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This Lecture: Advanced Machine Learning 

• Regression Approaches 

 Linear Regression 

 Regularization (Ridge, Lasso) 

 Kernels (Kernel Ridge Regression) 

 Gaussian Processes 
 

• Bayesian Estimation & Bayesian Non-Parametrics  

 Prob. Distributions, Approx. Inference 

 Mixture Models & EM 

 Dirichlet Processes 

 Latent Factor Models  

 Beta Processes 
 

• SVMs and Structured Output Learning 

 SV Regression, SVDD 

 Large-margin Learning 
B. Leibe 
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Topics of This Lecture 

• Finite Bayesian Mixture Models 
 Recap 

 Approximate inference 
 

• Dirichlet Processes 
 Motivation 

 Definition 

 Polya Urn Process 

 Chinese Restaurant Process 

 Stick-breaking construction 

 Discussion 
 

• Dirichlet Process Mixture Models 
 Comparison to finite mixture models 

 Efficient sampling 

 Applications 
3 
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Recap: Bayesian Mixture Models 

• Let’s be Bayesian about mixture models 

 Place priors over our parameters 

 Again, introduce variable zn as indicator 

which component data point xn belongs to. 

 

 

 
 

 Introduce conjugate priors over parameters 

4 
B. Leibe Slide inspired by Yee Whye Teh 

“Normal – Inverse Wishart” 
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Recap: Bayesian Mixture Models 

• Full Bayesian Treatment 

 Given a dataset, we are interested in the cluster assignments 

 

 
 

where the likelihood is obtained by marginalizing over the 

parameters µ  

 

 

 

 

• The posterior over assignments is intractable!  

 Denominator requires summing over all possible partitions of the 

data into K groups! 

 We will see efficient approximate inference methods later on... 
5 
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Recap: Mixture Models with Dirichlet Priors 

• Integrating out the mixing proportions ¼  

 

 

 

 

 
 

• Conditional probabilities 

 Examine the conditional of zn given all other variables z-n  

 

 

 

 
 

 The more populous a class is, the more likely it is to be joined! 

 6 
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Recap: Infinite Dirichlet Mixture Models 

• Conditional probabilities: Finite K 

 

 

 

 

• Conditional probabilities: Infinite K  

 Taking the limit as K ! 1 yields the conditionals 

 

 

 

 
 

 Left-over mass ®  countably infinite number of indicator 

settings 

7 
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Note 

• Why this term if all k are not represented? 

 

 

 

 

 The total probability assigned to all unoccupied clusters is 

determined by the complement of existing cluster weights: 

8 
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Topics of This Lecture 

• Finite Bayesian Mixture Models 
 Recap 

 Approximate inference 
 

• Dirichlet Processes 
 Motivation 

 Definition 

 Polya Urn Process 

 Chinese Restaurant Process 

 Stick-breaking construction 

 Discussion 
 

• Dirichlet Process Mixture Models 
 Comparison to finite mixture models 

 Efficient sampling 

 Applications 
9 
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Gibbs Sampling for Finite Mixtures 

• We need approximate inference here 

 Gibbs Sampling: Conditionals are simple to compute 
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Recap: Gibbs Sampling 

• Approach 

 MCMC-algorithm that is simple and widely applicable. 

 May be seen as a special case of Metropolis-Hastings. 
 

• Idea 

 Sample variable-wise: replace zi by a value drawn from the 

distribution p(zi|z\i). 

– This means we update one coordinate at a time. 

 Repeat procedure either by cycling through all variables or by 

choosing the next variable. 
 

• Properties 

 The algorithm always accepts! 

 Completely parameter free. 

 Can also be applied to subsets of variables. 
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Gibbs Sampling for Finite Mixtures 

• Standard finite mixture sampler 

 Given mixture weights ¼(t-1) and cluster parameters  

from the previous iteration, sample new parameters as follows  
 

1. Independently assign each point xn to one of the K clusters by 

sampling the variables zn from the multinomial distributions 

 

 
 

2. Sample new mixture weights from the Dirichlet distribution 

 

 

3. For each of the K clusters, independently sample new 

parameters from the conditional of the assigned observations 

12 
B. Leibe Slide adapted from Erik Sudderth 
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Standard Sampler: 2 Iterations 
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Standard Sampler: 10 Iterations 
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Standard Sampler: 50 Iterations 
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Gibbs Sampling for Finite Mixtures 

• We need approximate inference here 

 Gibbs Sampling: Conditionals are simple to compute 

 

 

 

 
 

 

• However, this will be rather inefficient… 

 In each iteration, algorithm can only change 

the assignment for individual data points. 

 There are often groups of data points that are  

associated with high probability to the same 

component.  Unlikely that group is moved. 

