Computer Vision – Lecture 6

Segmentation as Energy Minimization

07.05.2019

Bastian Leibe Visual Computing Institute RWTH Aachen University http://www.vision.rwth-aachen.de/

leibe@vision.rwth-aachen.de

Announcements

- Reminder: Exam dates
 - > According to RWTH Online, the exam dates are
 - > 1st try Tue 20.08.2019 11:30 - 13:30h
 - > 2nd try Wed 25.09.2019 11:30 - 13:30h
- · Exam registration should now work

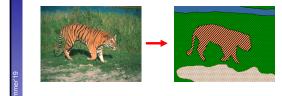
> Please don't forget to register for the exam!

Course Outline

- Image Processing Basics
- Segmentation
 - Segmentation as Clustering
 - > Graph-theoretic Segmentation
- Recognition
 - > Global Representations
 - Subspace representations
- Local Features & Matching
- Object Categorization
- 3D Reconstruction

Recap: Image Segmentation

Goal: identify groups of pixels that go together



Recap: K-Means Clustering

- Basic idea: randomly initialize the k cluster centers, and iterate between the two steps we just saw.
 - 1. Randomly initialize the cluster centers, $c_1, ..., c_K$
 - 2. Given cluster centers, determine points in each cluster
 - For each point p, find the closest ci. Put p into cluster i
 - 3. Given points in each cluster, solve for ci Set c to be the mean of points in cluster i

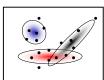
 - 4. If c_i have changed, repeat Step 2

RWITHAAC

- Properties
 - Will always converge to some solution
 - Can be a "local minimum"
 - Does not always find the global minimum of objective function:

$$\sum_{ ext{clusters }i}\sum_{ ext{points p in cluster }i}\|p-c_i\|^2$$

Recap: Expectation Maximization (EM)

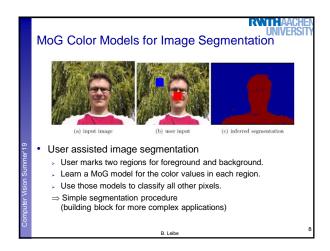


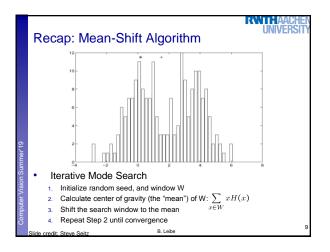
- - $\,\,$ Find blob parameters θ that maximize the likelihood function:

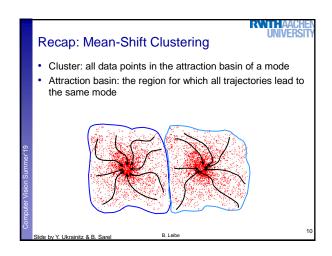
$$p(data|\theta) = \prod^{N} p(\mathbf{x}_n|\theta)$$

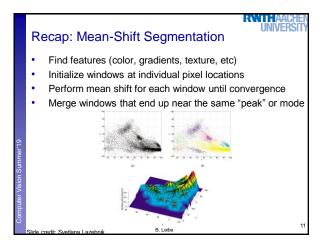
- Approach:
 - 1. E-step: given current guess of blobs, compute ownership of each point
 - 2. M-step: given ownership probabilities, update blobs to maximize likelihood function
 - 3. Repeat until convergence

