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Course Outline 

• Fundamentals (2 weeks) 

 Bayes Decision Theory 

 Probability Density Estimation 
 

• Discriminative Approaches (5 weeks) 

 Linear Discriminant Functions 

 Statistical Learning Theory & SVMs 

 Ensemble Methods & Boosting 

 Decision Trees & Randomized Trees 
 

• Generative Models (4 weeks) 

 Bayesian Networks 

 Markov Random Fields 

 Exact Inference 
 

B. Leibe 
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Topics of This Lecture 

• Recap: Directed Graphical Models (Bayesian Networks) 
 Factorization properties 

 Conditional independence 

 Bayes Ball algorithm 
 

• Undirected Graphical Models (Markov Random Fields) 
 Conditional Independence 

 Factorization 

 Example application: image restoration 

 Converting directed into undirected graphs 
 

 

• Exact Inference in Graphical Models 
 Marginalization for undirected graphs 

 Inference on a chain 

 Inference on a tree 

 Message passing formalism 
 

3 
B. Leibe 

P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

M
a

c
h

in
e

 L
e

a
rn

in
g

, 
S

u
m

m
e

r 
‘1

6
 

Recap: Graphical Models 

• Two basic kinds of graphical models 

 Directed graphical models or Bayesian Networks 

 Undirected graphical models or Markov Random Fields 

 

• Key components 
 

 Nodes 

– Random variables 
 

 Edges 

– Directed or undirected 

 

 

 The value of a random variable may be known or unknown. 
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Recap: Directed Graphical Models 

• Chains of nodes: 

 

 
 

 

 Knowledge about a is expressed by the prior probability: 

 
 

 Dependencies are expressed through conditional probabilities: 

 
 

 Joint distribution of all three variables: 
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p(a; b; c) = p(cja; b)p(a; b)

= p(cjb)p(bja)p(a)

p(cjb)p(bja)p(a)

p(bja);

p(a)

p(cjb)
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Recap: Directed Graphical Models 

• Convergent connections: 

 

 

 

 

 Here the value of c depends on both variables a and b. 

 This is modeled with the conditional probability: 

 

 

 Therefore, the joint probability of all three variables is given as: 

6 
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p(a; b; c) = p(cja; b)p(a; b)

= p(cja; b)p(a)p(b)

p(cja; b)

Slide credit: Bernt Schiele, Stefan Roth 
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Recap: Factorization of the Joint Probability 

• Computing the joint probability 

7 
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General factorization 

Image source: C. Bishop, 2006 

p(x1; : : : ; x7) = p(x1)p(x2)p(x3)p(x4jx1; x2; x3)
p(x5jx1; x3)p(x6jx4)p(x7jx4; x5)

We can directly read off the factorization 

of the joint from the network structure! 
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Recap: Factorized Representation 

• Reduction of complexity 

 Joint probability of n binary variables requires us to represent 

values by brute force 

 

 

 

 The factorized form obtained from the graphical model only 

requires 

 

 

– k: maximum number of parents of a node. 
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O(2n) terms 

O(n ¢ 2k) terms 

 It’s the edges that are missing in the graph that are important!  

    They encode the simplifying assumptions we make. 
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Recap: Conditional Independence 

• X is conditionally independent of Y given V  

 Definition: 

 

 Also: 

 

 Special case: Marginal Independence 

 

 

 Often, we are interested in conditional independence between 

sets of variables: 
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Recap: Conditional Independence 

• Three cases 

 Divergent (“Tail-to-Tail”) 

– Conditional independence when c is observed. 

 
 

 Chain (“Head-to-Tail”) 

– Conditional independence when c is observed. 

 
 

 Convergent (“Head-to-Head”) 

– Conditional independence when neither c, 

nor any of its descendants are observed. 
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Recap: D-Separation 

• Definition 

 Let A, B, and C be non-intersecting subsets of nodes in a 

directed graph. 

 A path from A to B is blocked if it contains a node such that 

either 

– The arrows on the path meet either head-to-tail or  

tail-to-tail at the node, and the node is in the set C, or 

– The arrows meet head-to-head at the node, and neither  

the node, nor any of its descendants, are in the set C. 

 If all paths from A to B are blocked, A is said to be d-separated 

from B by C.  
 

• If A is d-separated from B by C, the joint distribution 

over all variables in the graph satisfies                 . 

