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Announcements 

• Lecture evaluation 

 Please fill out the evaluation forms… 
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Course Outline 

• Fundamentals (2 weeks) 

 Bayes Decision Theory 

 Probability Density Estimation 
 

• Discriminative Approaches (5 weeks) 

 Linear Discriminant Functions 

 Statistical Learning Theory & SVMs 

 Ensemble Methods & Boosting 

 Decision Trees & Randomized Trees 
 

• Generative Models (4 weeks) 

 Bayesian Networks 

 Markov Random Fields 

 Exact Inference 

 Applications 
 B. Leibe 
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Topics of This Lecture 

• Recap: Exact inference 
 Sum-Product algorithm 

 Max-Sum algorithm 

 Junction Tree algorithm 
 

• Applications of Markov Random Fields 

 Application examples from computer vision 

 Interpretation of clique potentials 

 Unary potentials 

 Pairwise potentials 
 

 

• Solving MRFs with Graph Cuts 
 Graph cuts for image segmentation 

 s-t mincut algorithm 

 Extension to non-binary case 

 Applications 

 
4 

B. Leibe 

P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

M
a

c
h

in
e

 L
e

a
rn

in
g

, 
S

u
m

m
e

r 
‘1

6
 

p(x) =
1

Z

Y

s

fs(xs)

Recap: Factor Graphs 

 

 

 

 

 

 
 

• Joint probability 

 Can be expressed as product of factors: 
 

 Factor graphs make this explicit through separate factor nodes. 
 

• Converting a directed polytree 

 Conversion to undirected tree creates loops due to moralization! 

 Conversion to a factor graph again results in a tree! 
5 

B. Leibe Image source: C. Bishop, 2006 
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Recap: Sum-Product Algorithm 

• Objectives 

 Efficient, exact inference algorithm for finding marginals. 
 

• Procedure: 

 Pick an arbitrary node as root. 

 Compute and propagate messages from the leaf nodes to the 

root, storing received messages at every node. 

 Compute and propagate messages from the root to the leaf 

nodes, storing received messages at every node. 

 Compute the product of received messages at each node for 

which the marginal is required, and normalize if necessary. 

 
 

• Computational effort 

 Total number of messages = 2 ¢ number of graph edges. 
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B. Leibe Slide adapted from Chris Bishop 

p(x) /
Y

s2ne(x)

¹fs!x(x)
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Recap: Sum-Product Algorithm 

• Two kinds of messages 

 Message from factor node to variable nodes:  

– Sum of factor contributions 

 

 

 

 
 

 Message from variable node to factor node:  

– Product of incoming messages 

 

 
 

 

 Simple propagation scheme. 
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¹fs!x(x) ´
X

Xs

Fs(x;Xs)

¹xm!fs(xm) ´
Y

l2ne(xm)nfs

¹fl!xm(xm)

=
X

Xs

fs(xs)
Y

m2ne(fs)nx

¹xm!fs(xm)
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Recap: Sum-Product from Leaves to Root 
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¹fs!x(x) ´
X

Xs

fs(xs)
Y

m2ne(fs)nx

¹xm!fs(xm)

¹xm!fs(xm) ´
Y

l2ne(xm)nfs

¹fl!xm(xm)

Message definitions: 

fa fb

fc

Image source: C. Bishop, 2006 
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Recap: Sum-Product from Root to Leaves 
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¹fs!x(x) ´
X

Xs

fs(xs)
Y

m2ne(fs)nx

¹xm!fs(xm)

¹xm!fs(xm) ´
Y

l2ne(xm)nfs

¹fl!xm(xm)

Message definitions: 

fa fb

fc

Image source: C. Bishop, 2006 
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Max-Sum Algorithm 

• Objective: an efficient algorithm for finding 

 Value xmax that maximises p(x); 

 Value of p(xmax). 

 Application of dynamic programming in graphical models. 

 

 

• In general, maximum marginals  joint maximum. 

 Example: 
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Max-Sum Algorithm – Key Ideas 

• Key idea 1: Distributive Law (again) 

 

 
 

 Exchange products/summations and max operations exploiting 

the tree structure of the factor graph. 

 

• Key idea 2: Max-Product  Max-Sum 

 We are interested in the maximum value of the joint distribution 

 

 Maximize the product p(x). 
 

 For numerical reasons, use the logarithm. 