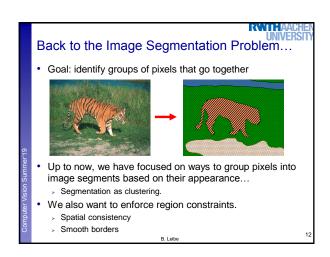
Recap: EM Algorithm • Expectation-Maximization (EM) Algorithm • E-Step: softly assign samples to mixture components $\gamma_j(\mathbf{x}_n) \leftarrow \frac{\pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}{\sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)} \quad \forall j=1,\dots,K, \ n=1,\dots,N$ • M-Step: re-estimate the parameters (separately for each mixture component) based on the soft assignments $\hat{N}_j \leftarrow \sum_{n=1}^N \gamma_j(\mathbf{x}_n) = \text{soft number of samples labeled } j$ $\hat{\pi}_j^{\text{new}} \leftarrow \frac{\hat{N}_j}{N}$ $\hat{\mu}_j^{\text{new}} \leftarrow \frac{\hat{N}_j}{N} \sum_{n=1}^N \gamma_j(\mathbf{x}_n) \mathbf{x}_n$ $\hat{\Sigma}_j^{\text{new}} \leftarrow \frac{1}{\hat{N}_j} \sum_{n=1}^N \gamma_j(\mathbf{x}_n) (\mathbf{x}_n - \hat{\mu}_j^{\text{new}}) (\mathbf{x}_n - \hat{\mu}_j^{\text{new}})^{\text{T}}$ B. Leibe





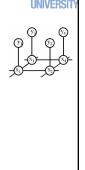




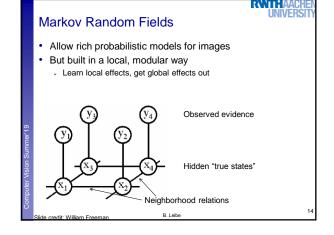


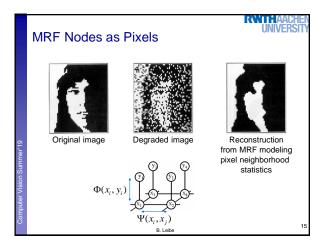
Topics of This Lecture

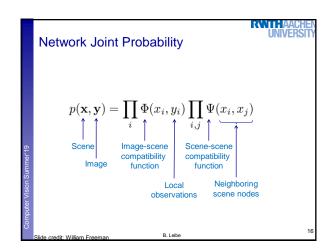
- · Segmentation as Energy Minimization
 - Markov Random Fields
 - > Energy formulation
- · Graph cuts for image segmentation
 - Basic idea
 - » s-t Mincut algorithm
 - Extension to non-binary case
- Applications
 - > Interactive segmentation



be







Energy Formulation

Joint probability

$$p(\mathbf{x}, \mathbf{y}) = \prod_{i} \Phi(x_i, y_i) \prod_{i,j} \Psi(x_i, x_j)$$

 Maximizing the joint probability is the same as minimizing the negative logarithm of it

$$\begin{split} -\log p(\mathbf{x},\mathbf{y}) &=& -\sum_{i}\log \Phi(x_{i},y_{i}) - \sum_{i,j}\log \Psi(x_{i},x_{j}) \\ E(\mathbf{x},\mathbf{y}) &=& \sum_{i}\phi(x_{i},y_{i}) + \sum_{i,j}\psi(x_{i},x_{j}) \end{split}$$

- This is similar to free-energy problems in statistical mechanics (spin glass theory). We therefore draw the analogy and call E an energy function.
- ϕ and ψ are called potentials.

B Leibe

Energy Formulation

· Energy function

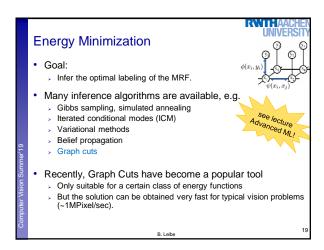
$$E(\mathbf{x}, \mathbf{y}) = \sum_{i} \phi(x_i, y_i) + \sum_{i,j} \psi(x_i, x_j)$$

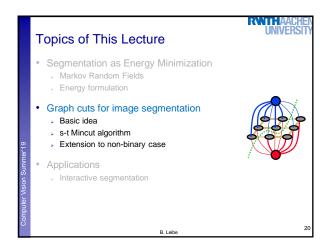
Single-node potentials

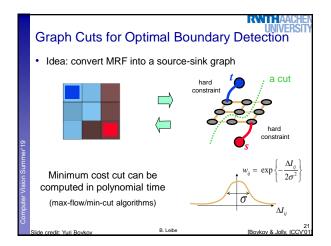
Pairwise potentials

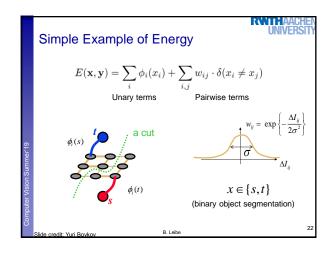
- Single-node potentials ϕ ("unary potentials")
 - Encode local information about the given pixel/patch
 - How likely is a pixel/patch to belong to a certain class (e.g. foreground/background)?
- Pairwise potentials ψ
 - > Encode neighborhood information
 - How different is a pixel/patch's label from that of its neighbor? (e.g. based on intensity/color/texture difference, edges)

