , 

and ® a positive real number.  

 For all (A1,…,AK) finite partitions of , 

 

 

means that  

 

 

 

Dirichlet Processes 
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Dirichlet Processes 

• Important property           [Blackwell] 

 Draws from a DP will always place all their mass on a countable 

set of points. 

 

 

 Where ±µk is a Dirac delta at µk, and µk » G0(¢). 
 

 Samples from DP are discrete with probability one. 
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• Consider a DP with a Gaussian as base measure G0  

 G0 is continuous, so the probability that any two samples are 

equal is precisely zero. 

 However, G is a discrete distribution, made up of a countably 

infinite number of point masses. 

 There is always a non-zero probability of two samples colliding. 

 This is what allows us to use DPs for clustering! 

Dirichlet Processes: Discussion 

26 
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Dirichlet Processes: Properties 

• Moments 

 
 

• Sampling 

 Since G is a probability measure, we can draw samples from it 

 

 

 

• Posterior of G given observations µ1,…,µN ? 

 The usual Dirichlet-multinomial conjugacy carries over to the 

nonparametric DP as well.  Posterior is again a DP. 
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Properties 

• Summary so far 

 We have seen some of the formal properties of DPs. 

 But how can we use them?  

 How can we sample from them? 

 

 In the following, we will characterize DPs through several 

different constructions in order to highlight key properties… 

 

• Constructions 

 Polya Urn scheme 

 Chinese Restaurant Process 

 Stick-Breaking Construction 
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Topics of This Lecture 

• Finite Bayesian Mixture Models 
 Recap 

 Approximate inference 
 

• Dirichlet Processes 
 Motivation 

 Definition 

 Polya Urn Scheme 

 Chinese Restaurant Process 

 Stick-breaking construction 

 Discussion 
 

• Dirichlet Process Mixture Models 
 Comparison to finite mixture models 

 Efficient sampling 

 Applications 
30 

B. Leibe 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in

te
r’

1
2

 

Polya’s Urns      [Blackwell & MacQueen, 1973] 

• Can we sample observations without constructing G? 

 
 

• Yes, by a variation of the classical balls-in-urns analogy 

 Assume that G0 is a distribution over colors, and that each µn 

represents the color of a single ball placed in the urn. 

 Start with an empty urn. Repeat for N steps: 

1. With probability proportional to α, draw µn » G0  

and add a ball of that color to the urn. 

2. With probability proportional to n – 1 (i.e., the  

number of balls currently in the urn), pick a ball  

at random from the urn. Record its color as µn  

and return the ball into the urn, along with a  

new one of the same color. 
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Polya’s Urns: Discussion 

• Polya Urn scheme  

 Simple generative process for the predictive distribution of a DP 

 Consider a set of N observations             taking K  

distinct values              . The predictive distribution  

of the next observation is then   

 

 

 
 

• Remarks 

 This procedure can be used to sample observations from a DP 

without explicitly constructing the underlying mixture. 

 DPs lead to simple predictive distributions that can be evaluated 

by caching the number of previous observations taking each 

distinct value. 
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Topics of This Lecture 

• Finite Bayesian Mixture Models 
 Recap 

 Approximate inference 
 

• Dirichlet Processes 
 Motivation 

 Definition 

 Polya Urn Scheme 

 Chinese Restaurant Process 

 Stick-breaking construction 

 Discussion 
 

• Dirichlet Process Mixture Models 
 Comparison to finite mixture models 

 Efficient sampling 

 Applications 
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Chinese Restaurant Process (CRP) 

• How can DPs support clustering? 
 

• Chinese Restaurant Process 

 Visualize clustering as a sequential process of customers sitting 

at tables in an (infinitely large) restaurant. 

Customers  observed data to be clustered 

Tables   distinct blocks of partition, or clusters 
 

 This will help us see the clustering effect of DPs explicitly 
 

• Relation to the clustering problem 

 We typically don’t know the number of clusters and want to 

learn it from data 

 CRPs address this problem by assuming that there is an infinite 

number of latent clusters, but that only a finite number of them 

is used to generate the observed data. 
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Sidenote on Partitions 

• Problem with partitions 

 If our goal is clustering, the output grouping is 

defined by an assignment of indicator variables 

 

 

 

 The number of ways of assigning N data points 

to K mixtures is KN. 

 If K ¸ N, this is much larger than the number 

of ways of partitioning the data! 

 

 Example: N = 5: 52 partitions vs. 55 = 3125 

 

 Need representation that is invariant to relabeling! 
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Chinese Restaurant Process (CRP) 

• Procedure 

 Imagine a Chinese restaurant with an infinite number of tables, 

each of which can seat an infinite number of customers. 

 The 1st customer enters and sits at the first table. 

 The Nth customer enters and sits at table 

 

 

 

 

 where Nk is the number of customers already sitting at table k. 

 

• Remark 

 Metaphor was motivated by the seemingly infinite seating 

capability of Chinese restaurants in San Francisco… 
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   k    with prob                   for k = 1,…,K  

K+1  with prob                      (new table) 
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Chinese Restaurant Process (CRP) 

• Visualization 

37 
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Chinese Restaurant Process (CRP) 

 

 

 

 

 

 

 

 

 
 

• Resulting conditional distribution 
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Chinese Restaurant Process 

 

 

 

 

 

 

 

 

 

• The CRP exhibits the clustering property of the DP. 

 Rich-gets-richer effect implies small number of large clusters. 

 Expected number of clusters is K = O(® log N). 
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CRPs & Exchangeable Partitions 

 

 

• Exchangeability property 

 The probability of a seating arrangement of N customers is 

independent of the order they enter the restaurant: 
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Discussion 

• Relationship between CRPs and DPs 

 DP is a distribution over distributions. 

 DP results in discrete distributions, so if you draw N points, you 

are likely to get repeated values. 

 A DP induces a partitioning of the N points 

e.g., (1 3 4) (2 5) , z1 = z3 = z4  z6= z2 = z5 

 CRP is the corresponding distribution over partitions. 

41 
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References and Further Reading 

• More information about EM estimation is available in 

Chapter 9 of Bishop’s book (recommendable to read). 

 

 

 
 

• Additional information 

 Original EM paper: 

– A.P. Dempster, N.M. Laird, D.B. Rubin, „Maximum-Likelihood from 

incomplete data via EM algorithm”, In Journal Royal Statistical 

Society, Series B. Vol 39, 1977 

 EM tutorial: 

– J.A. Bilmes, “A Gentle Tutorial of the EM Algorithm and its 

Application to Parameter Estimation for Gaussian Mixture and 

Hidden Markov Models“, TR-97-021, ICSI, U.C. Berkeley, CA,USA 
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