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This Lecture: Advanced Machine Learning 

• Regression Approaches 

 Linear Regression 

 Regularization (Ridge, Lasso) 

 Kernels (Kernel Ridge Regression) 

 Gaussian Processes 
 

• Bayesian Estimation & Bayesian Non-Parametrics  

 Prob. Distributions, Approx. Inference 

 Mixture Models & EM 

 Dirichlet Processes 

 Latent Factor Models  

 Beta Processes 
 

• SVMs and Structured Output Learning 

 SV Regression, SVDD 

 Large-margin Learning 
B. Leibe 
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Recap: Importance Sampling 

• Approach 

 Approximate expectations directly 

(but does not enable to draw samples from p(z) directly). 

 Goal: 
 

• Idea 

 Use a proposal distribution q(z) from which it is easy to sample. 

 Express expectations in the form of a finite sum over samples 

{z(l)} drawn from q(z). 

 

3 
B. Leibe Slide adapted from Bernt Schiele 

Importance weights 

Image source: C.M. Bishop, 2006 
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• Overview 

 Allows to sample from a large class of distributions. 

 Scales well with the dimensionality of the sample space. 
 

• Idea 

 We maintain a record of the current state z(¿)  

 The proposal distribution depends on the current state: q(z|z(¿))  

 The sequence of samples forms a Markov chain z(1), z(2),… 
 

• Approach 

 At each time step, we generate a candidate  

sample from the proposal distribution and  

accept the sample according to a criterion. 

 Different variants of MCMC for different 

criteria. 

Recap: MCMC – Markov Chain Monte Carlo 

4 
B. Leibe Slide adapted from Bernt Schiele Image source: C.M. Bishop, 2006 
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Recap: Markov Chains – Properties 

• Invariant distribution 

 A distribution is said to be invariant (or stationary) w.r.t. a 

Markov chain if each step in the chain leaves that distribution 

invariant. 

 Transition probabilities: 

 
 

 For homogeneous Markov chain, distribution p*(z) is invariant if: 

 

 

• Detailed balance 

 Sufficient (but not necessary) condition to ensure that a 

distribution is invariant: 

 

 A Markov chain which respects detailed balance is reversible. 
5 

B. Leibe 

T
³
z(m);z(m+1)

´
= p

³
z(m+1)jz(m)

´

p?(z) =
X

z0

T (z0; z)p?(z0)

p?(z)T (z;z0) = p?(z0)T (z0;z)

Slide credit: Bernt Schiele 
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Detailed Balance 

• Detailed balance means 

 If we pick a state from the target distribution p(z) and make a 

transition under T to another state, it is just as likely that we 

will pick zA and go from zA to zB than that we will pick zB and 

go from zB to zA. 

 

 It can easily be seen that a transition probability that satisfies 

detailed balance w.r.t. a particular distribution will leave that 

distribution invariant, because 

 

6 
B. Leibe 
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Recap: MCMC – Metropolis Algorithm 

• Metropolis algorithm        [Metropolis et al., 1953] 

 Proposal distribution is symmetric:  

 The new candidate sample z* is accepted with probability 

 
 
 

 New candidate samples always accepted if                        . 

 The algorithm sometimes accepts a state with lower probability. 
 

• Metropolis-Hastings algorithm 

 Generalization: Proposal distribution not necessarily symmetric. 

 The new candidate sample z* is accepted with probability 

 

 
 

 where k labels the members of the set of considered transitions. 
7 

B. Leibe 

q(zAjzB) = q(zBjzA)

A(z?; z(¿)) = min

µ
1;

~p(z?)

~p(z(¿))

¶

~p(z?) ¸ ~p(z(¿))

Slide adapted from Bernt Schiele 

A(z?; z(¿)) = min

µ
1;

~p(z?)qk(z
(¿)jz?)

~p(z(¿))qk(z?jz(¿))

¶
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Recap: MCMC – Metropolis-Hastings Algorithm 

• Properties 

 We can show that p(z) is an invariant distribution of the Markov 

chain defined by the Metropolis-Hastings algorithm. 