 
 

 Maximize the sum (of log-probabilities). 
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p(xmax) = max
x

p(x)

max(ab; ac) = amax(b; c)

max(a+ b; a+ c) = a+max(b; c)
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Max-Sum Algorithm 

• Maximizing over a chain (max-product) 

 

 
 

• Exchange max and product operators 

 

 

 

 
 

• Generalizes to tree-structured factor graph 

 

15 
B. Leibe Image source: C. Bishop, 2006 Slide adapted from Chris Bishop 
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Max-Sum Algorithm 

• Initialization (leaf nodes) 

 
 

• Recursion 

 Messages 

 

 

 

 

 For each node, keep a record of which values of the variables 

gave rise to the maximum state: 
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Max-Sum Algorithm 

• Termination (root node) 

 Score of maximal configuration 

 

 

 

 Value of root node variable giving rise to that maximum 

 

 

 
 

 Back-track to get the remaining variable values 
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xmaxn¡1 = Á(xmaxn )

Slide adapted from Chris Bishop 
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Visualization of the Back-Tracking Procedure 

• Example: Markov chain 

 

 

 

 

 

 

 

 

 

 

 Same idea as in Viterbi algorithm for HMMs… 
18 

B. Leibe 

variables 

st
a
te

s 

stored links 

Image source: C. Bishop, 2006 Slide adapted from Chris Bishop 
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Topics of This Lecture 

• Factor graphs 
 Construction 

 Properties 
 

• Sum-Product Algorithm for computing marginals 
 Key ideas 

 Derivation 

 Example 
 

 

• Max-Sum Algorithm for finding most probable value 
 Key ideas 

 Derivation 

 Example 
 

• Algorithms for loopy graphs 
 Junction Tree algorithm 

 Loopy Belief Propagation 
19 
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Junction Tree Algorithm 

• Motivation 

 Exact inference on general graphs. 

 Works by turning the initial graph into a junction tree with one 

node per clique and then running a sum-product-like algorithm. 

 Intractable on graphs with large cliques. 
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Loopy Belief Propagation 

• Alternative algorithm for loopy graphs 

 Sum-Product on general graphs. 

 Strategy: simply ignore the problem. 

 Initial unit messages passed across all links, after which 

messages are passed around until convergence 

– Convergence is not guaranteed! 

– Typically break off after fixed number of iterations. 

 Approximate but tractable for large graphs. 

 Sometime works well, sometimes not at all. 

 

36 
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Topics of This Lecture 

• Recap: Exact inference 
 Sum-Product algorithm 

 Max-Sum algorithm 

 Junction Tree algorithm 
 

• Applications of Markov Random Fields 

 Application examples from computer vision 

 Interpretation of clique potentials 

 Unary potentials 

 Pairwise potentials 
 

 

• Solving MRFs with Graph Cuts 
 Graph cuts for image segmentation 

 s-t mincut algorithm 

 Extension to non-binary case 

 Applications 
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( , )i jx x
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Markov Random Fields (MRFs) 

• What we’ve learned so far… 

 We know they are undirected graphical models. 
 

 Their joint probability factorizes into clique potentials, 

 

 

 which are conveniently expressed as energy functions. 

 
 

 We know how to perform inference for them. 

– Sum/Max-Product BP for exact inference in tree-shaped MRFs. 

– Loopy BP for approximate inference in arbitrary MRFs. 

– Junction Tree algorithm for converting arbitrary MRFs into trees. 
 

• But what are they actually good for? 

 And how do we apply them in practice? 

 38 
B. Leibe Image source: C. Bishop, 2006 
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Markov Random Fields 

• Allow rich probabilistic models. 

 But built in a local, modular way. 

 Learn local effects, get global effects out. 

• Very powerful when applied to regular structures. 

 Such as images… 

39 
B. Leibe Slide adapted from William Freeman 

Observed evidence 

Hidden “true states” 

Neighborhood relations 
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Applications of MRFs 

40 
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• Movie “No Way Out” (1987) 
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Applications of MRFs 

• Many applications for low-level vision tasks 

 Image denoising 
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B. Leibe Results by [Roth & Black, CVPR’05] 
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Applications of MRFs 

• Many applications for low-level vision tasks 

 Image denoising 

 

42 
B. Leibe Results by [Roth & Black, CVPR’05] 

“True” image content 

Noisy observations 

“Smoothness constraints” 

Observation process 



5 

P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

M
a

c
h

in
e

 L
e

a
rn

in
g

, 
S

u
m

m
e

r 
‘1

6
 

Applications of MRFs 

• Many applications for low-level vision tasks 

 Image denoising 

 Inpainting 
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B. Leibe Results by [Roth & Black, CVPR’05] 
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Applications of MRFs 