 Better performance by collapsed Gibbs sampling 

which integrates out the parameters ¼, ¹, §. 
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Collapsed Finite Bayesian Mixture 

• More efficient algorithm 

 Conjugate priors allow analytic integration of some parameters 

 Resulting sampler operates on reduced space of cluster 

assignments (implicitly considers all possible cluster shapes) 
 

• Necessary steps 

 The model implies the factorization 

 
 

 Derive  

  

 

 

 

 Conjugate prior, Normal - Inverse Wishart 
17 
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Collapsed Finite Mixture Sampler 

• Algorithm 

1. Sample a random permutation ¿ (¢) of the integers {1,…,N}. 
 

2. Set z = z(t-1). For each n 2 {¿(1),…,¿(N)}, sequentially 

resample zn as follows 

a) For each of the K clusters, determine the predictive likelihood  

(this can be computed from cached sufficient statistics) 

 
 

b) Sample a new assignment zn from the multinomial distribution 

 

 
 

c) Update cached sufficient statistics to reflect assignment znk. 
 

3. Set z(t) = z. Optionally, mixture parameters may be sampled 

via steps 2-3 of the standard finite mixture sampler. 

18 
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Standard vs. Collapsed Samplers 

 

 

 

 

 

 

 

 
 

 Collapsed sampler converges much more quickly. 

 Theorem (Rao-Blackwell) 

“Analytical marginalization of some variables from a joint 

distribution always reduces the variance of later estimates.” 

19 
B. Leibe Slide credit: Erik Sudderth Image source: Erik Sudderth 
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Discussion 

• Collapsed Gibbs sampling 

 Integrates out the parameters ¼, ¹, §. 

 

 

 

 

• Properties 

 Can change all assignments in each iteration. 

 Able to move entire groups between clusters. 

 Faster convergence. 

 However, similar worst-case performance as  

standard sampler, may get stuck in local optima 

for many iterations. 
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Topics of This Lecture 

• Finite Bayesian Mixture Models 
 Recap 

 Approximate inference 
 

• Dirichlet Processes 
 Motivation 

 Definition 

 Polya Urn Process 

 Chinese Restaurant Process 

 Stick-breaking construction 

 Discussion 
 

• Dirichlet Process Mixture Models 
 Comparison to finite mixture models 

 Efficient sampling 

 Applications 
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Dirichlet Processes 

• Gaussian Processes 

 Gaussian Processes (GP) define a distribution over functions 

 
 

where ¹ is the mean function and c is the covariance function. 

 We can think of GPs as “infinite-dimensional” Gaussians. 
 

• Dirichlet Processes 

 Dirichlet Processes (DP) define a distribution over distributions  

(a measure on measures) 

 
 

 Where ®>0 is a scaling parameter and G0 is the base measure. 

 We can think of DPs as “infinite-dimensional” Dirichlet 

distributions. 

22 
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• Definition      [Ferguson, 1973] 

 Let  be a measurable space, G0 be a probability measure on , 

and ® a positive real number.  

 For all (A1,…,AK) finite partitions of , 

 

 

means that  

 

 
 

• Translation 

 A random probability distribution G on  is drawn from a 

Dirichlet Process if its measure on every finite partition follows 

a Dirichlet distribution. 

Dirichlet Processes 

23 
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• Definition      [Ferguson, 1973] 

 Let  be a measurable space, G0 be a probability measure on , 

and ® a positive real number.  

 For all (A1,…,AK) finite partitions of , 

 

 

means that  

 

 

 

Dirichlet Processes 
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Dirichlet Processes 

• Important property           [Blackwell] 

 Draws from a DP will always place all their mass on a countable 

set of points. 

 

 

 Where ±µk is a Dirac delta at µk, and µk » G0(¢). 
 

 Samples from DP are discrete with probability one. 
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• Consider a DP with a Gaussian as base measure G0  

 G0 is continuous, so the probability that any two samples are 

equal is precisely zero. 

 However, G is a discrete distribution, made up of a countably 

infinite number of point masses. 

 There is always a non-zero probability of two samples colliding. 

 This is what allows us to use DPs for clustering! 

Dirichlet Processes: Discussion 

26 
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Dirichlet Processes: Properties 

• Moments 

 
 

• Sampling 

 Since G is a probability measure, we can draw samples from it 

 

 

 

• Posterior of G given observations µ1,…,µN ? 

 The usual Dirichlet-multinomial conjugacy carries over to the 

nonparametric DP as well.  Posterior is again a DP. 

27 
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var[G(A)] =
G0(A)(1¡G0(A))

® + 1
E[G(A)] = G0(A)
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Properties 

• Summary so far 

 We have seen some of the formal properties of DPs. 

 But how can we use them?  

 How can we sample from them? 

 

 In the following, we will characterize DPs through several 

different constructions in order to highlight key properties… 

 

• Constructions 

 Polya Urn scheme 

 Chinese Restaurant Process 

 Stick-Breaking Construction 

29 
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Topics of This Lecture 

• Finite Bayesian Mixture Models 
 Recap 

 Approximate inference 
 

• Dirichlet Processes 
 Motivation 

 Definition 

 Polya Urn Scheme 

 Chinese Restaurant Process 

 Stick-breaking construction 

 Discussion 
 

• Dirichlet Process Mixture Models 
 Comparison to finite mixture models 

 Efficient sampling 

 Applications 
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Polya’s Urns      [Blackwell & MacQueen, 1973] 

• Can we sample observations without constructing G? 