 We show detailed balance: 

8 
B. Leibe 

Update: This was wrong on the first version of the slides 

             (also wrong in the Bishop book)! 
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Recap: Gibbs Sampling 

• Approach 

 MCMC-algorithm that is simple and widely applicable. 

 May be seen as a special case of Metropolis-Hastings. 
 

• Idea 

 Sample variable-wise: replace zi by a value drawn from the 

distribution p(zi|z\i). 

– This means we update one coordinate at a time. 

 Repeat procedure either by cycling through all variables or by 

choosing the next variable. 
 

• Properties 

 The algorithm always accepts! 

 Completely parameter free. 

 Can also be applied to subsets of variables. 

 

 

9 
B. Leibe Slide adapted from Bernt Schiele 
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Topics of This Lecture 

• Recap: Mixtures of Gaussians 
 Mixtures of Gaussians 

 ML estimation 

 EM algorithm for MoGs 
 

• An alternative view of EM 
 Latent variables 

 General EM 

 Mixtures of Gaussians revisited 

 Mixtures of Bernoulli distributions 
 

• The EM algorithm in general 
 Generalized EM 

 Monte Carlo EM 

10 
B. Leibe 
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Recap: Mixture of Gaussians (MoG) 

• “Generative model” 

11 
B. Leibe 

x

x

j

p(x)

p(x)

1 
2 3 

p(j) = ¼j

p(xjµj)

p(xjµ) =

MX

j=1

p(xjµj)p(j)

“Weight” of mixture 

component 

Mixture 

component 

Mixture density 

Slide credit: Bernt Schiele 
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Recap: Mixture of Multivariate Gaussians 

• Multivariate Gaussians 

 

 

 

 

 

 Mixture weights / mixture coefficients: 
 

                      with                     and 

 

 Parameters: 

12 
B. Leibe 

p(xjµ) =

MX

j=1

p(xjµj)p(j)

p(xjµj) =
1

(2¼)D=2j§jj1=2
exp

½
¡1

2
(x¡¹j)T§¡1

j (x¡¹j)
¾

p(j) = ¼j

MX

j=1

¼j = 10 · ¼j · 1

µ = (¼1;¹1;§1; : : : ; ¼M;¹M;§M)

Slide credit: Bernt Schiele Image source: C.M. Bishop, 2006 
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Recap: Mixture of Multivariate Gaussians 

• “Generative model” 

13 
B. Leibe 

p(xjµ) =

3X

j=1

¼jp(xjµj)
p(j) = ¼j

j

1 
2 

3 

p(xjµ1)
p(xjµ2)

p(xjµ3)

Slide credit: Bernt Schiele Image source: C.M. Bishop, 2006 
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E = ¡ lnL(µ) = ¡
NX

n=1

ln p(xnjµ)

• Maximum Likelihood 
 

 Minimize  

 

 

 We can already see that this will be difficult, since 

Recap: ML for Mixtures of Gaussians 

14 
B. Leibe 

ln p(Xj¼;¹;§) =

NX

n=1

ln

(
KX

k=1

¼kN (xnj¹k;§k)
)

This will cause problems! 

Slide adapted from Bernt Schiele 
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Recap: ML for Mixture of Gaussians 

• Minimization: 

 

 

 

 

 

 

 
 

• We thus obtain 

15 
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) ¹j =

PN

n=1 °j(xn)xnPN

n=1 °j(xn)

@E

@¹j
= ¡

NX

n=1

@
@¹

j

p(xnjµj)
PK

k=1 p(xnjµk)

= ¡
NX

n=1

Ã
§¡1(xn ¡ ¹j)

p(xnjµj)PK

k=1 p(xnjµk)

!

= ¡§¡1
NX

n=1

(xn ¡ ¹j)
¼jN (xnj¹j ;§j)PK

k=1 ¼kN (xnj¹k;§k)

!
= 0

@E

@¹j
= ¡

NX

n=1

@
@¹

j

p(xnjµj)
PK

k=1 p(xnjµk)

= ¡
NX

n=1

Ã
§¡1(xn ¡ ¹j)

p(xnjµj)PK

k=1 p(xnjµk)

!

