Advanced Machine Learning Lecture 9

Mixture Models

14.11.2012

Bastian Leibe RWTH Aachen
http://www.vision.rwth-aachen.de/
leibe@vision.rwth-aachen.de

This Lecture: Advanced Machine Learning

- Regression Approaches
, Linear Regression
- Regularization (Ridge, Lasso)
, Kernels (Kernel Ridge Regression)
, Gaussian Processes

- Bayesian Estimation \& Bayesian Non-Parametrics
, Prob. Distributions, Approx. Inference
, Mixture Models \& EM
, Dirichlet Processes
, Latent Factor Models

, Beta Processes
- SVMs and Structured Output Learning
, SV Regression, SVDD
, Large-margin Learning

Recap: Importance Sampling

- Approach
, Approximate expectations directly (but does not enable to draw samples from $p(\mathbf{z})$ directly).
, Goal:

$$
\mathbb{E}[f]=\int f(\mathbf{z}) p(\mathbf{z}) d \mathbf{z}
$$

- Idea
, Use a proposal distribution $q(z)$ from which it is easy to sample.
, Express expectations in the form of a finite sum over samples $\left\{\mathbf{z}^{(l)}\right\}$ drawn from $q(\mathbf{z})$.

$$
\begin{aligned}
\mathbb{E}[f] & =\int f(\mathbf{z}) p(\mathbf{z}) d \mathbf{z}=\int f(\mathbf{z}) \frac{p(\mathbf{z})}{q(\mathbf{z})} q(\mathbf{z}) d \mathbf{z} \\
& \simeq \frac{1}{L} \sum_{l=1}^{L} \underbrace{\frac{p\left(\mathbf{z}^{(l)}\right)}{q\left(\mathbf{z}^{(l)}\right)}}_{\substack{\text { Importance weights } \\
\text { B. Leibe }}} f\left(\mathbf{z}^{(l)}\right)
\end{aligned}
$$

Slide adapted from Bernt Schiele

Recap: MCMC - Markov Chain Monte Carlo

- Overview
- Allows to sample from a large class of distributions.
, Scales well with the dimensionality of the sample space.
- Idea
, We maintain a record of the current state $\mathbf{z}^{(\tau)}$
, The proposal distribution depends on the current state: $q\left(\mathbf{z} \mid \mathbf{z}^{(\tau)}\right)$
, The sequence of samples forms a Markov chain $\mathbf{z}^{(1)}, \mathbf{z}^{(2)}, \ldots$
- Approach
- At each time step, we generate a candidate sample from the proposal distribution and accept the sample according to a criterion.
, Different variants of MCMC for different criteria.

\section*{P}
 Recap: Markov Chains - Properties

- Invariant distribution
, A distribution is said to be invariant (or stationary) w.r.t. a Markov chain if each step in the chain leaves that distribution invariant.
, Transition probabilities:

$$
T\left(\mathbf{z}^{(m)}, \mathbf{z}^{(m+1)}\right)=p\left(\mathbf{z}^{(m+1)} \mid \mathbf{z}^{(m)}\right)
$$

, For homogeneous Markov chain, distribution $p^{*}(\mathbf{z})$ is invariant if:

$$
p^{\star}(\mathbf{z})=\sum_{\mathbf{z}^{\prime}} T\left(\mathbf{z}^{\prime}, \mathbf{z}\right) p^{\star}\left(\mathbf{z}^{\prime}\right)
$$

- Detailed balance
, Sufficient (but not necessary) condition to ensure that a distribution is invariant:

$$
p^{\star}(\mathbf{z}) T\left(\mathbf{z}, \mathbf{z}^{\prime}\right)=p^{\star}\left(\mathbf{z}^{\prime}\right) T\left(\mathbf{z}^{\prime}, \mathbf{z}\right)
$$

, A Markov chain which respects detailed balance is reversible.