 
 

• Yes, by a variation of the classical balls-in-urns analogy 

 Assume that G0 is a distribution over colors, and that each µn 

represents the color of a single ball placed in the urn. 

 Start with an empty urn. Repeat for N steps: 

1. With probability proportional to α, draw µn » G0  

and add a ball of that color to the urn. 

2. With probability proportional to n – 1 (i.e., the  

number of balls currently in the urn), pick a ball  

at random from the urn. Record its color as µn  

and return the ball into the urn, along with a  

new one of the same color. 
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Polya’s Urns: Discussion 

• Polya Urn scheme  

 Simple generative process for the predictive distribution of a DP 

 Consider a set of N observations             taking K  

distinct values              . The predictive distribution  

of the next observation is then   

 

 

 
 

• Remarks 

 This procedure can be used to sample observations from a DP 

without explicitly constructing the underlying mixture. 

 DPs lead to simple predictive distributions that can be evaluated 

by caching the number of previous observations taking each 

distinct value. 
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Topics of This Lecture 

• Finite Bayesian Mixture Models 
 Recap 

 Approximate inference 
 

• Dirichlet Processes 
 Motivation 

 Definition 

 Polya Urn Scheme 

 Chinese Restaurant Process 

 Stick-breaking construction 

 Discussion 
 

• Dirichlet Process Mixture Models 
 Comparison to finite mixture models 

 Efficient sampling 

 Applications 
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Chinese Restaurant Process (CRP) 

• How can DPs support clustering? 
 

• Chinese Restaurant Process 

 Visualize clustering as a sequential process of customers sitting 

at tables in an (infinitely large) restaurant. 

Customers  observed data to be clustered 

Tables   distinct blocks of partition, or clusters 
 

 This will help us see the clustering effect of DPs explicitly 
 

• Relation to the clustering problem 

 We typically don’t know the number of clusters and want to 

learn it from data 

 CRPs address this problem by assuming that there is an infinite 

number of latent clusters, but that only a finite number of them 

is used to generate the observed data. 

34 
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Sidenote on Partitions 

• Problem with partitions 

 If our goal is clustering, the output grouping is 

defined by an assignment of indicator variables 

 

 

 

 The number of ways of assigning N data points 

to K mixtures is KN. 

 If K ¸ N, this is much larger than the number 

of ways of partitioning the data! 

 

 Example: N = 5: 52 partitions vs. 55 = 3125 

 

 Need representation that is invariant to relabeling! 
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Chinese Restaurant Process (CRP) 

• Procedure 

 Imagine a Chinese restaurant with an infinite number of tables, 

each of which can seat an infinite number of customers. 

 The 1st customer enters and sits at the first table. 

 The Nth customer enters and sits at table 

 

 

 

 

 where Nk is the number of customers already sitting at table k. 

 

• Remark 

 Metaphor was motivated by the seemingly infinite seating 

capability of Chinese restaurants in San Francisco… 
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   k    with prob                   for k = 1,…,K  

K+1  with prob                      (new table) 
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Chinese Restaurant Process (CRP) 

• Visualization 

37 
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Chinese Restaurant Process (CRP) 

 

 

 

 

 

 

 

 

 
 

• Resulting conditional distribution 
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Chinese Restaurant Process 

 

 

 

 

 

 

 

 

 

• The CRP exhibits the clustering property of the DP. 

 Rich-gets-richer effect implies small number of large clusters. 

 Expected number of clusters is K = O(® log N). 
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CRPs & Exchangeable Partitions 

 

 

• Exchangeability property 

 The probability of a seating arrangement of N customers is 

independent of the order they enter the restaurant: 

40 
B. Leibe Slide adapted from Erik Sudderth 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in

te
r’

1
2

 

Discussion 

• Relationship between CRPs and DPs 

 DP is a distribution over distributions. 

 DP results in discrete distributions, so if you draw N points, you 

are likely to get repeated values. 

 A DP induces a partitioning of the N points 

e.g., (1 3 4) (2 5) , z1 = z3 = z4  z6= z2 = z5 

 CRP is the corresponding distribution over partitions. 
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References and Further Reading 

• More information about EM estimation is available in 

Chapter 9 of Bishop’s book (recommendable to read). 

 

 

 
 

• Additional information 

 Original EM paper: 

– A.P. Dempster, N.M. Laird, D.B. Rubin, „Maximum-Likelihood from 

incomplete data via EM algorithm”, In Journal Royal Statistical 

Society, Series B. Vol 39, 1977 

 EM tutorial: 

– J.A. Bilmes, “A Gentle Tutorial of the EM Algorithm and its 

Application to Parameter Estimation for Gaussian Mixture and 

Hidden Markov Models“, TR-97-021, ICSI, U.C. Berkeley, CA,USA 
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