

Advanced Machine Learning Lecture 9

Mixture Models

14.11.2012

Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de/

leibe@vision.rwth-aachen.de

This Lecture: Advanced Machine Learning

- Regression Approaches
 - Linear Regression
 - Regularization (Ridge, Lasso)
 - Kernels (Kernel Ridge Regression)
 - Gaussian Processes

Bayesian Estimation & Bayesian Non-Parametrics

- Prob. Distributions, Approx. Inference
- » Mixture Models & EM
- Dirichlet Processes
- Latent Factor Models
- Beta Processes

Learning Winter'12

Advanced Machine

- SVMs and Structured Output Learning
 - SV Regression, SVDD
 - Large-margin Learning

 $f: \mathcal{X} \to \mathcal{Y}$

Recap: Importance Sampling

- Approach
 - Approximate expectations directly (but does <u>not</u> enable to draw samples from p(z) directly).
 - $\mathbb{E}[f] = \int f(\mathbf{z}) p(\mathbf{z}) d\mathbf{z}$ **Goal:**

Idea

- Use a proposal distribution q(z) from which it is easy to sample. ≻
- Express expectations in the form of a finite sum over samples $\{\mathbf{z}^{(l)}\}\$ drawn from $q(\mathbf{z})$.

$$\mathbb{E}[f] = \int f(\mathbf{z})p(\mathbf{z})d\mathbf{z} = \int f(\mathbf{z})\frac{p(\mathbf{z})}{q(\mathbf{z})}q(\mathbf{z})d\mathbf{z}$$

$$\simeq \frac{1}{L}\sum_{l=1}^{L}\frac{p(\mathbf{z}^{(l)})}{q(\mathbf{z}^{(l)})}f(\mathbf{z}^{(l)})$$
Importance weights
Ed from Bernt Schiele
B. Leibe
Image source: C.M. Bishop, 200

Advanced Machine Learning Winter'12

Recap: MCMC - Markov Chain Monte Carlo

- Overview
 - Allows to sample from a large class of distributions.
 - Scales well with the dimensionality of the sample space.
- Idea

Advanced Machine Learning Winter'12

- » We maintain a record of the current state $\mathbf{z}^{(au)}$
- > The proposal distribution depends on the current state: $q(\mathbf{z} | \mathbf{z}^{(\tau)})$
- > The sequence of samples forms a Markov chain $z^{(1)}$, $z^{(2)}$,...
- Approach
 - At each time step, we generate a candidate sample from the proposal distribution and accept the sample according to a criterion.
 - Different variants of MCMC for different criteria.

Recap: Markov Chains - Properties

- Invariant distribution
 - A distribution is said to be invariant (or stationary) w.r.t. a Markov chain if each step in the chain leaves that distribution invariant.
 - > Transition probabilities:

$$T\left(\mathbf{z}^{(m)}, \mathbf{z}^{(m+1)}\right) = p\left(\mathbf{z}^{(m+1)} | \mathbf{z}^{(m)}\right)$$

> For homogeneous Markov chain, distribution $p^*(\mathbf{z})$ is invariant if:

$$p^{\star}(\mathbf{z}) = \sum_{\mathbf{z}'} T(\mathbf{z}', \mathbf{z}) p^{\star}(\mathbf{z}')$$

Detailed balance

Sufficient (but not necessary) condition to ensure that a distribution is invariant:

$$p^{\star}(\mathbf{z})T(\mathbf{z},\mathbf{z}') = p^{\star}(\mathbf{z}')T(\mathbf{z}',\mathbf{z})$$

> A Markov chain which respects *detailed balance* is reversible.

Detailed Balance

- Detailed balance means
 - > If we pick a state from the target distribution p(z) and make a transition under T to another state, it is just as likely that we will pick z_A and go from z_A to z_B than that we will pick z_B and go from z_B to z_A .
 - It can easily be seen that a transition probability that satisfies detailed balance w.r.t. a particular distribution will leave that distribution invariant, because

$$\sum_{\mathbf{z}'} p^{\star}(\mathbf{z}') T(\mathbf{z}', \mathbf{z}) = \sum_{\mathbf{z}'} p^{\star}(\mathbf{z}) T(\mathbf{z}, \mathbf{z}')$$
$$= p^{\star}(\mathbf{z}) \sum_{\mathbf{z}'} p(\mathbf{z}'|\mathbf{z}) = p^{\star}(\mathbf{z})$$