Detailed Balance

- Detailed balance means
, If we pick a state from the target distribution $p(\mathbf{z})$ and make a transition under T to another state, it is just as likely that we will pick \mathbf{z}_{A} and go from \mathbf{z}_{A} to \mathbf{z}_{B} than that we will pick \mathbf{z}_{B} and go from \mathbf{z}_{B} to \mathbf{z}_{A}.
- It can easily be seen that a transition probability that satisfies detailed balance w.r.t. a particular distribution will leave that distribution invariant, because

$$
\begin{aligned}
\sum_{\mathbf{z}^{\prime}} p^{\star}\left(\mathbf{z}^{\prime}\right) T\left(\mathbf{z}^{\prime}, \mathbf{z}\right) & =\sum_{\mathbf{z}^{\prime}} p^{\star}(\mathbf{z}) T\left(\mathbf{z}, \mathbf{z}^{\prime}\right) \\
& =p^{\star}(\mathbf{z}) \sum_{\mathbf{z}^{\prime}} p\left(\mathbf{z}^{\prime} \mid \mathbf{z}\right)=p^{\star}(\mathbf{z})
\end{aligned}
$$

Recap: MCMC - Metropolis Algorithm

- Metropolis algorithm
[Metropolis et al., 1953]
, Proposal distribution is symmetric: $q\left(\mathbf{z}_{A} \mid \mathbf{z}_{B}\right)=q\left(\mathbf{z}_{B} \mid \mathbf{z}_{A}\right)$
, The new candidate sample \mathbf{z}^{*} is accepted with probability

$$
A\left(\mathbf{z}^{\star}, \mathbf{z}^{(\tau)}\right)=\min \left(1, \frac{\tilde{p}\left(\mathbf{z}^{\star}\right)}{\tilde{p}\left(\mathbf{z}^{(\tau)}\right)}\right)
$$

\Rightarrow New candidate samples always accepted if $\tilde{p}\left(\mathbf{z}^{\star}\right) \geq \tilde{p}\left(\mathbf{z}^{(\tau)}\right)$.
, The algorithm sometimes accepts a state with lower probability.

- Metropolis-Hastings algorithm
, Generalization: Proposal distribution not necessarily symmetric.
, The new candidate sample \mathbf{z}^{*} is accepted with probability

$$
A\left(\mathbf{z}^{\star}, \mathbf{z}^{(\tau)}\right)=\min \left(1, \frac{\tilde{p}\left(\mathbf{z}^{\star}\right) q_{k}\left(\mathbf{z}^{(\tau)} \mid \mathbf{z}^{\star}\right)}{\tilde{p}\left(\mathbf{z}^{(\tau)}\right) q_{k}\left(\mathbf{z}^{\star} \mid \mathbf{z}^{(\tau)}\right)}\right)
$$

, where k labels the members of the set of considered transitions.

Recap: MCMC - Metropolis-Hastings Algorithm

- Properties
- We can show that $p(z)$ is an invariant distribution of the Markov chain defined by the Metropolis-Hastings algorithm.
, We show detailed balance:

$$
\begin{aligned}
A\left(\mathbf{z}^{\prime}, \mathbf{z}\right) & =\min \left\{1, \frac{\tilde{p}\left(\mathbf{z}^{\prime}\right) q_{k}\left(\mathbf{z} \mid \mathbf{z}^{\prime}\right)}{\tilde{p}(\mathbf{z}) q_{k}\left(\mathbf{z}^{\prime} \mid \mathbf{z}\right)}\right\} \\
\tilde{p}(\mathbf{z}) q_{k}\left(\mathbf{z}^{\prime} \mid \mathbf{z}\right) A_{k}\left(\mathbf{z}^{\prime}, \mathbf{z}\right) & =\min \left\{\tilde{p}(\mathbf{z}) q_{k}\left(\mathbf{z}^{\prime} \mid \mathbf{z}\right), \tilde{p}\left(\mathbf{z}^{\prime}\right) q_{k}\left(\mathbf{z} \mid \mathbf{z}^{\prime}\right)\right\} \\
& =\min \left\{\tilde{p}\left(\mathbf{z}^{\prime}\right) q_{k}\left(\mathbf{z} \mid \mathbf{z}^{\prime}\right), \tilde{p}(\mathbf{z}) q_{k}\left(\mathbf{z}^{\prime} \mid \mathbf{z}\right)\right\} \\
\tilde{p}(\mathbf{z}) q_{k}\left(\mathbf{z}^{\prime} \mid \mathbf{z}\right) A_{k}\left(\mathbf{z}^{\prime}, \mathbf{z}\right) & =\tilde{p}\left(\mathbf{z}^{\prime}\right) q_{k}\left(\mathbf{z} \mid \mathbf{z}^{\prime}\right) A_{k}\left(\mathbf{z}, \mathbf{z}^{\prime}\right) \\
\tilde{p}(\mathbf{z}) T\left(\mathbf{z}, \mathbf{z}^{\prime}\right) & =\tilde{p}\left(\mathbf{z}^{\prime}\right) T\left(\mathbf{z}^{\prime}, \mathbf{z}\right)
\end{aligned}
$$

Update: This was wrong on the first version of the slides (also wrong in the Bishop book)!