 Read: “A is conditionally independent of B given C.” 
11 
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Intuitive View: The “Bayes Ball” Algorithm 

 

 

 
 

 

 

• Game 

 Can you get a ball from X to Y without being blocked by V ? 

 Depending on its direction and the previous node, the ball can 

– Pass through (from parent to all children, from child to all parents) 

– Bounce back (from any parent/child to all parents/children) 

– Be blocked 
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R.D. Shachter, Bayes-Ball: The Rational Pastime (for Determining Irrelevance 

 and Requisite Information in Belief Networks and Influence Diagrams), UAI’98, 1998 

http://www.gatsby.ucl.ac.uk/~zoubin/course03/BayesBall.pdf
http://www.gatsby.ucl.ac.uk/~zoubin/course03/BayesBall.pdf
http://www.gatsby.ucl.ac.uk/~zoubin/course03/BayesBall.pdf
http://www.gatsby.ucl.ac.uk/~zoubin/course03/BayesBall.pdf
http://www.gatsby.ucl.ac.uk/~zoubin/course03/BayesBall.pdf
http://www.gatsby.ucl.ac.uk/~zoubin/course03/BayesBall.pdf
http://www.gatsby.ucl.ac.uk/~zoubin/course03/BayesBall.pdf
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The “Bayes Ball” Algorithm 

• Game rules 

 An unobserved node (W  V) passes through balls from parents, 

but also bounces back balls from children. 

 

 
 

 An observed node (W 2 V) bounces back balls from parents, but 

blocks balls from children. 

 

 

 

 The Bayes Ball algorithm determines those nodes that are d-

separated from the query node. 
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Example: Bayes Ball 

 

 

 

 

 

 

 

 

 

• Which nodes are d-separated from G given C and D? 
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Example: Bayes Ball 

 

 

 

 

 

 

 

 

 

• Which nodes are d-separated from G given C and D? 
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Example: Bayes Ball 

 

 

 

 

 

 

 

 

 

• Which nodes are d-separated from G given C and D? 
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Example: Bayes Ball 

 

 

 

 

 

 

 

 

 

• Which nodes are d-separated from G given C and D? 
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Example: Bayes Ball 

 

 

 

 

 

 

 

 

 

• Which nodes are d-separated from G given C and D? 
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Example: Bayes Ball 

 

 

 

 

 

 

 

 

 

• Which nodes are d-separated from G given C and D? 

 F is d-separated from G given C and D. 

19 
B. Leibe 

A 

D 

B 

E 

C 

G 

F 

Query 
Rule: 

P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

M
a

c
h

in
e

 L
e

a
rn

in
g

, 
S

u
m

m
e

r 
‘1

6
 

The Markov Blanket 

 

 

 

 

 

 

 

• Markov blanket of a node xi  

 Minimal set of nodes that isolates xi from the rest of the graph. 

 This comprises the set of 

– Parents, 

– Children, and 

– Co-parents of xi. 
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This is what we have to watch out for! 

Image source: C. Bishop, 2006 
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Topics of This Lecture 

• Recap: Directed Graphical Models (Bayesian Networks) 
 Factorization properties 

 Conditional independence 

 Bayes Ball algorithm 
 

• Undirected Graphical Models (Markov Random Fields) 
 Conditional Independence 

 Factorization 

 Example application: image restoration 

 Converting directed into undirected graphs 
 

 

• Exact Inference in Graphical Models 
 Marginalization for undirected graphs 

 Inference on a chain 

 Inference on a tree 

 Message passing formalism 
23 
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Undirected Graphical Models 

• Undirected graphical models (“Markov Random Fields”) 

 Given by undirected graph 

 

 

 

 
 

• Conditional independence is easier to read off for MRFs. 

 Without arrows, there is only one type of neighbors. 

 Simpler Markov blanket: 

24 
B. Leibe Image source: C. Bishop, 2006 

P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

M
a

c
h

in
e

 L
e

a
rn

in
g

, 
S

u
m

m
e

r 
‘1

6
 

Undirected Graphical Models 

 

 

 

 

 

 

 

 
 

• Conditional independence for undirected graphs 

 If every path from any node in set A to set B passes through at 

least one node in set C, then              .  

25 
B. Leibe Image source: C. Bishop, 2006 
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Factorization in MRFs 

• Factorization 

 Factorization is more complicated in MRFs than in BNs. 