Recap: MCMC - Metropolis Algorithm

• Metropolis algorithm

[Metropolis et al., 1953]

- > Proposal distribution is symmetric: $q(\mathbf{z}_A|\mathbf{z}_B) = q(\mathbf{z}_B|\mathbf{z}_A)$
- \succ The new candidate sample \mathbf{z}^{*} is accepted with probability

$$A(\mathbf{z}^{\star}, \mathbf{z}^{(\tau)}) = \min\left(1, \frac{\tilde{p}(\mathbf{z}^{\star})}{\tilde{p}(\mathbf{z}^{(\tau)})}\right)$$

 \Rightarrow New candidate samples always accepted if $\tilde{p}(\mathbf{z}^{\star}) \geq \tilde{p}(\mathbf{z}^{(\tau)})$.

- The algorithm sometimes accepts a state with lower probability.
- Metropolis-Hastings algorithm
 - Generalization: Proposal distribution not necessarily symmetric.
 - > The new candidate sample \mathbf{z}^* is accepted with probability

$$A(\mathbf{z}^{\star}, \mathbf{z}^{(\tau)}) = \min\left(1, \frac{\tilde{p}(\mathbf{z}^{\star})q_k(\mathbf{z}^{(\tau)}|\mathbf{z}^{\star})}{\tilde{p}(\mathbf{z}^{(\tau)})q_k(\mathbf{z}^{\star}|\mathbf{z}^{(\tau)})}\right)$$

 \succ where k labels the members of the set of considered transitions.

Recap: MCMC - Metropolis-Hastings Algorithm

- Properties
 - > We can show that p(z) is an invariant distribution of the Markov chain defined by the Metropolis-Hastings algorithm.
 - > We show detailed balance:

$$A(\mathbf{z}', \mathbf{z}) = \min\left\{1, \frac{\tilde{p}(\mathbf{z}')q_k(\mathbf{z}|\mathbf{z}')}{\tilde{p}(\mathbf{z})q_k(\mathbf{z}'|\mathbf{z})}\right\}$$

 $\tilde{p}(\mathbf{z})q_k(\mathbf{z}'|\mathbf{z})A_k(\mathbf{z}',\mathbf{z}) = \min\{\tilde{p}(\mathbf{z})q_k(\mathbf{z}'|\mathbf{z}), \tilde{p}(\mathbf{z}')q_k(\mathbf{z}|\mathbf{z}')\}$

 $= \min \{ \tilde{p}(\mathbf{z}') q_k(\mathbf{z}|\mathbf{z}'), \tilde{p}(\mathbf{z}) q_k(\mathbf{z}'|\mathbf{z}) \}$

 $\tilde{p}(\mathbf{z})q_k(\mathbf{z}'|\mathbf{z})A_k(\mathbf{z}',\mathbf{z}) = \tilde{p}(\mathbf{z}')q_k(\mathbf{z}|\mathbf{z}')A_k(\mathbf{z},\mathbf{z}')$ $\tilde{p}(\mathbf{z})T(\mathbf{z},\mathbf{z}') = \tilde{p}(\mathbf{z}')T(\mathbf{z}',\mathbf{z})$

Update: This was wrong on the first version of the slides (also wrong in the Bishop book)!

RWTHAACHEN UNIVERSITY

Recap: Gibbs Sampling

- Approach
 - MCMC-algorithm that is simple and widely applicable.
 - May be seen as a special case of Metropolis-Hastings.

• Idea

Advanced Machine Learning Winter'12

- > Sample variable-wise: replace z_i by a value drawn from the distribution $p(z_i | z_{i})$.
 - This means we update one coordinate at a time.
- Repeat procedure either by cycling through all variables or by choosing the next variable.

Properties

- The algorithm always accepts!
- Completely parameter free.
- > Can also be applied to subsets of variables.

Topics of This Lecture

• Recap: Mixtures of Gaussians

- Mixtures of Gaussians
- ML estimation
- EM algorithm for MoGs

An alternative view of EM

- Latent variables
- General EM
- > Mixtures of Gaussians revisited
- Mixtures of Bernoulli distributions
- The EM algorithm in general
 - Generalized EM
 - Monte Carlo EM

Recap: Mixture of Gaussians (MoG)

"Generative model"