= ¡ §¡1
PK

k=1 p(xnjµk)

NX

n=1

(xn ¡ ¹j)p(xnjµj)
!
= 0

@E

@¹j
= ¡

NX

n=1

@
@¹

j

p(xnjµj)
PK

k=1 p(xnjµk)

= ¡
NX

n=1

Ã
§¡1(xn ¡ ¹j)

p(xnjµj)PK

k=1 p(xnjµk)

!

= ¡ §¡1
PK

k=1 p(xnjµk)

NX

n=1

(xn ¡ ¹j)p(xnjµj)
!
= 0

@

@¹j
N (xnj¹k;§k) =

§¡1(xn ¡¹j)N (xnj¹k;§k)

= °j(xn)

“responsibility” of 
component j for xn 
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Recap: ML for Mixtures of Gaussians 

16 
B. Leibe 

• But… 

 

 

 

 

• I.e. there is no direct analytical solution! 

 

 

 Complex gradient function (non-linear mutual dependencies) 

 Optimization of one Gaussian depends on all other Gaussians! 

 It is possible to apply iterative numerical optimization here,  

but the EM algorithm provides a simpler alternative. 

¹j =

PN

n=1 °j(xn)xnPN

n=1 °j(xn)
°j(xn) =

¼jN (xnj¹j;§j)PN

k=1 ¼kN (xnj¹k;§k)

@E

@¹j
= f (¼1;¹1;§1; : : : ; ¼M ;¹M ;§M)



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in

te
r’

1
2

 

Recap: EM Algorithm 

• Expectation-Maximization (EM) Algorithm 

 E-Step: softly assign samples to mixture components 
 

 

 

 M-Step: re-estimate the parameters (separately for each mixture 

component) based on the soft assignments 

17 
B. Leibe 

8j = 1; : : : ;K; n = 1; : : : ;N

¼̂newj Ã N̂j

N

¹̂
new
j Ã 1

N̂j

NX

n=1

°j(xn)xn

§̂new
j Ã 1

N̂j

NX

n=1

°j(xn)(xn ¡ ¹̂newj )(xn ¡ ¹̂newj )T

N̂j Ã
NX

n=1

°j(xn) = soft number of samples labeled j 

°j(xn)Ã
¼jN (xnj¹j ;§j)PN

k=1 ¼kN (xnj¹k;§k)

Slide adapted from Bernt Schiele 
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Recap: EM Algorithm – An Example 
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Image source: C.M. Bishop, 2006 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in

te
r’

1
2

 

Recap: EM – Caveats 

• When implementing EM, we need to take care to avoid 

singularities in the estimation! 

 Mixture components may collapse on single data points. 

 E.g. consider the case                (this also holds in general) 

 Assume component j is exactly centered on data point xn. This 

data point will then contribute a term in the likelihood function 

 

 

 For ¾j ! 0, this term goes to infinity! 

 

 Need to introduce regularization 

 Enforce minimum width for the Gaussians 

19 
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N (xnjxn; ¾2j I) =
1p

2¼¾j

§k = ¾2kI

Image source: C.M. Bishop, 2006 
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Application: Image Segmentation 

 

 

 

 

 

 

• User assisted image segmentation 

 User marks two regions for foreground and background. 

 Learn a MoG model for the color values in each region. 

 Use those models to classify all other pixels. 

 Simple segmentation procedure 

(building block for more complex applications) 

20 
B. Leibe 
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Application: Color-Based Skin Detection 

• Collect training samples 

for skin/non-skin pixels. 

• Estimate MoG to 

represent the skin/  

non-skin densities 

 

M. Jones and J. Rehg, Statistical Color Models with Application to Skin 

Detection, IJCV 2002. 

