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Course Outline

• Image Processing Basics

• Segmentation & Grouping

• Object Recognition & Categorization

 Sliding Window based Object Detection

• Local Features & Matching

• Deep Learning

 Convolutional Neural Networks (CNNs)

 Deep Learning Background

 CNNs for Object Detection

 CNNs for Semantic Segmentation

 CNNs for Matching

• 3D Reconstruction

2
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Recap: R-CNN for Object Detection

3
B. LeibeSlide credit: Ross Girshick
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Recap: Faster R-CNN

• One network, four losses

 Remove dependence on

external region proposal

algorithm.

 Instead, infer region

proposals from same

CNN.

 Feature sharing

 Joint training

 Object detection in

a single pass becomes

possible.

4
Slide credit: Ross Girshick
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Recap: Mask R-CNN

5

K. He, G. Gkioxari, P. Dollar, R. Girshick, Mask R-CNN, arXiv 1703.06870.

Slide credit: FeiFei Li

https://arxiv.org/pdf/1703.06870.pdf
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Recap: YOLO / SSD

• Idea: Directly go from image to detection scores

• Within each grid cell

 Start from a set of anchor boxes

 Regress from each of the B anchor boxes to a final box

 Predict scores for each of C classes (including background)
6

Slide credit: FeiFei Li
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Topics of This Lecture

• Practical Advice on CNN training
 Data Augmentation

 Initialization

 Batch Normalization

 Dropout

 Learning Rate Schedules

• CNNs for Segmentation
 Fully Convolutional Networks (FCN)

 Encoder-Decoder architecture

 Transpose convolutions

 Skip connections

• CNNs for Human Body Pose Estimation

7
B. Leibe
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Data Augmentation

• Idea

 Augment original data with synthetic variations

to reduce overfitting

• Example augmentations for images

 Cropping

 Zooming

 Flipping

 Color PCA

8
B. Leibe Image source: Lucas Beyer
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Data Augmentation

• Effect

 Much larger training set

 Robustness against expected

variations

• During testing

 When cropping was used

during training, need to 

again apply crops to get

same image size.

 Beneficial to also apply

flipping during test.

 Applying several ColorPCA

variations can bring another

~1% improvement, but at a

significantly increased runtime.
9

B. Leibe

Augmented training data

(from one original image)

Image source: Lucas Beyer
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Glorot Initialization      [Glorot & Bengio, ‘10]

• Variance of neuron activations

 Suppose we have an input X with n components and a linear 

neuron with random weights W that spits out a number Y. 

 We want the variance of the input and output of a unit to be the 

same, therefore n Var(Wi) should be 1. This means

 Or for the backpropagated gradient

 As a compromise, Glorot & Bengio propose to use

 Randomly sample the initial weights with this variance.
10

B. Leibe
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He Initialization                                    [He et al., ‘15]

• Extension of Glorot Initialization to ReLU units

 Use Rectified Linear Units (ReLU)

 Effect: gradient is propagated with

a constant factor

• Same basic idea: Output should have the input variance 

 However, the Glorot derivation was based on tanh units, linearity 

assumption around zero does not hold for ReLU.

 He et al. made the derivations, proposed to use instead

11
B. Leibe
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Practical Advice

• Initializing the weights

 Draw them randomly from a zero-mean distribution.

 Common choices in practice: Gaussian or uniform.

 Common trick: add a small positive bias +𝜀 to avoid units with 

ReLu nonlinearities getting stuck-at-zero.

• When sampling weights from a uniform distribution [a,b]

 Keep in mind that the standard deviation is computed as

𝜎2 =
1

12
𝑏 − 𝑎 2

 Glorot initialization with uniform distribution

𝑊~𝑈 −
6

𝑛𝑖𝑛 + 𝑛𝑜𝑢𝑡
,

6

𝑛𝑖𝑛 + 𝑛𝑜𝑢𝑡

12
B. Leibe
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Batch Normalization                      [Ioffe & Szegedy ’14]

• Motivation

 Optimization works best if all inputs of a layer are normalized.

• Idea

 Introduce intermediate layer that centers the activations of

the previous layer per minibatch.

 I.e., perform transformations on all activations

and undo those transformations when backpropagating gradients

 Complication: centering + normalization also needs to be done 

at test time, but minibatches are no longer available at that point.

– Learn the normalization parameters to compensate for the expected 

bias of the previous layer (usually a simple moving average)

• Effect

 Much improved convergence (but parameter values are important!)

 Widely used in practice
13

B. Leibe



P
e
rc

e
p

tu
a
l 

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
C

o
m

p
u
te

r 
V

is
io

n
 S

u
m

m
e
r‘

1
9

Dropout [Srivastava, Hinton ’12]

• Idea

 Randomly switch off units during training.

 Change network architecture for each data point, effectively training 

many different variants of the network.

 When applying the trained network, multiply activations with the 

probability that the unit was set to zero.

 Greatly improved performance
14

B. Leibe
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Choosing the Right Learning Rate

• Behavior for different learning rates

15
B. Leibe Image source: Yann LeCun et al., Efficient BackProp (1998)
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Learning Rate vs. Training Error

16
B. Leibe Image source: Goodfellow & Bengio book

Do not go beyond

this point!
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Reducing the Learning Rate

• Final improvement step after convergence is reached

 Reduce learning rate by a

factor of 10.