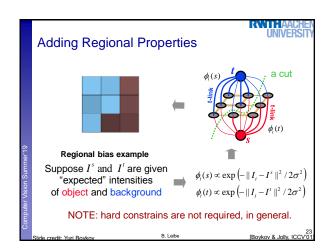
B. Leibe



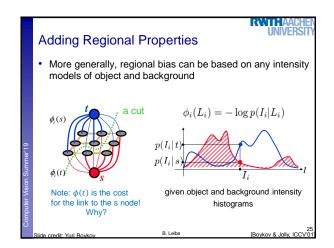




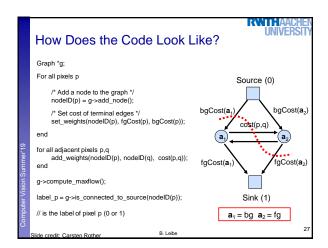


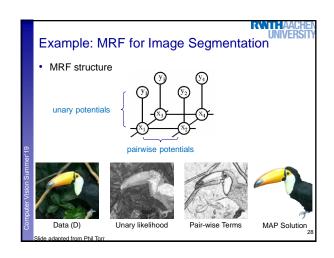


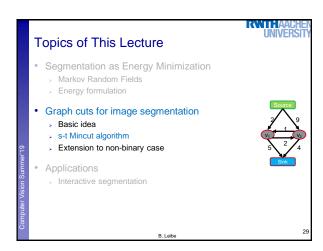


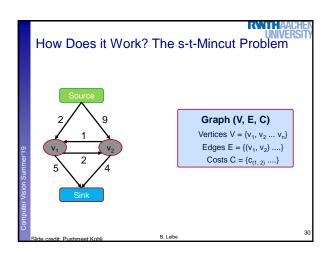


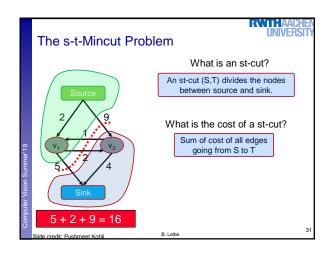


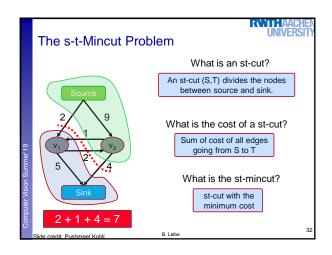


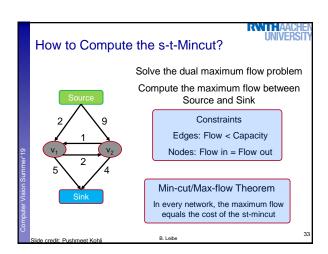


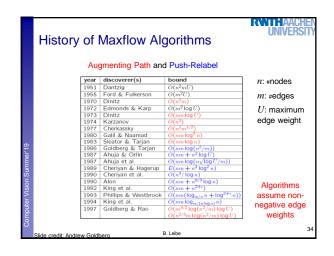


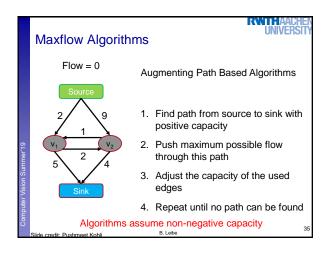


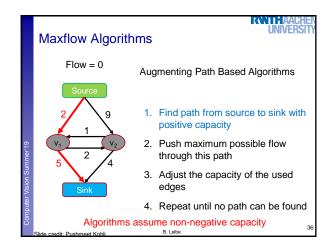


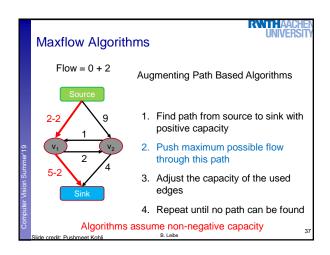


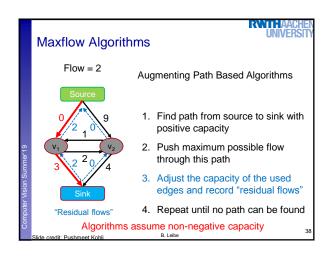


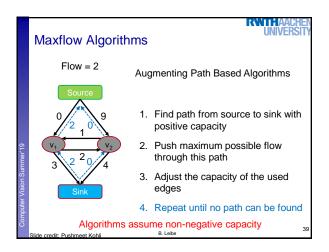


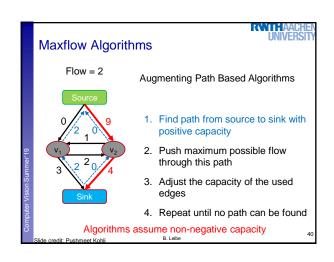


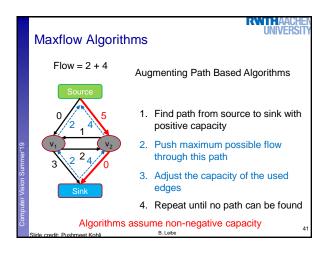