Recap: Gibbs Sampling

- Approach
, MCMC-algorithm that is simple and widely applicable.
, May be seen as a special case of Metropolis-Hastings.
- Idea
, Sample variable-wise: replace \mathbf{z}_{i} by a value drawn from the distribution $p\left(z_{i} \mid \mathbf{z}_{\mid i}\right)$.
- This means we update one coordinate at a time.
, Repeat procedure either by cycling through all variables or by choosing the next variable.
- Properties
, The algorithm always accepts!
, Completely parameter free.
, Can also be applied to subsets of variables.

Topics of This Lecture

- Recap: Mixtures of Gaussians
, Mixtures of Gaussians
, ML estimation
, EM algorithm for MoGs
- An alternative view of EM
, Latent variables
, General EM
, Mixtures of Gaussians revisited
, Mixtures of Bernoulli distributions
- The EM algorithm in general
, Generalized EM
, Monte Carlo EM

Recap: Mixture of Gaussians (MoG)

- "Generative model"
Advanced Machine Learning Winter'12

Slide credit: Bernt Schiele
B. Leibe

$$
p(x \mid \theta)=\sum_{j=1}^{M^{M i x t u r e ~ d e n s i t y ~}} p\left(x \mid \theta_{j}\right) p(j)
$$

Recap: Mixture of Multivariate Gaussians

- Multivariate Gaussians

$$
\begin{aligned}
p(\mathbf{x} \mid \theta) & =\sum_{j=1}^{M} p\left(\mathbf{x} \mid \theta_{j}\right) p(j) \\
p\left(\mathbf{x} \mid \theta_{j}\right) & =\frac{1}{(2 \pi)^{D / 2}\left|\boldsymbol{\Sigma}_{j}\right|^{1 / 2}} \exp \left\{-\frac{1}{2}\left(\mathbf{x}-\boldsymbol{\mu}_{j}\right)^{\mathrm{T}} \boldsymbol{\Sigma}_{j}^{-1}\left(\mathbf{x}-\boldsymbol{\mu}_{j}\right)\right\}
\end{aligned}
$$

, Mixture weights / mixture coefficients:

$$
p(j)=\pi_{j} \text { with } 0 \cdot \pi_{j} \cdot 1 \text { and } \sum_{j=1}^{M} \pi_{j}=1
$$

, Parameters:

$$
\theta=\left(\pi_{1}, \boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{1}, \ldots, \pi_{M}, \boldsymbol{\mu}_{M}, \boldsymbol{\Sigma}_{M}\right)
$$

12

Recap: Mixture of Multivariate Gaussians

- "Generative model"

$$
p(\mathbf{x})=\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

$$
p(\mathbf{x} \mid \theta)=\sum_{j=1}^{3} \pi_{j} p\left(\mathbf{x} \mid \theta_{j}\right)
$$

Slide credit: Bernt Schiele
B. Leibe

Recap: ML for Mixtures of Gaussians

- Maximum Likelihood
, Minimize $E=-\ln L(\theta)=-\sum_{n=1}^{N} \ln p\left(\mathbf{x}_{n} \mid \theta\right)$
, We can already see that this will be difficult, since

$$
\ln p(\mathbf{X} \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})=\sum_{n=1}^{N} \ln \left\{\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right\}
$$

This will cause problems!

Recap: ML for Mixture of Gaussians

- Minimization:

$$
\frac{\partial E}{\partial \mu_{j}}=-\sum_{n=1}^{N} \frac{\frac{\partial}{\partial \mu_{j}} p\left(\mathbf{x}_{n} \mid \theta_{j}\right)}{\sum_{k=1}^{K} p\left(\mathbf{x}_{n} \mid \theta_{k}\right)}
$$

$$
\frac{\partial}{\partial \boldsymbol{\mu}_{j}} \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)=
$$

$$
\boldsymbol{\Sigma}^{-1}\left(\mathbf{x}_{n}-\boldsymbol{\mu}_{j}\right) \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