Advanced Machine Learning Winter'12

B. Leibe

Recap: Mixture of Multivariate Gaussians

Multivariate Gaussians

$$p(\mathbf{x}|\theta) = \sum_{j=1}^{M} p(\mathbf{x}|\theta_j) p(j)$$
$$p(\mathbf{x}|\theta_j) = \frac{1}{(2\pi)^{D/2} |\mathbf{\Sigma}_j|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_j)^{\mathrm{T}} \mathbf{\Sigma}_j^{-1} (\mathbf{x} - \boldsymbol{\mu}_j)\right\}$$

> Mixture weights / mixture coefficients: M

$$p(j) = \pi_j$$
 with $0 \cdot \pi_j \cdot 1$ and $\sum_{j=1} \pi_j = 1$

> Parameters:

$$\theta = (\pi_1, \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1, \dots, \pi_M, \boldsymbol{\mu}_M, \boldsymbol{\Sigma}_M)$$

12 Image source: C.M. Bishop, 2006

Recap: Mixture of Multivariate Gaussians

"Generative model"

Slide credit: Bernt Schiele

Advanced Machine Learning Winter'12

13 Image source: C.M. Bishop, 2006

Recap: ML for Mixtures of Gaussians

Maximum Likelihood

> Minimize
$$E = -\ln L(\theta) = -\sum_{n=1}^{\infty} \ln p(\mathbf{x}_n | \theta)$$

> We can already see that this will be difficult, since

$$\ln p(\mathbf{X}|\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right\}$$

N

This will cause problems!

Recap: ML for Mixture of Gaussians

Minimization: $egin{aligned} &rac{\partial}{\partialoldsymbol{\mu}_j}\mathcal{N}(\mathbf{x}_n|oldsymbol{\mu}_k,oldsymbol{\Sigma}_k) = \ &\mathbf{\Sigma}^{-1}(\mathbf{x}_n-oldsymbol{\mu}_j)\mathcal{N}(\mathbf{x}_n|oldsymbol{\mu}_k,oldsymbol{\Sigma}_k) \end{aligned}$ $\frac{\partial E}{\partial \boldsymbol{\mu}_j} = -\sum_{n=1}^N \frac{\frac{\partial}{\partial \boldsymbol{\mu}_j} p(\mathbf{x}_n | \theta_j)}{\sum_{k=1}^K p(\mathbf{x}_n | \theta_k)}$ $= -\sum_{n=1}^{N} \left(\boldsymbol{\Sigma}^{-1} (\mathbf{x}_n - \boldsymbol{\mu}_j) \frac{p(\mathbf{x}_n | \boldsymbol{\theta}_j)}{\sum_{k=1}^{K} p(\mathbf{x}_n | \boldsymbol{\theta}_k)} \right)$ $= -\sum_{n=1}^{N} \sum_{n=1}^{N} (\mathbf{x}_n - \boldsymbol{\mu}_j) \frac{\pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}{\sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)} \stackrel{!}{=} 0$ We thus obtain $=\gamma_i(\mathbf{x}_n)$ $\Rightarrow \boldsymbol{\mu}_j = \frac{\sum_{n=1}^N \gamma_j(\mathbf{x}_n) \mathbf{x}_n}{\sum_{n=1}^N \gamma_i(\mathbf{x}_n)}$ "responsibility" of component j for \mathbf{x}_n

Recap: ML for Mixtures of Gaussians

I.e. there is no direct analytical solution!

$$\frac{\partial E}{\partial \boldsymbol{\mu}_j} = f\left(\pi_1, \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1, \dots, \pi_M, \boldsymbol{\mu}_M, \boldsymbol{\Sigma}_M\right)$$

- Complex gradient function (non-linear mutual dependencies)
- > Optimization of one Gaussian depends on all other Gaussians!
- It is possible to apply iterative numerical optimization here, but the EM algorithm provides a simpler alternative.

Recap: EM Algorithm

- Expectation-Maximization (EM) Algorithm
 - E-Step: softly assign samples to mixture components

$$\gamma_j(\mathbf{x}_n) \leftarrow \frac{\pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}{\sum_{k=1}^N \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)} \quad \forall j = 1, \dots, K, \ n = 1, \dots, N$$