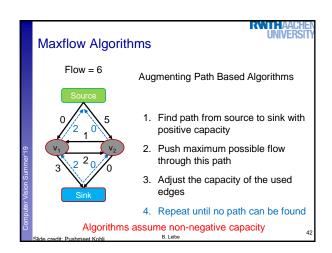


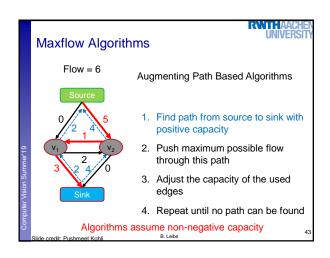


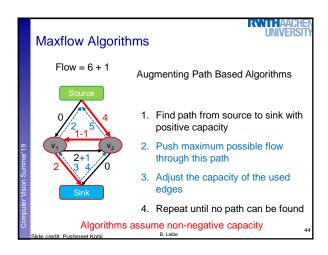


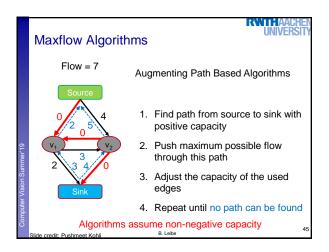


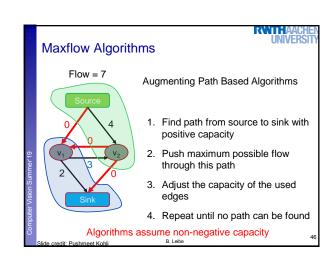


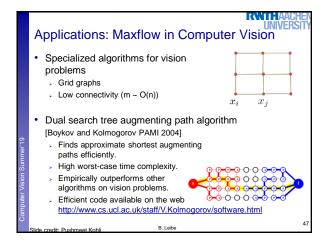


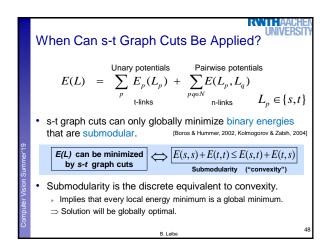


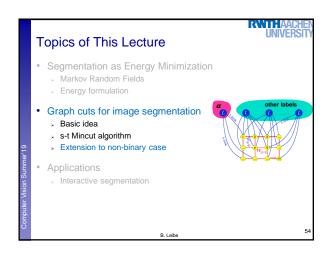


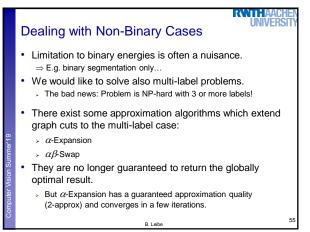


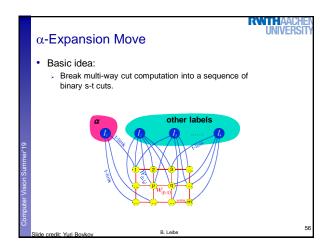


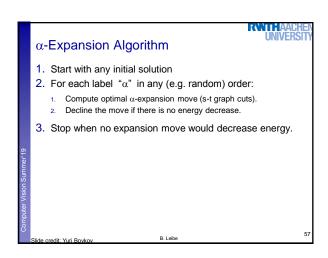


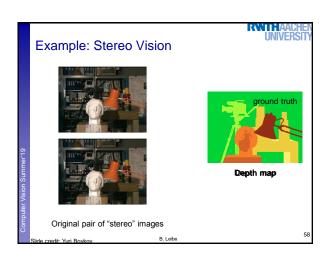


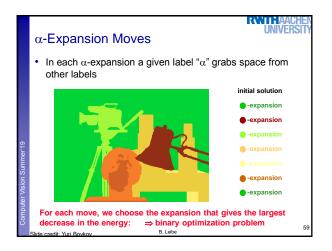


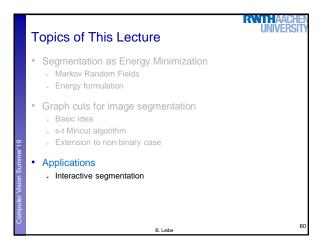


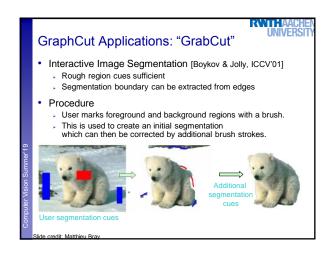


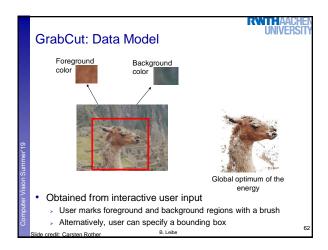


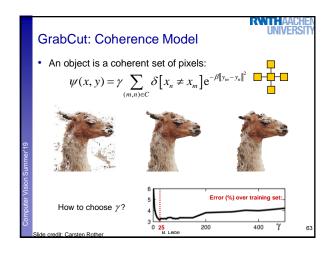