 

skin 

non-skin 

21 

Classify skin color pixels in novel images 

http://www.cc.gatech.edu/~rehg/Papers/SkinDetect-IJCV.pdf
http://www.cc.gatech.edu/~rehg/Papers/SkinDetect-IJCV.pdf
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Outlook for Today 

• Criticism 

 This is all very nice, but in the ML lecture, the EM algorithm 

miraculously fell out of the air. 

 Why do we actually solve it this way? 
 

• This lecture 

 We will take a more general view on EM 

– Different interpretation in terms of latent variables 

– Detailed derivation 

 This will allow us to derive EM algorithms also for other cases. 

 In particular, we will use it for estimating mixtures of Bernoulli 

distributions in the next lecture. 

22 
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Topics of This Lecture 

• Recap: Mixtures of Gaussians 
 Mixtures of Gaussians 

 ML estimation 

 EM algorithm for MoGs 
 

• An alternative view of EM 
 Latent variables 

 General EM 

 Mixtures of Gaussians revisited 

 Mixtures of Bernoulli distributions 
 

• The EM algorithm in general 
 Generalized EM 

 Monte Carlo EM 

23 
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Gaussian Mixtures as Latent Variable Model 

• Mixture of Gaussians 

 Can be written as linear superposition of Gaussians in the form 

 

 

 
 

• Let’s write this in a different form… 

 Introduce a K-dimensional binary random variable z with  

a 1-of-K coding, i.e., zk = 1 and all other elements are zero. 
 

 Define the joint distribution over x and z as 

 
 

 This corresponds to the following graphical model: 

24 
B. Leibe Image source: C.M. Bishop, 2006 
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Gaussian Mixtures as Latent Variable Models 

• Marginal distribution over z  

 Specified in terms of the mixing coefficients ¼k, such that 

 

 
 

where                       and                   . 

 

 Since z uses a 1-of-K representation, we can also write this as 

 

 
 

 Similarly, we can write for the conditional distribution 

25 
B. Leibe 

0 · ¼j · 1
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Gaussian Mixtures as Latent Variable Models 

• Marginal distribution of x  

 Summing the joint distribution over all possible states of z  

 

 
 

• What have we gained by this? 

 The resulting formula looks still the same after all… 

 We have represented the marginal distribution in terms of  

latent variables z. 

 Since p(x) = z p(x, z), there is a corresponding latent 

variable zn for each data point xn. 

 We are now able to work with the joint distribution p(x, z) 

instead of the marginal distribution p(x). 

 This will lead to significant simplifications… 
26 

B. Leibe 
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Gaussian Mixtures as Latent Variable Models 

• Conditional probability of z given x: 

 Use again the “responsibility” notation °k(zk)  

 

 

 

 

 

 

 We can view ¼k as the prior probability of zk = 1 and °(zk) as 

the corresponding posterior once we have observed x. 
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Sidenote: Sampling from a Gaussian Mixture 

• MoG Sampling 

 We can use ancestral sampling to generate random samples from 

a Gaussian mixture model. 

1. Generate a value    from the marginal distribution p(z). 

2. Generate a value    from the conditional distribution           . 
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Samples from the 

joint p(x, z) 
Samples from the 

marginal p(x) 
Evaluating the 

responsibilities (znk) 

Image source: C.M. Bishop, 2006 
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Alternative View of EM 

• Complementary view of the EM algorithm 

 The goal of EM is to find ML solutions for models having latent 

variables. 
 

 Notation 

– Set of all data                  X = [x1,…,xN]T  

– Set of all latent variables  Z = [z1,…,zN]T  

– Set of all model parameters  µ  

 

 Log-likelihood function 

 

 

 

 Key observation: summation inside logarithm  difficult. 
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Alternative View of EM 

• Now, suppose we were told for each observation in X 

the corresponding value of the latent variable Z… 

 Call {X,Z} the complete data set and  

 

 

 

refer to the actual observed data X as incomplete. 

 

 
 

 The likelihood for the complete data set now takes the form 

 
 

 Straightforward to marginalize… 

30 
B. Leibe Image source: C.M. Bishop, 2006 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in

te
r’

1
2

 

Alternative View of EM 

• In practice, however,… 

 We are not given the complete data set {X,Z}, but only the 

incomplete data X. 

