

Computer Vision – Lecture 4

Structure Extraction

29.04.2019

Computer Vision Summer'19

Bastian Leibe

Visual Computing Institute RWTH Aachen University http://www.vision.rwth-aachen.de/

leibe@vision.rwth-aachen.de

Course Outline

- Image Processing Basics
 - Image Formation
 - Binary Image Processing
 - Linear Filters
 - > Edge & Structure Extraction
- Segmentation
- Local Features & Matching
 - Object Recognition and Categorization
- Deep Learning
- 3D Reconstruction

RWTHAACHEN UNIVERSITY

Topics of This Lecture

• Recap: Edge detection

- Image gradients
- Canny edge detector
- Fitting as parametric search
 - Line detection
 - Hough transform
 - Extension to circles
 - Generalized Hough transform

Recap: The Gaussian Pyramid $G_4 = (G_3 * gaussian) \downarrow 2$ Low resolution down-sample $G_2 = (G_2 * gal + ian) +$ <u>down-sample</u> $=(G_1 * gaussian) \downarrow$ <u>down-sample</u> $\frac{\text{blur}}{G_1 = (G_0 * gaussian) \downarrow 2}$ YOW High resolution

B. Leibe

Source: Irani & Basri

Recap: Derivatives and Edges...

• ∇^2 is the Laplacian operator:

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

Recap: Canny Edge Detector

- 1. Filter image with derivative of Gaussian
- 2. Find magnitude and orientation of gradient
- **3.** Non-maximum suppression:
 - > Thin multi-pixel wide "ridges" down to single pixel width
- 4. Linking and thresholding (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them
 - MATLAB:
 - >> edge(image, 'canny');
 - >> help edge

RWTHAACHEN UNIVERSITY

Edges vs. Boundaries

Edges are useful signals to indicate occluding boundaries, shape.

Here the raw edge output is not so bad...

Slide credit: Kristen Grauman

...but quite often boundaries of interest are fragmented, and we have extra "clutter" edge points.

Edge Detection is Just the Beginning...

Image

Human segmentation

Gradient magnitude

 Berkeley segmentation database: <u>http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/</u>

Fitting

Want to associate a model with observed features

[Figure from Marszalek & Schmid, 2007]

For example, the model could be a line, a circle, or an arbitrary shape.

Topics of This Lecture

- Recap: Edge detection
 - > Image gradients
 - Canny edge detector

• Fitting as parametric search

- Line detection
- Hough transform
- Extension to circles
- Generalized Hough transform

Example: Line Fitting

- Why fit lines?
 - Many objects are characterized by presence of straight lines

Wait, why aren't we done just by running edge detection? ۲

Difficulty of Line Fitting

- Extra edge points (clutter), multiple models:
 - Which points go with which line, if any?
- Only some parts of each line detected, and some parts are missing:
 - How to find a line that bridges missing evidence?
- Noise in measured edge points, orientations:
 - How to detect true underlying parameters?

Slide credit: Kristen Grauman

Fitting Lines

- Three main questions
 - Given points that belong to a line, what is the line?
 - How many lines are there?
 - Which points belong to which lines?
- The *Hough Transform* is a voting technique that can be used to answer all of these
- Main idea:
 - 1. Vote for all possible lines on which each edge point could lie.
 - 2. Look for line candidates that get many votes.
 - 3. Noise features will cast votes too, *but* their votes should be inconsistent

- Connection between image (x, y) and Hough (m, b) spaces
 - A line in the image corresponds to a point in Hough space.
 - To go from image space to Hough space:
 - Given a set of points (x, y), find all (m, b) such that y = mx + b

- Connection between image (*x*, *y*) and Hough (*m*, *b*) spaces
 - A line in the image corresponds to a point in Hough space.
 - To go from image space to Hough space:
 - Given a set of points (x, y), find all (m, b) such that y = mx + b
 - > What does a point (x_0, y_0) in the image space map to?
 - Answer: the solutions of $b = -x_0m + y_0$
 - This is a line in Hough space.

- What are the line parameters for the line that contains both (x_0, y_0) and (x_1, y_1) ?
 - It is the intersection of the lines

$$b = -x_0m + y_0$$
 and

$$b = -x_1m + y_1$$

- How can we use this to find the most likely parameters (*m*, *b*) for the most prominent line in the image space?
 - Let each edge point in image space vote for a set of possible parameters in Hough space.
 - Accumulate votes in discrete set of bins; parameters with the most votes indicate line in image space.

Polar Representation for Lines

 Issues with usual (m, b) parameter space: can take on infinite values, undefined for vertical lines.

d : perpendicular distance from line to origin

 $\boldsymbol{\theta}$: angle the perpendicular makes with the x-axis

Point in image space ⇒ Sinusoid segment in Hough space

Hough Transform Algorithm

Using the polar parameterization: $x\cos\theta + y\sin\theta = d$

Basic Hough transform algorithm

- 1. Initialize $H[d, \theta] = 0$.
- 2. For each edge point (x, y) in the image
 - for $\theta = 0$ to 180 // some quantization $d = x \cos \theta + y \sin \theta$ $H[d, \theta] += 1$

- 3. Find the value(s) of (d, θ) where $H[d, \theta]$ is maximal.
- 4. The detected line in the image is given by $d = x \cos \theta + y \sin \theta$
- Time complexity (in terms of number of votes)?

Example: HT for Straight Lines

23

Real-World Examples

RWTHAACHEN UNIVERSITY

Showing longest segments found

Computer Vision Summer'18

Slide credit: Kristen Grauman

Impact of Noise on Hough Transform

What difficulty does this present for an implementation?