$$
\begin{aligned}
& =-\sum_{n=1}^{N}\left(\boldsymbol{\Sigma}^{-1}\left(\mathbf{x}_{n}-\boldsymbol{\mu}_{j}\right) \frac{p\left(\mathbf{x}_{n} \mid \theta_{j}\right)}{\sum_{k=1}^{K} p\left(\mathbf{x}_{n} \mid \theta_{k}\right)}\right) \\
& =-\boldsymbol{\Sigma}^{-1} \sum_{n=1}^{N}\left(\mathbf{x}_{n}-\boldsymbol{\mu}_{j}\right) \frac{\pi_{j} \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{j}, \mathbf{\Sigma}_{j}\right)}{\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)} \stackrel{!}{=} 0 \\
& =\gamma_{j}\left(\mathbf{x}_{n}\right)
\end{aligned}
$$

- We thus obtain

$$
\Rightarrow \boldsymbol{\mu}_{j}=\frac{\sum_{n=1}^{N} \gamma_{j}\left(\mathbf{x}_{n}\right) \mathbf{x}_{n}}{\sum_{n=1}^{N} \gamma_{j}\left(\mathbf{x}_{n}\right)}
$$

"responsibility" of component j for \mathbf{x}_{n}

Recap: ML for Mixtures of Gaussians

- But...

$$
\boldsymbol{\mu}_{j}=\frac{\sum_{n=1}^{N} \gamma_{j}\left(\mathbf{x}_{n}\right) \mathbf{x}_{n}}{\sum_{n=1}^{N} \gamma_{j}\left(\mathbf{x}_{n}\right)} \quad \gamma_{j}\left(\mathbf{x}_{n}\right)=\frac{\left.\pi_{j} \mathcal{N}\left(\mathbf{x}_{n}, \boldsymbol{\mu}_{j}\right) \boldsymbol{\Sigma}_{j}\right)}{\left.\sum_{k=1}^{N} \pi_{k} \mathcal{N}\left(\mathbf{x}_{n} \boldsymbol{\mu}_{k}\right), \boldsymbol{\Sigma}_{k}\right)}
$$

- I.e. there is no direct analytical solution!

$$
\frac{\partial E}{\partial \boldsymbol{\mu}_{j}}=f\left(\pi_{1}, \boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{1}, \ldots, \pi_{M}, \boldsymbol{\mu}_{M}, \boldsymbol{\Sigma}_{M}\right)
$$

, Complex gradient function (non-linear mutual dependencies)
, Optimization of one Gaussian depends on all other Gaussians!
, It is possible to apply iterative numerical optimization here, but the EM algorithm provides a simpler alternative.

Recap: EM Algorithm

- Expectation-Maximization (EM) Algorithm
, E-Step: softly assign samples to mixture components

$$
\gamma_{j}\left(\mathbf{x}_{n}\right) \leftarrow \frac{\pi_{j} \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}\right)}{\sum_{k=1}^{N} \pi_{k} \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)} \quad \forall j=1, \ldots, K, \quad n=1, \ldots, N
$$

, M-Step: re-estimate the parameters (separately for each mixture component) based on the soft assignments

$$
\begin{aligned}
& \hat{N}_{j} \leftarrow \sum_{n=1}^{N} \gamma_{j}\left(\mathbf{x}_{n}\right)=\text { soft number of samples labeled } j \\
& \hat{\pi}_{j}^{\text {new }} \leftarrow \frac{\hat{N}_{j}}{N} \\
& \hat{\boldsymbol{\mu}}_{j}^{\text {new }} \leftarrow \frac{1}{\hat{N}_{j}} \sum_{n=1}^{N} \gamma_{j}\left(\mathbf{x}_{n}\right) \mathbf{x}_{n} \\
& \hat{\boldsymbol{\Sigma}}_{j}^{\text {new }} \leftarrow \frac{1}{\hat{N}_{j}} \sum_{n=1}^{N} \gamma_{j}\left(\mathbf{x}_{n}\right)\left(\mathbf{x}_{n}-\hat{\boldsymbol{\mu}}_{j}^{\text {new }}\right)\left(\mathbf{x}_{n}-\hat{\boldsymbol{\mu}}_{j}^{\text {new }}\right)^{\mathrm{T}} \\
& \text { m Bernt Schiele }
\end{aligned}
$$