 Our knowledge of the latent variable values in Z is given only by 

the posterior distribution                 . 

 Since we cannot use the complete-data log-likelihood, we 

consider instead its expected value under the posterior 

distribution of the latent variable: 

 

 

 This corresponds to the E-step of the EM algorithm. 

 In the subsequent M-step, we then maximize the expectation to 

obtain the revised parameter set µnew. 
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General EM Algorithm 

• Algorithm 

1. Choose an initial setting for the parameters  
 

2. E-step: Evaluate  
 

3. M-step: Evaluate           given by 

 

 

where  

 

 
 

4. While not converged, let                       and return to step 2. 
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Remark: MAP-EM 

• Modification for MAP 

 The EM algorithm can be adapted to find MAP solutions for 

models for which a prior         is defined over the parameters. 

 Only changes needed: 

 

2. E-step: Evaluate  
 

3. M-step: Evaluate           given by 

 

 

 

 Suitable choices for the prior will remove the ML singularities! 
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Gaussian Mixtures Revisited 

• Applying the latent variable view of EM 

 Goal is to maximize the log-likelihood using the observed data X 

 

 

 

 Corresponding graphical model: 

 

 

 Suppose we are additionally given the values 

of the latent variables Z. 

 The corresponding graphical model for the 

complete data now looks like this: 
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Gaussian Mixtures Revisited 

• Maximize the likelihood 

 For the complete-data set {X,Z}, the likelihood has the form 

 

 

 

 Taking the logarithm, we obtain  

 

 
 

 Compared to the incomplete-data case, the order of the sum 

and logarithm has been interchanged. 

 Much simpler solution to the ML problem. 

 Maximization w.r.t. a mean or covariance is exactly as for a 

single Gaussian, except that it involves only the subset of data 

points that are “assigned” to that component. 
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Gaussian Mixtures Revisited 

• Maximization w.r.t. mixing coefficients 

 More complex, since the ¼k are coupled by the summation 

constraint 

 

 
 

 Solve with a Lagrange multiplier 

 

 
 

 Solution (after a longer derivation): 

 

 
 

 The complete-data log-likelihood can be maximized trivially in 

closed form. 
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Gaussian Mixtures Revisited 

• In practice, we don’t have values for the latent variables 

 Consider the expectation w.r.t. the posterior distribution of the 

latent variables instead. 

 The posterior distribution takes the form 

 

 

 

and factorizes over n, so that the {zn} are independent under 

the posterior. 

Expected value of indicator variable znk under the posterior. 
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E[znk] =

P
znk

znk [¼kN (xnj¹k;§k)]
znk

P
znj

£
¼jN (xnj¹j ;§j)

¤znj

=
¼kN (xnj¹k;§k)PK

j=1 ¼jN (xnj¹j ;§j)
= °(znk)
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Gaussian Mixtures Revisited 

• Continuing the estimation 

 The complete-data log-likelihood is therefore 

 

 

 

 

 This is precisely the EM algorithm for Gaussian mixtures as 

derived before.  

38 
B. Leibe 

EZ[log p(X;Zj¹;§;¼)] =

NX

n=1

KX

k=1

°znk flog ¼k + logN (xnj¹k;§k)g
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References and Further Reading 

• More information about EM and MoG estimation is 

available in Chapter 9 of Bishop’s book (recommendable 

to read). 

 

 
 

• Additional information 

 Original EM paper: 

– A.P. Dempster, N.M. Laird, D.B. Rubin, „Maximum-Likelihood from 

incomplete data via EM algorithm”, In Journal Royal Statistical 

Society, Series B. Vol 39, 1977 

 EM tutorial: 

– J.A. Bilmes, “A Gentle Tutorial of the EM Algorithm and its 

Application to Parameter Estimation for Gaussian Mixture and 

Hidden Markov Models“, TR-97-021, ICSI, U.C. Berkeley, CA,USA 
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