 Continue training for a few

epochs.

 Do this 1-3 times, then stop

training.

• Effect

 Turning down the learning rate will reduce 

the random fluctuations in the error due to 

different gradients on different minibatches.

• Be careful: Do not turn down the learning rate too soon!

 Further progress will be much slower/impossible after that.
17

B. Leibe

Reduced

learning rate

T
ra

in
in

g
 e

rr
o

r

Epoch

Slide adapted from Geoff Hinton
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Summary

• Deep multi-layer networks are very powerful.

• But training them is hard!

 Complex, non-convex learning problem

 Local optimization with stochastic gradient descent

• Main issue: getting good gradient updates for the lower 

layers of the network

 Many seemingly small details matter!

 Weight initialization, normalization, data augmentation, choice of 

nonlinearities, choice of learning rate, choice of optimizer,…

 Exercise 5 will guide you through those steps. 

Take advantage of it!

18
B. Leibe
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Topics of This Lecture

• Practical Advice on CNN training
 Data Augmentation

 Initialization

 Batch Normalization

 Dropout

 Learning Rate Schedules

• CNNs for Segmentation
 Fully Convolutional Networks (FCN)

 Encoder-Decoder architecture

 Transpose convolutions

 Skip connections

• CNNs for Human Body Pose Estimation

19
B. Leibe
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Semantic Segmentation

• Semantic 

Segmentation

 Label each pixel

in the image with

a category label

 Don’t differentiate

instances, only 

care about pixels

• Instance 

segmentation

 Also give an

instance label

per pixel

20
B. LeibeSlide adapted from FeiFei Li
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Segmentation Idea: Sliding Window

• Problem

 Very inefficient

 No reuse of features between shared patches

21
B. LeibeSlide adapted from FeiFei Li

(e.g., AlexNet)
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Segmentation Idea: Fully-Convolutional Nets

• Design a network as a sequence of convolutional layers

 To make predictions for all pixels at once

 Fully Convolutional Networks (FCNs)

– All operations formulated as convolutions

– Fully-connected layers become 11 convolutions

– Advantage: can process arbitrarily sized images

23
B. LeibeSlide adapted from FeiFei Li
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CNNs vs. FCNs

• CNN

• FCN

• Intuition

 Think of FCNs as performing a sliding-window classification,

producing a heatmap of output scores for each class

 But: more efficient, since computations are reused between windows
24

Image source: Long, Shelhamer, Darrell
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Segmentation Idea: Fully-Convolutional Nets

• Design a network as a sequence of convolutional layers

 To make predictions for all pixels at once

• Problem

 Convolutions at original image resolution will be very expensive!

25
B. LeibeSlide adapted from FeiFei Li
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Segmentation Idea: Fully-Convolutional Nets

• Design a network as a sequence of convolutional layers

 With downsampling and upsampling inside the network!

 Downsampling

– Pooling, strided convolution

 Upsampling

– ???

26
B. LeibeSlide credit: FeiFei Li



P
e
rc

e
p

tu
a
l 

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
C

o
m

p
u
te

r 
V

is
io

n
 S

u
m

m
e
r‘

1
9

In-Network Upsampling: “Unpooling”

• Nearest-Neighbor

 Simplest version

 Problem: blocky output structure

• “Bed of Nails”

 Preserve fine-grained structure of the output

 Problem: fixed location for upsampled stimuli

27
B. LeibeSlide credit: FeiFei Li
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In-Network Upsampling: “Max Unpooling”

• Max Unpooling

 Use corresponding pairs of 

downsampling and upsampling

layers together

 Remember which elements were max

28
B. LeibeSlide credit: FeiFei Li
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Learnable Upsampling: Transpose Convolution

• Recall:  Normal convolution, stride 2, pad 1

• Effect

 Filter moves 2 pixels in the input for every one pixel in the output

 Stride gives ration between movement in input and output

29
Slide credit: FeiFei Li
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Learnable Upsampling: Transpose Convolution

• Recall:  Normal convolution, stride 2 pad 1

• Effect

 Filter moves 2 pixels in the input for every one pixel in the output

 Stride gives ration between movement in input and output

30
Slide credit: FeiFei Li



P
e
rc

e
p

tu
a
l 

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
C

o
m

p
u
te

r 
V

is
io

n
 S

u
m

m
e
r‘

1
9

Learnable Upsampling: Transpose Convolution

• Recall:  Normal convolution, stride 2 pad 1

• Effect

 Filter moves 2 pixels in the input for every one pixel in the output

 Stride gives ration between movement in input and output

31
Slide credit: FeiFei Li
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Learnable Upsampling: Transpose Convolution

• Now:  3x3 transpose convolution, stride 2 pad 1

32
Slide credit: FeiFei Li
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Learnable Upsampling: Transpose Convolution

• Now:  3x3 transpose convolution, stride 2 pad 1

33
Slide credit: FeiFei Li
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Learnable Upsampling: Transpose Convolution