M-Step: re-estimate the parameters (separately for each mixture component) based on the soft assignments

$$\hat{N}_{j} \leftarrow \sum_{n=1}^{N} \gamma_{j}(\mathbf{x}_{n}) = \text{soft number of samples labeled } j$$

$$\hat{\pi}_{j}^{\text{new}} \leftarrow \frac{\hat{N}_{j}}{N}$$

$$\hat{\mu}_{j}^{\text{new}} \leftarrow \frac{1}{\hat{N}_{j}} \sum_{n=1}^{N} \gamma_{j}(\mathbf{x}_{n}) \mathbf{x}_{n}$$

$$\hat{\Sigma}_{j}^{\text{new}} \leftarrow \frac{1}{\hat{N}_{j}} \sum_{n=1}^{N} \gamma_{j}(\mathbf{x}_{n}) (\mathbf{x}_{n} - \hat{\mu}_{j}^{\text{new}}) (\mathbf{x}_{n} - \hat{\mu}_{j}^{\text{new}})^{\text{T}}$$

Slide adapted from Bernt Schiele

Advanced Machine Learning Winter'12

B. Leibe

17

Recap: EM Algorithm - An Example

Image source: C.M. Bishop, 2006

Recap: EM - Caveats

- When implementing EM, we need to take care to avoid singularities in the estimation!
 - > Mixture components may collapse on single data points.
 - \succ E.g. consider the case $\mathbf{\Sigma}_k = \sigma_k^2 \mathbf{I}$ (this also holds in general)
 - > Assume component j is exactly centered on data point x_n . This data point will then contribute a term in the likelihood function

$$\mathcal{N}(\mathbf{x}_n|\mathbf{x}_n,\sigma_j^2\mathbf{I}) = rac{1}{\sqrt{2\pi}\sigma_j}$$

> For $\sigma_j \rightarrow 0$, this term goes to infinity!

\Rightarrow Need to introduce regularization

Enforce minimum width for the Gaussians

Advanced Machine Learning Winter'12

Application: Image Segmentation

(a) input image

(b) user input

(c) inferred segmentation

- User assisted image segmentation
 - > User marks two regions for foreground and background.
 - Learn a MoG model for the color values in each region.
 - > Use those models to classify all other pixels.
 - ⇒ Simple segmentation procedure (building block for more complex applications)

Application: Color-Based Skin Detection

- Collect training samples for skin/non-skin pixels.
- Estimate MoG to represent the skin/ non-skin densities

Classify skin color pixels in novel images

M. Jones and J. Rehg, <u>Statistical Color Models with Application to Skin</u> <u>Detection</u>, IJCV 2002.

RWTHAACHEN UNIVERSITY

Outlook for Today

- Criticism
 - This is all very nice, but in the ML lecture, the EM algorithm miraculously fell out of the air.
 - > Why do we actually solve it this way?

This lecture

- We will take a more general view on EM
 - Different interpretation in terms of latent variables
 - Detailed derivation
- > This will allow us to derive EM algorithms also for other cases.
- In particular, we will use it for estimating mixtures of Bernoulli distributions in the next lecture.

Topics of This Lecture

• Recap: Mixtures of Gaussians

- Mixtures of Gaussians
- » ML estimation
- > EM algorithm for MoGs

An alternative view of EM

- Latent variables
- General EM
- > Mixtures of Gaussians revisited
- Mixtures of Bernoulli distributions

• The EM algorithm in general

- Generalized EM
- Monte Carlo EM

RWTHAACHEN UNIVERSITY Gaussian Mixtures as Latent Variable Model

- Mixture of Gaussians
 - Can be written as linear superposition of Gaussians in the form

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

- Let's write this in a different form...
 - > Introduce a K-dimensional binary random variable z with a 1-of-K coding, i.e., $z_k = 1$ and all other elements are zero.
 - \succ Define the joint distribution over ${\bf x}$ and ${\bf z}$ as

$$p(\mathbf{x}, \mathbf{z}) = p(\mathbf{x}|\mathbf{z})p(\mathbf{z})$$

> This corresponds to the following graphical model:

RWTHAACHEN UNIVERSITY Gaussian Mixtures as Latent Variable Models

- Marginal distribution over \mathbf{z}
 - > Specified in terms of the mixing coefficients π_k , such that

 $p(z_k = 1) = \pi_k$

where
$$0 \cdot \pi_j \cdot 1$$
 and $\sum_{j=1}^K \pi_j = 1$.