• Many applications for low-level vision tasks 

 Image denoising 

 Inpainting 

 Image restoration 
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B. Leibe Results by [Roth & Black, CVPR’05] 
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Applications of MRFs 

• Many applications for low-level vision tasks 

 Image denoising 

 Inpainting 

 Image restoration 

 Image segmentation 

45 
B. Leibe Image source: Pawan M. Kumar 
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Applications of MRFs 

• Many applications for low-level vision tasks 

 Image denoising 

 Inpainting 

 Image restoration 

 Image segmentation 
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Convert a low-res image into a high-res image! 

upscaling 
super-resolution 

Image source: [Freeman et al., CG&A’03] 

 Super-resolution 
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Applications of MRFs 

• Many applications for low-level vision tasks 

 Image denoising 

 Inpainting 

 Image restoration 

 Image segmentation 

 

47 
B. Leibe Image source: [Freeman et al., CG&A’03] 

 Super-resolution 
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Applications of MRFs 

• Many applications for low-level vision tasks 

 Image denoising 

 Inpainting 

 Image restoration 

 Image segmentation 

48 
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 Super-resolution 

 Optical flow 

 

Image patches 

Image pair 

Scene patches 

Scene 

Image source: William Freeman 
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Applications of MRFs 

• Many applications for low-level vision tasks 

 Image denoising 

 Inpainting 

 Image restoration 

 Image segmentation 

50 
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 Super-resolution 

 Optical flow 

 Stereo depth estimation 

 

Stereo image pair Disparity map 
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Applications of MRFs 

• Many applications for low-level vision tasks 

 Image denoising 

 Inpainting 

 Image restoration 

 Image segmentation 

 

 

 

• MRFs have become a standard tool for such tasks. 

 Let’s look at how they are applied in detail… 
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 Super-resolution 

 Optical flow 

 Stereo depth estimation 
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MRF Structure for Images 

• Basic structure 

 

 

 

• Two components 

 Observation model 

– How likely is it that node xi has label Li given observation yi? 

– This relationship is usually learned from training data. 
 

 Neighborhood relations 

– Simplest case: 4-neighborhood 

– Serve as smoothing terms. 

 Discourage neighboring pixels to have different labels. 

– This can either be learned or be set to fixed “penalties”. 
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“True” image content 

Noisy observations 
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MRF Nodes as Pixels 
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Reconstruction 

from MRF modeling 

pixel neighborhood  

statistics 

Degraded image Original image 

These neighborhood 

statistics can be learned  

from training data! 

Slide adapted from William Freeman 
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MRF Nodes as Patches 
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Image 

Scene 

Image patches 

Scene patches 

Slide credit: William Freeman 

( , )i ix y

( , )i jx x

More general relationships expressed 

by potential functions © and ª. 
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Network Joint Probability 

• Interpretation of the factorized  

joint probability 

56 
B. Leibe 

,

( , ) ( , ) ( , )i i i j

i i j

P x y x y x x   

Scene 

Image 

Slide credit: William Freeman 

Image-scene 

compatibility  

function 

Scene-scene 

compatibility  

function 

Neighboring 

scene nodes 
Local 

observations 

( , )i ix y

( , )i jx x
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Energy Formulation 

• Energy function 

 

 

 
 
 

• Single-node (unary) potentials   

 Encode local information about the given pixel/patch. 

 How likely is a pixel/patch to belong to a certain class 

(e.g. foreground/background)? 
 

• Pairwise potentials  

 Encode neighborhood information. 

 How different is a pixel/patch’s label from that of its neighbor? 

(e.g. based on intensity/color/texture difference, edges) 
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potentials 

Single-node 

potentials 
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How to Set the Potentials? Some Examples 

• Unary potentials 

 E.g., color model, modeled with a Mixture of Gaussians 

 

 

 
 

 

 Learn color distributions for each label 

58 
B. Leibe 

Á(xi; yi; µÁ) = log
X

k

µÁ(xi; k)p(kjxi)N(yi; ¹yk;§k)

Á(xp = 1; yp)

Á(xp = 0; yp)
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How to Set the Potentials? Some Examples 

• Pairwise potentials 

 Potts Model 

 

– Simplest discontinuity preserving model. 

– Discontinuities between any pair of labels are penalized equally. 

– Useful when labels are unordered or number of labels is small. 

