

Announcements

- Lecture evaluation
, Please fill out the evaluation forms...

Bastian Leibe
RWTH Aachen
leibe@vision.rwth-aachen.de

, Statistical Learning Theory \& SVMs

- Ensemble Methods \& Boosting
, Decision Trees \& Randomized Trees
- Generative Models (4 weeks)

Bayesian Networks
arkov Random Fields
B. Leibe

Topics of This Lecture

- Recap: Exact inference
. Sum-Product algorithm
, Max-Sum algorithm
- Junction Tree algorithm
- Applications of Markov Random Fields
, Application examples from computer vision
, Interpretation of clique potentials
, Unary potentials
, Pairwise potentials
- Solving MRFs with Graph Cuts
, Graph cuts for image segmentation
, s-t mincut algorithm
- Extension to non-binary case
- Applications
B. Leibe

RWIIHACHE
UNIVERSIT

Recap: Sum-Product Algorithm

- Objectives
, Efficient, exact inference algorithm for finding marginals.
- Procedure:
- Pick an arbitrary node as root.
, Compute and propagate messages from the leaf nodes to the root, storing received messages at every node.
, Compute and propagate messages from the root to the leaf nodes, storing received messages at every node.
. Compute the product of received messages at each node for which the marginal is required, and normalize if necessary.

$$
p(x) \propto \prod_{s \in \operatorname{ne}(x)} \mu_{f_{s} \rightarrow x}(x)
$$

- Computational effort
- Total number of messages $=2 \cdot$ number of graph edges.

Max-Sum Algorithm - Key Ideas

- Key idea 1: Distributive Law (again)

$$
\begin{aligned}
\max (a b, a c) & =a \max (b, c) \\
\max (a+b, a+c) & =a+\max (b, c)
\end{aligned}
$$

\Rightarrow Exchange products/summations and max operations exploiting the tree structure of the factor graph.

- Key idea 2: Max-Product \rightarrow Max-Sum
, We are interested in the maximum value of the joint distribution $p\left(\mathbf{x}^{\max }\right)=\max _{\mathbf{x}} p(\mathbf{x})$
\Rightarrow Maximize the product $p(\mathbf{x})$.
, For numerical reasons, use the logarithm.

$$
\ln \left(\max _{\mathbf{x}} p(\mathbf{x})\right)=\max _{\mathbf{x}} \ln p(\mathbf{x})
$$

\Rightarrow Maximize the sum (of log-probabilities).

$$
\begin{aligned}
& \text { - Initialization (leaf nodes) } \\
& \mu_{x \rightarrow f}(x)=0 \quad \mu_{f \rightarrow x}(x)=\ln f(x) \\
& \text { - Recursion } \\
& \begin{array}{l}
\text { Messages } \\
\mu_{f \rightarrow x}(x)=\max _{x_{1}, \ldots, x_{M}}\left[\ln f\left(x, x_{1}, \ldots, x_{M}\right)+\sum_{m \in \operatorname{ne}\left(f_{s}\right) \backslash x} \mu_{x_{m} \rightarrow f}\left(x_{m}\right)\right]
\end{array} \\
& \mu_{x \rightarrow f}(x)=\sum_{l \in \operatorname{ne}(x) \backslash f} \mu_{f_{t} \rightarrow x}(x) \\
& \text { For each node, keep a record of which values of the variables } \\
& \text { gave rise to the maximum state: } \\
& \phi(x)=\underset{x_{1}, \ldots, x_{M}}{\arg \max }\left[\ln f\left(x, x_{1}, \ldots, x_{M}\right)+\sum_{m \in \operatorname{ne}\left(f_{s}\right) \backslash x} \mu_{x_{m} \rightarrow f}\left(x_{m}\right)\right]
\end{aligned}
$$