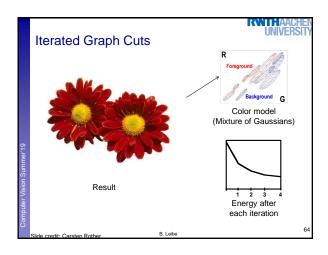


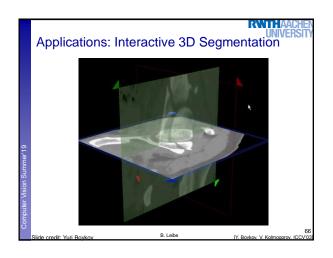


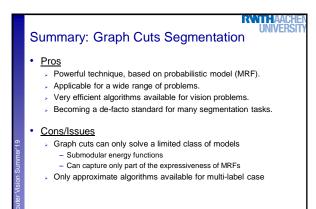












References and Further Reading • A gentle introduction to Graph Cuts can be found in the following paper: • Y. Boykov, O. Veksler, Graph Cuts in Vision and Graphics: Theories and Applications. In Handbook of Mathematical Models in Computer Vision, edited by N. Paragios, Y. Chen and O. Faugeras, Springer, 2006. • Read how the interactive segmentation is realized in MS Office 2010 • C. Rother, V. Kolmogorov, Y. Boykov, A. Blake, Interactive Foreground Extraction using Graph Cut, Microsoft Research Tech Report MSR-TR-2011-46, March 2011 • Try the GraphCut implementation at https://pub.ist.ac.at/~vnk/software.html