 

 Extension: “contrast sensitive Potts model” 

 

 

where 

 

 

– Discourages label changes except in places where there is also a 

large change in the observations. 
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Ã(xi; xj; µÃ) = µÃ±(xi 6= xj)

Ã(xi; xj; gij(y);µÃ) = µÃgij(y)±(xi 6= xj)
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Extension: Conditional Random Fields (CRF) 

• Idea: Model conditional instead of joint probability 

 

 

 

 

 

 
 

• Energy formulation 

 

60 
B. Leibe 

Unary likelihood Contrast Term Uniform Prior 

(Potts Model) 

Unary potential 
Labels 

Pixels 

Prior Potts model 

Pairwise potential 

Slide credit: Phil Torr 
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Example: MRF for Image Segmentation 

• MRF structure 
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Unary potential 
Labels 

Pixels 

Prior Potts model 

Pairwise potential 

Pair-wise Terms MAP Solution Unary likelihood Data (D) 

Slide credit: Phil Torr 
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Energy Minimization 

• Goal: 

 Infer the optimal labeling of the MRF. 
 

• Many inference algorithms are available, e.g. 
 Simulated annealing 

 Iterated conditional modes (ICM) 

 Belief propagation 

 Graph cuts 

 Variational methods 

 Monte Carlo sampling 

 

• Recently, Graph Cuts have become a popular tool 
 Only suitable for a certain class of energy functions. 

 But the solution can be obtained very fast for typical vision 
problems (~1MPixel/sec). 
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( , )i ix y

( , )i jx x

What you saw in the movie. 

Last lecture 

For more complex problems 

Use this one! 

Too simple. 
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Topics of This Lecture 

• Recap: Exact inference 
 Factor Graphs 

 Sum-Product/Max-Sum Belief Propagation 

 Junction Tree algorithm 
 

• Applications of Markov Random Fields 

 Application examples from computer vision 

 Interpretation of clique potentials 

 Unary potentials 

 Pairwise potentials 
 

 

• Solving MRFs with Graph Cuts 
 Graph cuts for image segmentation 

 s-t mincut algorithm 

 Extension to non-binary case 

 Applications 
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Graph Cuts for Binary Problems 

• Idea: convert MRF into source-sink graph 
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n-links 

s 

t a cut hard  

constraint 

hard  

constraint 

Minimum cost cut can be 

computed in polynomial time 

(max-flow/min-cut algorithms) 
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[Boykov & Jolly, ICCV’01] Slide credit: Yuri Boykov 
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Simple Example of Energy 
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(binary object segmentation) 
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Adding Regional Properties 
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t a cut )(tDp

)(sDp

NOTE: hard constrains are not required, in general. 

Regional bias example 

Suppose                are given  

“expected” intensities  

of object and background 

ts II   and  22 2/||||exp)( s

pp IIsD 

 22 2/||||exp)( t

pp IItD 

[Boykov & Jolly, ICCV’01] Slide credit: Yuri Boykov 
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Adding Regional Properties 
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t a cut )(tDp

)(sDp

 22 2/||||exp)( s

pp IIsD 

 22 2/||||exp)( t

pp IItD 

EM-style optimization 

“expected” intensities of 

object and background 

 

can be re-estimated 

ts II   and

[Boykov & Jolly, ICCV’01] Slide credit: Yuri Boykov 
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Topics of This Lecture 

• Recap: Exact inference 
 Factor Graphs 

 Sum-Product/Max-Sum Belief Propagation 

 Junction Tree algorithm 
 

• Applications of Markov Random Fields 

 Application examples from computer vision 

 Interpretation of clique potentials 

 Unary potentials 

 Pairwise potentials 
 

 

• Solving MRFs with Graph Cuts 
 Graph cuts for image segmentation 

 s-t mincut algorithm 

 Extension to non-binary case 

 Applications 
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How Does it Work? The s-t-Mincut Problem 
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Source 

Sink 

v1 v2 

2 

5 

9 

4 
2 

1 

Graph (V, E, C) 
 

Vertices V = {v1, v2 ... vn} 
 

Edges E = {(v1, v2) ....} 
 

Costs C = {c(1, 2) ....} 

Slide credit: Pushmeet Kohli 
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The s-t-Mincut Problem 

71 
B. Leibe 

Source 

Sink 

v1 v2 
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Slide credit: Pushmeet Kohli 

What is an st-cut? 

What is the cost of a st-cut? 

An st-cut (S,T) divides the nodes 

between source and sink. 

Sum of cost of all edges 

going from S to T 

5 + 2 + 9 = 16 
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The s-t-Mincut Problem 
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Source 

Sink 

v1 v2 
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Slide credit: Pushmeet Kohli 

What is an st-cut? 