Max-Sum Algorithm

- Termination (root node)
, Score of maximal configuration

$$
p^{\max }=\max _{x}\left[\sum_{s \in \operatorname{ne}(x)} \mu_{f_{*} \rightarrow x}(x)\right]
$$

, Value of root node variable giving rise to that maximum

$$
x^{\max }=\underset{x}{\arg \max }\left[\sum_{s \in \operatorname{ne}(x)} \mu_{f_{s} \rightarrow x}(x)\right]
$$

- Back-track to get the remaining variable values

$$
x_{n-1}^{\max }=\phi\left(x_{n}^{\max }\right)
$$

Slide adanted from Chris Bishon \quad B. Leibe

RWIHAACHE
 Visualization of the Back-Tracking Procedure

- Example: Markov chain

\Rightarrow Same idea as in Viterbi algorithm for HMMs...
Slide adapted from Chris Bishop
B. Leibe

RWIHAMCHE

Topics of This Lecture

- Factor graphs

Construction
Properties

- Sum-Product Algorithm for computing marginals
- Key ideas

Derivation
Example

- Max-Sum Algorithm for finding most probable value

Key ideas
Derivation
Example

- Algorithms for loopy graphs
, Junction Tree algorithm
, Loopy Belief Propagation
B. Leibe

Markov Random Fields (MRFs)

- What we've learned so far...
- We know they are undirected graphical models.
, Their joint probability factorizes into clique potentials,

$$
p(\mathbf{x})=\frac{1}{Z} \prod_{C} \psi_{C}\left(\mathbf{x}_{C}\right)
$$

which are conveniently expressed as energy functions.

$$
\psi_{C}\left(\mathbf{x}_{C}\right)=\exp \left\{-E\left(\mathbf{x}_{C}\right)\right\}
$$

, We know how to perform inference for them.

- Sum/Max-Product BP for exact inference in tree-shaped MRFs.
- Loopy BP for approximate inference in arbitrary MRFs.

Junction Tree algorithm for converting arbitrary MRFs into trees.

- But what are they actually good for?
- And how do we apply them in practice?

RWIHAACHE

Applications of MRFs

- Many applications for low-level vision tasks
- Image denoising
- Inpainting
- Image restoration
- Image segmentation

RWIIAMACHE

Applications of MRFs

- Many applications for low-level vision tasks
, Image denoising
Super-resolution
, Inpainting
- Image restoration
, Image segmentation

Energy Formulation
 - Energy function
 \[E(x, y)=\sum_{i} \underbrace{\varphi\left(x_{i}, y_{i}\right)}_{$$
\begin{array}{c} \text { Single-node } \\ \text { potentials } \end{array}
$$

+\sum_{i, j} \underbrace{\psi\left(x_{i}, x_{j}\right)}_{\begin{array}{c}Pairwise

potentials
\end{array}}
\]}

- Single-node (unary) potentials φ
- Encode local information about the given pixel/patch.
- How likely is a pixel/patch to belong to a certain class (e.g. foreground/background)?
- Pairwise potentials ψ
, Encode neighborhood information.
, How different is a pixel/patch's label from that of its neighbor? (e.g. based on intensity/color/texture difference, edges)

How to Set the Potentials? Some Examples

- Unary potentials
- E.g., color model, modeled with a Mixture of Gaussians

$$
\phi\left(x_{i}, y_{i} ; \theta_{\phi}\right)=\log \sum_{k} \theta_{\phi}\left(x_{i}, k\right) p\left(k \mid x_{i}\right) \mathcal{N}\left(y_{i} ; \bar{y}_{k}, \Sigma_{k}\right)
$$

\Rightarrow Learn color distributions for each label

- Pairwise potentials
- Potts Model

$$
\psi\left(x_{i}, x_{j} ; \theta_{\psi}\right)=\theta_{\psi} \delta\left(x_{i} \neq x_{j}\right)
$$

Simplest discontinuity preserving model.
Discontinuities between any pair of labels are penalized equally. Useful when labels are unordered or number of labels is small.