> Since z uses a 1-of-K representation, we can also write this as

$$p(\mathbf{z}) = \prod_{k=1}^{K} \pi_k^{z_k}$$

Similarly, we can write for the conditional distribution

$$p(\mathbf{x}|\mathbf{z}) = \prod_{k=1}^{K} \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)^{z_k}$$

Gaussian Mixtures as Latent Variable Models

- Marginal distribution of ${\bf x}$
 - \succ Summing the joint distribution over all possible states of \mathbf{z}

$$p(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}) = \sum_{\mathbf{z}} p(\mathbf{z}) p(\mathbf{x} | \mathbf{z}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

- What have we gained by this?
 - > The resulting formula looks still the same after all...
 - \Rightarrow We have represented the marginal distribution in terms of latent variables z.
 - > Since $p(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z})$, there is a corresponding latent variable \mathbf{z}_n for each data point \mathbf{x}_n .
 - > We are now able to work with the joint distribution $p({\bf x},\,{\bf z})$ instead of the marginal distribution $p({\bf x}).$
 - \Rightarrow This will lead to significant simplifications...

Gaussian Mixtures as Latent Variable Models

- Conditional probability of \mathbf{z} given \mathbf{x} :
 - $\succ\,$ Use again the "responsibility" notation $\gamma_k(z_k)$

$$\gamma(z_k) \equiv p(z_k = 1 | \mathbf{x}) = \frac{p(z_k = 1)p(\mathbf{x} | z_k = 1)}{\sum_{j=1}^{K} p(z_j = 1)p(\mathbf{x} | z_j = 1)}$$
$$= \frac{\pi_k \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

> We can view π_k as the prior probability of $z_k = 1$ and $\gamma(z_k)$ as the corresponding posterior once we have observed x.

Sidenote: Sampling from a Gaussian Mixture

- MoG Sampling
 - We can use ancestral sampling to generate random samples from a Gaussian mixture model.
 - 1. Generate a value $\hat{\mathbf{z}}$ from the marginal distribution $p(\mathbf{z})$.
 - 2. Generate a value $\hat{\mathbf{x}}$ from the conditional distribution $p(\mathbf{x}|\hat{\mathbf{z}})$.

Alternative View of EM

- Complementary view of the EM algorithm
 - The goal of EM is to find ML solutions for models having latent \geq variables.
 - Notation \geq
 - Set of all data

$$\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_N]^T$$

- Set of all latent variables $\mathbf{Z} = [\mathbf{z}_1, \dots, \mathbf{z}_N]^T$
 - θ
- Set of all model parameters
- Log-likelihood function

$$\log p(\mathbf{X}|\boldsymbol{\theta}) = \log \left\{ \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}) \right\}$$

Key observation: summation inside logarithm \Rightarrow difficult. \geq

Alternative View of EM

- Now, suppose we were told for each observation in ${\bf X}$ the corresponding value of the latent variable ${\bf Z}...$
 - \succ Call $\{{\bf X}, {\bf Z}\}$ the complete data set and

refer to the actual observed data ${f X}$ as incomplete.

- > The likelihood for the complete data set now takes the form $\log p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\theta})$
- \Rightarrow Straightforward to marginalize...

RWTHAACHEN UNIVERSITY

Alternative View of EM

- In practice, however,...
 - > We are not given the complete data set $\{\mathbf{X}, \mathbf{Z}\}$, but only the incomplete data \mathbf{X} .
 - > Our knowledge of the latent variable values in Z is given only by the posterior distribution $p(\mathbf{Z}|\mathbf{X}, \theta)$.
 - Since we cannot use the complete-data log-likelihood, we consider instead its expected value under the posterior distribution of the latent variable:

$$Q(\theta, \theta^{\text{old}}) = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \theta^{\text{old}}) \log p(\mathbf{X}, \mathbf{Z}|\theta)$$

- This corresponds to the E-step of the EM algorithm.
- > In the subsequent M-step, we then maximize the expectation to obtain the revised parameter set θ^{new} .

$$oldsymbol{ heta}^{ ext{new}} = rg\max_{oldsymbol{ heta}} \, \mathcal{Q}(oldsymbol{ heta},oldsymbol{ heta}^{ ext{old}})$$

RWTHAACHEN UNIVERSITY

General EM Algorithm

- Algorithm
 - 1. Choose an initial setting for the parameters $\,oldsymbol{ heta}^{
 m old}$
 - **2.** E-step: Evaluate $p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\text{old}})$
 - 3. M-step: Evaluate θ^{new} given by $\theta^{\text{new}} = \arg \max_{\theta} \mathcal{Q}(\theta, \theta^{\text{old}})$

where

$$\mathcal{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text{old}}) = \sum_{\mathbf{Z}} p(\mathbf{Z} | \mathbf{X}, \boldsymbol{\theta}^{\text{old}}) \log p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\theta})$$