Computer Vision Summer'18

B. Leibe

Impact of Noise on Hough Transform

Here, everything appears to be "noise", or random edge points, but we still see peaks in the vote space.

RWTHAACHEN UNIVERSITY

Extensions

Extension 1: Use the image gradient

- 1. same
- 2. for each edge point I[x, y] in the image

 θ = gradient at (x, y)

- $d = x\cos\theta + y\sin\theta$
- $H[d, \theta] += 1$
- 3. same
- 4. same

(Reduces degrees of freedom)

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

Extensions

Extension 1: Use the image gradient

- 1. same
- 2. for each edge point I[x, y] in the image
 - compute unique (d, θ) based on image gradient at (x, y).
 - $H[d, \theta] += 1$
- 3. same
- 4. same

(Reduces degrees of freedom)

Extension 2

Give more votes for stronger edges (use magnitude of gradient)

Extension 3

> Change the sampling of (d, θ) to give more/less resolution

Extension 4

> The same procedure can be used with circles, squares, or any other shape

• Circle: center (a, b) and radius r

$$(x_i - a)^2 + (y_i - b)^2 = r^2$$

• For a fixed radius r, unknown gradient direction

• Circle: center (a, b) and radius r

$$(x_i - a)^2 + (y_i - b)^2 = r^2$$

• For a fixed radius r, unknown gradient direction

• Circle: center (a, b) and radius r

$$(x_i - a)^2 + (y_i - b)^2 = r^2$$

For an unknown radius r, unknown gradient direction

• Circle: center (a, b) and radius r

$$(x_i - a)^2 + (y_i - b)^2 = r^2$$

For an unknown radius r, unknown gradient direction

• Circle: center (a, b) and radius r

$$(x_i - a)^2 + (y_i - b)^2 = r^2$$

For an unknown radius r, known gradient direction

For every edge pixel (x, y):

For each possible radius value r:

For each possible gradient direction θ : // or use estimated gradient

$$a = x - r\cos(\theta)$$

$$b = y + r\sin(\theta)$$

$$H[a, b, r] += 1$$

end

end

Example: Detecting Circles with Hough

Crosshair indicates results of Hough transform, bounding box found via motion differencing.

Slide credit: Kristen Grauman

B. Leibe

Example: Detecting Circles with Hough

Original

Votes: Penny

Note: a different Hough transform (with separate accumulators) was used for each circle radius (quarters vs. penny).

Example: Detecting Circles with Hough

Comb Die glinded tections

Edges

Slide credit: Kristen Grauman

Votes: Quarter

Voting: Practical Tips

- Minimize irrelevant tokens first (take edge points with significant gradient magnitude)
- Choose a good grid / discretization
 - > Too coarse: large votes obtained when too many different lines correspond to a single bucket
 - > Too fine: miss lines because some points that are not exactly collinear cast votes for different buckets
- Vote for neighbors, also (smoothing in accumulator array)
- Utilize direction of edge to reduce free parameters by 1
- To read back which points voted for "winning" peaks, keep tags on the votes.

Hough Transform: Pros and Cons

<u>Pros</u>

- All points are processed independently, so can cope with occlusion
- Some robustness to noise: noise points unlikely to contribute consistently to any single bin
- Can detect multiple instances of a model in a single pass

<u>Cons</u>

- Complexity of search time increases exponentially with the number of model parameters
- Non-target shapes can produce spurious peaks in parameter space
- Quantization: hard to pick a good grid size

Generalized Hough Transform

 What if want to detect arbitrary shapes defined by boundary points and a reference point?

At each boundary point, compute displacement vector:

 $r = a - p_i$.

For a given model shape: store these vectors in a table indexed by gradient orientation θ .

[Dana H. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, 1980]

Generalized Hough Transform

To *detect* the model shape in a new image:

- For each edge point
 - > Index into table with its gradient orientation θ
 - > Use retrieved *r* vectors to vote for position of reference point
- Peak in this Hough space is reference point with most supporting edges

Assuming translation is the only transformation here, i.e., orientation and scale are fixed.

Computer Vision Summer[,]18

bisplacement vectors for model points

Computer Vision Summer[,]18

Range of voting locations for test point

Slide credit: Svetlana Lazebnik

Displacement vectors for model points

Slide credit: Svetlana Lazebnik Range of voting locations for test point

Application in Recognition

 Instead of indexing displacements by gradient orientation, index by "visual codeword".

Visual codeword with displacement vectors

Training image

B. Leibe, A. Leonardis, and B. Schiele, <u>Robust Object Detection with Interleaved</u> <u>Categorization and Segmentation</u>, International Journal of Computer Vision, Vol. 77(1-3), 2008.

Application in Recognition

• Instead of indexing displacements by gradient orientation, index by "visual codeword".

Test image

• Possible mechanism for designing object detectors...

References and Further Reading

 Background information on edge detection can be found in Chapter 3 of the Szeliski book or in Chapter 8 of Forsyth & Ponce.

R. Szeliski Computer Vision – Algorithms and Applications Springer, 2010

> D. Forsyth, J. Ponce, *Computer Vision – A Modern Approach*. Prentice Hall, 2003

- Read Ballard & Brown's description of the Generalized Hough Transform in Chapter 4.3 of
 - D.H. Ballard & C.M. Brown, *Computer Vision*, Prentice Hall, 1982

(available from the class webpage)