Recap: EM Algorithm - An Example

Recap: EM - Caveats

- When implementing EM, we need to take care to avoid singularities in the estimation!
, Mixture components may collapse on single data points.
> E.g. consider the case $\boldsymbol{\Sigma}_{k}=\sigma_{k}^{2} \mathbf{I}$ (this also holds in general)
, Assume component j is exactly centered on data point \mathbf{x}_{n}. This data point will then contribute a term in the likelihood function

$$
\mathcal{N}\left(\mathbf{x}_{n} \mid \mathbf{x}_{n}, \sigma_{j}^{2} \mathbf{I}\right)=\frac{1}{\sqrt{2 \pi} \sigma_{j}}
$$

ح For $\sigma_{j} \rightarrow 0$, this term goes to infinity!
\Rightarrow Need to introduce regularization

, Enforce minimum width for the Gaussians

Application: Image Segmentation

(a) input image

(b) user input

(c) inferred segmentation

- User assisted image segmentation
, User marks two regions for foreground and background.
, Learn a MoG model for the color values in each region.
, Use those models to classify all other pixels.
\Rightarrow Simple segmentation procedure (building block for more complex applications)

Application: Color-Based Skin Detection

- Collect training samples for skin/non-skin pixels.
- Estimate MoG to represent the skin/ non-skin densities

Classify skin color pixels in novel images
M. Jones and J. Rehg, Statistical Color Models with Application to Skin Detection, IJCV 2002.

Outlook for Today

- Criticism
, This is all very nice, but in the ML lecture, the EM algorithm miraculously fell out of the air.
, Why do we actually solve it this way?
- This lecture
, We will take a more general view on EM
- Different interpretation in terms of latent variables
- Detailed derivation
, This will allow us to derive EM algorithms also for other cases.
, In particular, we will use it for estimating mixtures of Bernoulli distributions in the next lecture.

Topics of This Lecture

- Recap: Mixtures of Gaussians
, Mixtures of Gaussians
, ML estimation
, EM algorithm for MoGs
- An alternative view of EM
, Latent variables
, General EM
, Mixtures of Gaussians revisited
, Mixtures of Bernoulli distributions
- The EM algorithm in general
, Generalized EM
, Monte Carlo EM

Gaussian Mixtures as Latent Variable Model

- Mixture of Gaussians
, Can be written as linear superposition of Gaussians in the form

$$
p(\mathbf{x})=\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

- Let's write this in a different form...
, Introduce a K-dimensional binary random variable z with a 1-of- K coding, i.e., $z_{k}=1$ and all other elements are zero.
, Define the joint distribution over x and z as

$$
p(\mathbf{x}, \mathbf{z})=p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z})
$$

, This corresponds to the following graphical model:

Gaussian Mixtures as Latent Variable Models

- Marginal distribution over z
, Specified in terms of the mixing coefficients π_{k}, such that

$$
p\left(z_{k}=1\right)=\pi_{k}
$$

where $0 \cdot \pi_{j} \cdot 1$ and $\sum_{j=1}^{K} \pi_{j}=1$.
, Since z uses a 1-of- K representation, we can also write this as

$$
p(\mathbf{z})=\prod_{k=1}^{K} \pi_{k}^{z_{k}}
$$

, Similarly, we can write for the conditional distribution

$$
p(\mathbf{x} \mid \mathbf{z})=\prod_{k=1}^{K} \mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)^{z_{k}}
$$

Gaussian Mixtures as Latent Variable Models

- Marginal distribution of x
, Summing the joint distribution over all possible states of \mathbf{z}

$$
p(\mathbf{x})=\sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z})=\sum_{\mathbf{z}} p(\mathbf{z}) p(\mathbf{x} \mid \mathbf{z})=\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{k}, \mathbf{\Sigma}_{k}\right)
$$

- What have we gained by this?
, The resulting formula looks still the same after all...
\Rightarrow We have represented the marginal distribution in terms of latent variables z .
, Since $p(\mathbf{x})=\sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z})$, there is a corresponding latent variable \mathbf{z}_{n} for each data point \mathbf{x}_{n}.
, We are now able to work with the joint distribution $p(\mathbf{x}, \mathbf{z})$ instead of the marginal distribution $p(\mathbf{x})$.
\Rightarrow This will lead to significant simplifications...