4. While not converged, let $\theta^{\mathrm{old}} \leftarrow \theta^{\mathrm{new}}$ and return to step 2.

Remark: MAP-EM

- Modification for MAP
 - > The EM algorithm can be adapted to find MAP solutions for models for which a prior $p(\theta)$ is defined over the parameters.
 - > Only changes needed:
 - 2. E-step: Evaluate $p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\text{old}})$
 - 3. M-step: Evaluate $heta^{ ext{new}}$ given by

$$oldsymbol{ heta}^{ ext{new}} = rg\max_{oldsymbol{ heta}} \ \mathcal{Q}(oldsymbol{ heta},oldsymbol{ heta}^{ ext{old}}) + \log p(oldsymbol{ heta})$$

 \Rightarrow Suitable choices for the prior will remove the ML singularities!

Gaussian Mixtures Revisited

- Applying the latent variable view of EM
 - \succ Goal is to maximize the log-likelihood using the observed data ${f X}$

$$\log p(\mathbf{X}|\boldsymbol{\theta}) = \log \left\{ \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}) \right\}^{\tau}$$

Corresponding graphical model:

The corresponding graphical model for the complete data now looks like this:

 \mathbf{x}_n

N

 Σ

B. Leibe

Gaussian Mixtures Revisited

- Maximize the likelihood
 - $\succ\,$ For the complete-data set $\{{\bf X}, {\bf Z}\}$, the likelihood has the form

$$p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) = \prod_{n=1}^{N} \prod_{k=1}^{K} \pi_{k}^{z_{nk}} \mathcal{N}(\mathbf{x}_{n} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})^{z_{nk}}$$

- > Taking the logarithm, we obtain $\log p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \left\{ \log \pi_k + \log \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right\}$
- Compared to the incomplete-data case, the order of the sum and logarithm has been interchanged.
- \Rightarrow Much simpler solution to the ML problem.
- Maximization w.r.t. a mean or covariance is exactly as for a single Gaussian, except that it involves only the subset of data points that are "assigned" to that component.

36

Gaussian Mixtures Revisited

- Maximization w.r.t. mixing coefficients
 - > More complex, since the π_k are coupled by the summation constraint K

$$\sum_{j=1}^{n} \pi_j = 1$$

- > Solve with a Lagrange multiplier $\log p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) + \lambda \left(\sum_{k=1}^{K} \pi_k - 1 \right)$
- Solution (after a longer derivation):

$$\pi_k = \frac{1}{N} \sum_{n=1}^N z_{nk}$$

⇒ The complete-data log-likelihood can be maximized trivially in closed form.

Gaussian Mixtures Revisited

- In practice, we don't have values for the latent variables
 - Consider the expectation w.r.t. the posterior distribution of the latent variables instead.
 - The posterior distribution takes the form

$$p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) \propto \prod_{n=1}^{N} \prod_{k=1}^{K} \left[\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right]^{z_{nk}}$$

and factorizes over n , so that the $\{\mathbf{z}_n\}$ are independent under the posterior.

Expected value of indicator variable z_{nk} under the posterior.

$$E[z_{nk}] = \frac{\sum_{z_{nk}} z_{nk} [\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)]^{z_{nk}}}{\sum_{z_{nj}} [\pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)]^{z_{nj}}}$$
$$= \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)} = \gamma(z_{nk})$$

37

Gaussian Mixtures Revisited

- Continuing the estimation
 - > The complete-data log-likelihood is therefore

$$\mathbb{E}_{\mathbf{Z}}[\log p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi})] = \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma z_{nk} \{\log \pi_k + \log \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)\}$$

⇒ This is precisely the EM algorithm for Gaussian mixtures as derived before.

References and Further Reading

 More information about EM and MoG estimation is available in Chapter 9 of Bishop's book (recommendable to read).

> Christopher M. Bishop Pattern Recognition and Machine Learning Springer, 2006

- Additional information
 - > Original EM paper:
 - A.P. Dempster, N.M. Laird, D.B. Rubin, <u>Maximum-Likelihood from</u> <u>incomplete data via EM algorithm</u>", In Journal Royal Statistical Society, Series B. Vol 39, 1977
 - **EM tutorial:**
 - J.A. Bilmes, "<u>A Gentle Tutorial of the EM Algorithm and its</u> <u>Application to Parameter Estimation for Gaussian Mixture and</u> <u>Hidden Markov Models</u>", TR-97-021, ICSI, U.C. Berkeley, CA,USA