What is the cost of a st-cut? 

An st-cut (S,T) divides the nodes 

between source and sink. 

Sum of cost of all edges 

going from S to T 

st-cut with the 

minimum cost 

What is the st-mincut? 

2 + 1 + 4 = 7 
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How to Compute the s-t-Mincut? 
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Source 

Sink 

v1 v2 
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1 

Solve the dual maximum flow problem 

In every network, the maximum flow 

equals the cost of the st-mincut 

Min-cut/Max-flow Theorem 

Compute the maximum flow 

between Source and Sink 

Constraints 

 Edges: Flow < Capacity 

 Nodes: Flow in = Flow out 

Slide credit: Pushmeet Kohli 
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History of Maxflow Algorithms 
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Augmenting Path and Push-Relabel 

n: #nodes 
 

m: #edges 
 

U: maximum 

edge weight 

Algorithms 

assume non-

negative edge 

weights 

Slide credit: Andrew Goldberg 
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Applications: Maxflow in Computer Vision 

• Specialized algorithms for vision  

problems 

 Grid graphs  

 Low connectivity (m ~ O(n)) 

 

• Dual search tree augmenting path algorithm 

 [Boykov and Kolmogorov PAMI 2004] 

 Finds approximate shortest augmenting 

paths efficiently. 

 High worst-case time complexity. 

 Empirically outperforms other  

algorithms on vision problems. 

 Efficient code available on the web 

http://www.cs.ucl.ac.uk/staff/V.Kolmogorov/software.html 
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B. Leibe Slide credit: Pushmeet Kohli 

http://www.cs.ucl.ac.uk/staff/V.Kolmogorov/software.html
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When Can s-t Graph Cuts Be Applied? 

 

 

 

 

• s-t graph cuts can only globally minimize binary energies 

that are submodular.  

 

 
 
 

• Submodularity is the discrete equivalent to convexity. 

 Implies that every local energy minimum is a global minimum. 

 Solution will be globally optimal. 
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[Boros & Hummer, 2002, Kolmogorov & Zabih, 2004] 
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Topics of This Lecture 

• Recap: Exact inference 
 Factor Graphs 

 Sum-Product/Max-Sum Belief Propagation 

 Junction Tree algorithm 
 

• Applications of Markov Random Fields 

 Application examples from computer vision 

 Interpretation of clique potentials 

 Unary potentials 

 Pairwise potentials 
 

 

• Solving MRFs with Graph Cuts 
 Graph cuts for image segmentation 

 s-t mincut algorithm 

 Extension to non-binary case 

 Applications 
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GraphCut Applications: “GrabCut” 

User segmentation cues 

Additional  

segmentation 

cues 

• Interactive Image Segmentation [Boykov & Jolly, ICCV’01] 

 Rough region cues sufficient  

 Segmentation boundary can be extracted from edges 
 

• Procedure 
 User marks foreground and background regions with a brush. 

 This is used to create an initial segmentation 
which can then be corrected by additional brush strokes. 

 

 

Slide credit: Matthieu Bray 
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• Obtained from interactive user input 

 User marks foreground and background regions with a brush 

 Alternatively, user can specify a bounding box 

GrabCut: Data Model 
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Global optimum of 

the energy  

Background 

color 

Foreground 

color 

Slide credit: Carsten Rother 
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Iterated Graph Cuts 
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Energy after  

each iteration 

Result 

Foreground & 

Background 

Background G 

R 

Foreground 

Background G 

R 

1 2 3 4 

Color model 

(Mixture of Gaussians) 

Slide credit: Carsten Rother 
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GrabCut: Example Results 
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• This is included in the newest versions of MS Office! 

Image source: Carsten Rother 
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Applications: Interactive 3D Segmentation 

103 
B. Leibe Slide credit: Yuri Boykov [Y. Boykov, V. Kolmogorov, ICCV’03] 
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References and Further Reading 

• A gentle introduction to Graph Cuts can be found in the 

following paper: 
 Y. Boykov, O. Veksler, Graph Cuts in Vision and Graphics: Theories and 

Applications. In Handbook of Mathematical Models in Computer Vision, 

edited by N. Paragios, Y. Chen and O. Faugeras, Springer, 2006.  

 

 

 
 

• Try the GraphCut implementation at 

http://www.cs.ucl.ac.uk/staff/V.Kolmogorov/software.html 

 

 

 

 
 

B. Leibe 
104 

http://www.csd.uwo.ca/~yuri/Papers/chapter_04.pdf
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