Gaussian Mixtures as Latent Variable Models

- Conditional probability of z given x :
, Use again the "responsibility" notation $\gamma_{k}\left(z_{k}\right)$

$$
\begin{aligned}
\gamma\left(z_{k}\right) \equiv p\left(z_{k}=1 \mid \mathbf{x}\right) & =\frac{p\left(z_{k}=1\right) p\left(\mathbf{x} \mid z_{k}=1\right)}{\sum_{j=1}^{K} p\left(z_{j}=1\right) p\left(\mathbf{x} \mid z_{j}=1\right)} \\
& =\frac{\pi_{k} \mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)}{\sum_{j=1}^{K} \pi_{j} \mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}\right)}
\end{aligned}
$$

, We can view π_{k} as the prior probability of $z_{k}=1$ and $\gamma\left(z_{k}\right)$ as the corresponding posterior once we have observed x .

Sidenote: Sampling from a Gaussian Mixture

- MoG Sampling
- We can use ancestral sampling to generate random samples from a Gaussian mixture model.

1. Generate a value $\hat{\mathbf{z}}$ from the marginal distribution $p(\mathbf{z})$.
2. Generate a value $\hat{\mathbf{x}}$ from the conditional distribution $p(\mathbf{x} \mid \hat{\mathbf{z}})$.

Samples from the joint $p(\mathbf{x}, \mathbf{z})$

Samples from the marginal $p(\mathbf{x})$

Evaluating the responsibilities $\gamma\left(z_{n k}\right)$

Alternative View of EM

- Complementary view of the EM algorithm
> The goal of EM is to find ML solutions for models having latent variables.
, Notation
- Set of all data

$$
\begin{aligned}
& \mathbf{X}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right]^{T} \\
& \mathbf{Z}=\left[\mathbf{z}_{1}, \ldots, \mathbf{z}_{N}\right]^{T}
\end{aligned}
$$

- Set of all latent variables
- Set of all model parameters θ
, Log-likelihood function

$$
\log p(\mathbf{X} \mid \boldsymbol{\theta})=\log \left\{\sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta})\right\}
$$

, Key observation: summation inside logarithm \Rightarrow difficult.

Alternative View of EM

- Now, suppose we were told for each observation in X the corresponding value of the latent variable Z...
, Call $\{\mathbf{X}, \mathbf{Z}\}$ the complete data set and

refer to the actual observed data \mathbf{X} as incomplete.

, The likelihood for the complete data set now takes the form

$$
\log p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta})
$$

\Rightarrow Straightforward to marginalize...

Alternative View of EM

- In practice, however,...
, We are not given the complete data set $\{\mathbf{X}, \mathbf{Z}\}$, but only the incomplete data X .
, Our knowledge of the latent variable values in \mathbf{Z} is given only by the posterior distribution $p(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta})$.
, Since we cannot use the complete-data log-likelihood, we consider instead its expected value under the posterior distribution of the latent variable:

$$
\mathcal{Q}\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text {old }}\right)=\sum_{\mathbf{Z}} p\left(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta}^{\text {old }}\right) \log p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta})
$$

, This corresponds to the E-step of the EM algorithm.
, In the subsequent M-step, we then maximize the expectation to obtain the revised parameter set $\theta^{\text {new }}$.

$$
\boldsymbol{\theta}^{\text {new }}=\arg \max _{\boldsymbol{\theta}} \mathcal{Q}\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{\mathrm{old}}\right)
$$

General EM Algorithm

- Algorithm

1. Choose an initial setting for the parameters $\boldsymbol{\theta}^{\text {old }}$
2. E-step: Evaluate $p\left(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta}^{\text {old }}\right)$
3. M-step: Evaluate $\boldsymbol{\theta}^{\text {new }}$ given by

$$
\boldsymbol{\theta}^{\text {new }}=\arg \max _{\boldsymbol{\theta}} \mathcal{Q}\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text {old }}\right)
$$

where

$$
\mathcal{Q}\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text {old }}\right)=\sum_{\mathbf{Z}} p\left(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta}^{\text {old }}\right) \log p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta})
$$

4. While not converged, let $\boldsymbol{\theta}^{\text {old }} \leftarrow \boldsymbol{\theta}^{\text {new }}$ and return to step 2 .