• Now:  3x3 transpose convolution, stride 2 pad 1

• Effect

 Filter moves 2 pixels in the output for every one pixel in the input

 Stride gives ration between movement in output and input

34

Sum where 

output overlaps

Slide credit: FeiFei Li
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Learnable Upsampling: Transpose Convolution

• Now:  3x3 transpose convolution, stride 2 pad 1

• Other names

 Deconvolution (bad)

 Upconvolution

 Fractionally strided convolution

 Backward strided convolution
35

Sum where 

output overlaps

Slide credit: FeiFei Li
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Learnable Upsampling: 1D Example

• Observations

 Output contains copies of the filter weighted by the input, summing 

overlaps in the output

 Need to crop one pixel from output to make output exactly 2x input

36
Slide credit: FeiFei Li
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Convolution as Matrix Multiplication (1D Example)

• Express convolution in terms

of matrix multiplication

 Example: 

– 1D conv

– Kernel size = 3

– Stride 1, padding = 1

• Convolution transpose

multiplies by the transpose

of the same matrix

 When stride = 1, 

convolution transpose is just

a regular convolution (with

different padding rules)

37
Slide credit: FeiFei Li
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0 0 𝑥
0 0 0

𝑦 𝑧 0
𝑥 𝑦 𝑧

0
𝑎
𝑏
𝑐
𝑑
0

=

𝑎𝑦 + 𝑏𝑧
𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧
𝑏𝑥 + 𝑐𝑦 + 𝑑𝑧
𝑐𝑥 + 𝑑𝑦
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Convolution as Matrix Multiplication (1D Example)

• Express convolution in terms

of matrix multiplication

 Example: 

– 1D conv

– Kernel size = 3

– Stride 2, padding = 1

• Convolution transpose

multiplies by the transpose

of the same matrix

 When stride > 1, 

convolution transpose is

no longer a normal 

convolution!

38
Slide credit: FeiFei Li

𝑥
𝑦
𝑧
0
0
0

0
0
𝑥
𝑦
𝑧
0

𝑎
𝑏

=

𝑎𝑥
𝑎𝑦

𝑎𝑧 + 𝑏𝑥
𝑏𝑦
𝑏𝑧
0

𝑥 𝑦 𝑧
0 0 𝑥

0 0 0
𝑦 𝑧 0

0
𝑎
𝑏
𝑐
𝑑
0

=
𝑎𝑦 + 𝑏𝑧

𝑏𝑥 + 𝑐𝑦 + 𝑑𝑧
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Segmentation Idea: Fully-Convolutional Nets

• Design a network as a sequence of convolutional layers

 With downsampling and upsampling inside the network!

 Downsampling

– Pooling, strided convolution

 Upsampling

– Unpooling or strided transpose convolution

39
B. LeibeSlide credit: FeiFei Li
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Extension: Skip Connections

• Encoder-Decoder Architecture with skip connections

 Problem: downsampling loses high-resolution information

 Use skip connections to preserve this higher-resolution information

40
Image source: Newell et al.
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Example: SegNet

• SegNet

 Encoder-Decoder architecture with skip connections

 Encoder based on VGG-16

 Decoder using Max Unpooling

 Output with K-class Softmax classification

41
B. Leibe

V. Badrinarayanan, A. Kendall, R. Cipolla, SegNet: A Deep Convolutional Encoder-Decoder 

Architecture for Image Segmentation, arXiv 1511.00561, IEEE Trans. PAMI 2017.

https://arxiv.org/pdf/1511.00561.pdf
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Example: U-Net

• U-Net

 Similar idea, popular in biomedical image processing

 Encoder-Decoder architecture with skip connections

42
B. Leibe

O. Ronneberger, P. Fischer, T. Brox, U-Net: Convolutional Networks for Biomedical 

Image Segmentation, MICCAI 2015

https://arxiv.org/pdf/1505.04597.pdf
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Semantic Segmentation

• Recent results

 Based on an extension of ResNets for high-resolution segmentation

[Pohlen, Hermans, Mathias, Leibe, CVPR 2017]
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Topics of This Lecture

• Practical Advice on CNN training
 Data Augmentation

 Initialization

 Batch Normalization

 Dropout

 Learning Rate Schedules

• CNNs for Segmentation
 Fully Convolutional Networks (FCN)

 Encoder-Decoder architecture

 Transpose convolutions

 Skip connections

• CNNs for Human Body Pose Estimation

44
B. Leibe
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FCNs for Human Pose Estimation

• Input data

• Task setup

 Annotate images with keypoints for skeleton joints

 Define a target disk around each keypoint with radius r

 Set the ground-truth label to 1 within each such disk

 Infer heatmaps for the joints as in semantic segmentation
45

Slide adapted from Georgia Gkioxari
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Heat Map Predictions from FCN

46
Slide adapted from Georgia Gkioxari
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Example Results: Human Pose Estimation

47
[Rafi, Gall, Leibe, BMVC 2016]
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More Recently: Parts Affinity Fields

• https://www.youtube.com/watch?v=pW6nZXeWlGM

48
B. Leibe

https://www.youtube.com/watch?v=pW6nZXeWlGM
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