- Extension: "contrast sensitive Potts model"

$$
\psi\left(x_{i}, x_{j}, g_{i j}(y) ; \theta_{\psi}\right)=\theta_{\psi} g_{i j}(y) \delta\left(x_{i} \neq x_{j}\right)
$$

where

$$
g_{i j}(y)=e^{-\beta\left\|y_{i}-y_{j}\right\|^{2}} \quad \beta=2 \cdot \operatorname{avg}\left(\left\|y_{i}-y_{j}\right\|^{2}\right)
$$

Discourages label changes except in places where there is also a large change in the observations.
B. Leibe

Extension: Conditional Random Fields (CRF)

- Idea: Model conditional instead of joint probability

- Energy formulation
$E(\mathbf{x})=\sum_{i \in S}\left(\varphi\left(\mathbf{D} \mid \mathbf{x}_{i}\right)+\sum_{j \in N_{i}}\left(\phi\left(\mathbf{D} \mid \mathbf{x}_{i}, \mathbf{x}_{j}\right)+\psi\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)\right)\right)+$ const
Unary likelihood Contrast Term Uniform Prior (Potts Model)

Slide-credit: Phil Torr B. Leibe

RWIIAMCHE
Example: MRF for Image Segmentation

- MRF structure

Data (D)

Unary likelihood Unary likelinood B. Leibe

Pair-wise Terms

Slide credit: Phil Torr MAP Solution 61

Energy Minimization

- Goal:
- Infer the optimal labeling of the MRF.
- Many inference algorithms are available, e.g.
, Simulated annealing \longleftarrow What you saw in the movie.
, Iterated conditional modes $(I C M) \leftarrow$ Too simple.
, Belief propagation \longleftarrow Last lecture
, Graph cuts \longleftarrow Use this one!
- Variational methods

- Recently, Graph Cuts have become a popular tool
- Only suitable for a certain class of energy functions.
- But the solution can be obtained very fast for typical vision problems (~1MPixel/sec).

The s-t-Mincut Problem

History of Maxflow Algorithms

When Can s-t Graph Cuts Be Applied?

$$
E(L)=\sum_{p}^{\text {unary potentials }} \underset{\text { t-links }}{E_{p}\left(L_{p}\right)+\sum_{p q \in N}^{\text {pairwise potentials }} E\left(L_{p}, L_{q}\right)}
$$

- s-t graph cuts can only globally minimize binary energies that are submodular. [Boros \& Hummer, 2002, Kolmogorov \& Zabih, 2004]

$$
\begin{array}{|c}
\hline \begin{array}{c}
E(L) \text { can be minimized } \\
\text { by s-t graph cuts }
\end{array}
\end{array} \underset{\text { submodularity ("convexity") }}{E(s, s)+E(t, t) \leq E(s, t)+E(t, s)}
$$

- Submodularity is the discrete equivalent to convexity. , Implies that every local energy minimum is a global minimum. \Rightarrow Solution will be globally optimal.

GraphCut Applications: "GrabCut"

- Interactive Image Segmentation [Boykov \& Jolly, ICCV’01]
- Rough region cues sufficient
- Segmentation boundary can be extracted from edges
- Procedure
- User marks foreground and background regions with a brush.
, This is used to create an initial segmentation which can then be corrected by additional brush strokes.

User segmentation cues

RWITMACHE

GrabCut: Example Results

- This is included in the newest versions of MS Office!

References and Further Reading

- A gentle introduction to Graph Cuts can be found in the following paper:
Y. Boykov, O. Veksler, Graph Cuts in Vision and Graphics: Theories and Applications. In Handbook of Mathematical Models in Computer Vision, edited by N. Paragios, Y. Chen and O. Faugeras, Springer, 2006.
- Try the GraphCut implementation at http://www.cs.ucl.ac.uk/staff/V.Kolmogorov/software.html