Remark: MAP-EM

- Modification for MAP
, The EM algorithm can be adapted to find MAP solutions for models for which a prior $p(\boldsymbol{\theta})$ is defined over the parameters.
, Only changes needed:

2. E-step: Evaluate $p\left(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta}^{\text {old }}\right)$
3. M-step: Evaluate $\boldsymbol{\theta}^{\text {new }}$ given by

$$
\boldsymbol{\theta}^{\text {new }}=\arg \max _{\boldsymbol{\theta}} \mathcal{Q}\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text {old }}\right)+\log p(\boldsymbol{\theta})
$$

\Rightarrow Suitable choices for the prior will remove the ML singularities!

Gaussian Mixtures Revisited

- Applying the latent variable view of EM
> Goal is to maximize the log-likelihood using the observed data \mathbf{X}

$$
\log p(\mathbf{X} \mid \boldsymbol{\theta})=\log \left\{\sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta})\right\}
$$

, Corresponding graphical model:

, Suppose we are additionally given the values of the latent variables \mathbf{Z}.
, The corresponding graphical model for the complete data now looks like this:

Gaussian Mixtures Revisited

- Maximize the likelihood
, For the complete-data set $\{\mathbf{X}, \mathbf{Z}\}$, the likelihood has the form

$$
p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi})=\prod_{n=1}^{N} \prod_{k=1}^{K} \pi_{k}^{z_{n k}} \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)^{z_{n k}}
$$

, Taking the logarithm, we obtain

$$
\log p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi})=\sum_{n=1}^{N} \sum_{k=1}^{K} z_{n k}\left\{\log \pi_{k}+\log \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right\}
$$

. Compared to the incomplete-data case, the order of the sum and logarithm has been interchanged.
\Rightarrow Much simpler solution to the ML problem.
, Maximization w.r.t. a mean or covariance is exactly as for a single Gaussian, except that it involves only the subset of data points that are "assigned" to that component.

Gaussian Mixtures Revisited

- Maximization w.r.t. mixing coefficients
, More complex, since the π_{k} are coupled by the summation constraint

$$
\sum_{j=1}^{K} \pi_{j}=1
$$

, Solve with a Lagrange multiplier

$$
\log p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi})+\lambda\left(\sum_{k=1}^{K} \pi_{k}-1\right)
$$

, Solution (after a longer derivation):

$$
\pi_{k}=\frac{1}{N} \sum_{n=1}^{N} z_{n k}
$$

\Rightarrow The complete-data log-likelihood can be maximized trivially in closed form.

Gaussian Mixtures Revisited

- In practice, we don't have values for the latent variables
, Consider the expectation w.r.t. the posterior distribution of the latent variables instead.
. The posterior distribution takes the form

$$
p(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) \propto \prod_{n=1}^{N} \prod_{k=1}^{K}\left[\pi_{k} \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right]^{z_{n k}}
$$

and factorizes over n, so that the $\left\{\mathbf{z}_{n}\right\}$ are independent under the posterior.
Expected value of indicator variable $z_{n k}$ under the posterior.

$$
\begin{aligned}
\mathbb{E}\left[z_{n k}\right] & =\frac{\sum_{z_{n k}} z_{n k}\left[\pi_{k} \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right]^{z_{n k}}}{\sum_{z_{n j}}\left[\pi_{j} \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}\right)\right]^{z_{n j}}} \\
& =\frac{\pi_{k} \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)}{\sum_{j=1}^{K} \pi_{j} \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}\right)}=\gamma\left(z_{n k}\right)
\end{aligned}
$$

Gaussian Mixtures Revisited

- Continuing the estimation
, The complete-data log-likelihood is therefore

$$
\mathbb{E}_{\mathbf{Z}}[\log p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi})]=\sum_{n=1}^{N} \sum_{k=1}^{K} \gamma z_{n k}\left\{\log \pi_{k}+\log \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right\}
$$

\Rightarrow This is precisely the EM algorithm for Gaussian mixtures as derived before.

References and Further Reading

- More information about EM and MoG estimation is available in Chapter 9 of Bishop's book (recommendable to read).

Pattern Recognition and Machine Learning Springer, 2006

- Additional information
, Original EM paper:

- A.P. Dempster, N.M. Laird, D.B. Rubin, „Maximum-Likelihood from incomplete data via EM algorithm", In Journal Royal Statistical Society, Series B. Vol 39, 1977
, EM tutorial:
- J.A. Bilmes, "A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models", TR-97-021, ICSI, U.C. Berkeley, CA,USA