 Important concept: maximal cliques 

 

 Clique 

– Subset of the nodes such that there  

exists a link between all pairs of  

nodes in the subset. 
 

 Maximal clique 

– The biggest possible such clique in a 

given graph. 

26 
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Clique 

Maximal Clique 

Image source: C. Bishop, 2006 
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Factorization in MRFs 

• Joint distribution 

 Written as product of potential functions over maximal cliques 

in the graph: 

 

 
 

 The normalization constant Z is called the partition function. 

 

 
 

• Remarks 

 BNs are automatically normalized. But for MRFs, we have to 

explicitly perform the normalization. 

 Presence of normalization constant is major limitation! 

– Evaluation of Z involves summing over O(KM) terms for M nodes. 
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Factorization in MRFs 

• Role of the potential functions 

 General interpretation 

– No restriction to potential functions that have a specific 

probabilistic interpretation as marginals or conditional distributions. 
 

 Convenient to express them as exponential functions 

(“Boltzmann distribution”) 

 

 

– with an energy function E. 

 

 Why is this convenient? 

– Joint distribution is the product of potentials  sum of energies. 

– We can take the log and simply work with the sums… 
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Comparison: Directed vs. Undirected Graphs 

• Directed graphs (Bayesian networks) 

 Better at expressing causal relationships. 

 Interpretation of a link:  

– Conditional probability p(b|a). 

 Factorization is simple (and result is automatically normalized). 

 Conditional independence is more complicated. 

 

• Undirected graphs (Markov Random Fields) 

 Better at representing soft constraints between variables. 

 Interpretation of a link:  

– “There is some relationship between a and b”. 

 Factorization is complicated (and result needs normalization). 

 Conditional independence is simple. 
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• Simple case: chain 

 

 

 

 

 

 

 

 

 

 

 

 

 We can directly replace the directed links by undirected ones. 

Converting Directed to Undirected Graphs 

34 
B. Leibe Image source: C. Bishop, 2006 Slide adapted from Chris Bishop 
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• More difficult case: multiple parents 

 

 

 

 

 

 

 

 

 

 

 

 Need to introduce additional links (“marry the parents”). 

 This process is called moralization. It results in the moral graph. 

Converting Directed to Undirected Graphs 

35 
B. Leibe Image source: C. Bishop, 2006 

Need a clique of x1,…,x4 to represent this factor! 

fully connected, 

no cond. indep.! 

Slide adapted from Chris Bishop 
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Converting Directed to Undirected Graphs 

• General procedure to convert directed  undirected 

1. Add undirected links to marry the parents of each node. 

2. Drop the arrows on the original links  moral graph. 

3. Find maximal cliques for each node and initialize all clique 

potentials to 1. 

4. Take each conditional distribution factor of the original 

directed graph and multiply it into one clique potential. 

 

• Restriction 

 Conditional independence properties are often lost! 

 Moralization results in additional connections and larger cliques. 

 

36 
B. Leibe Slide adapted from Chris Bishop 
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Example: Graph Conversion 

• Step 1) Marrying the parents. 
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Example: Graph Conversion 

• Step 2) Dropping the arrows. 
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Example: Graph Conversion 

• Step 3) Finding maximal cliques for each node. 
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p(x1; : : : ; x7) = p(x1)p(x2)p(x3)p(x4jx1; x2; x3)
p(x5jx1; x3)p(x6jx4)p(x7jx4; x5)

Ã1(x1; x2; x3; x4)
Ã2(x1; x3; x4; x5)

Ã3(x4; x5; x7)

Ã4(x4; x6)
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Example: Graph Conversion 

• Step 4) Assigning the probabilities to clique potentials. 
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p(x1; : : : ; x7) = p(x1)p(x2)p(x3)p(x4jx1; x2; x3)
p(x5jx1; x3)p(x6jx4)p(x7jx4; x5)

Ã1(x1; x2; x3; x4)

= 1

Ã2(x1; x3; x4; x5)

= 1

Ã3(x4; x5; x7)

= 1

Ã4(x4; x6)

= 1

p(x4jx1; x2; x3)p(x1; : : : ; x7) = p(x1)p(x2)p(x3)p(x4jx1; x2; x3)
p(x5jx1; x3)p(x6jx4)p(x7jx4; x5)

p(x4jx1; x2; x3)

p(x4jx1; x2; x3)

p(x5jx1; x3)

p(x6jx4)

p(x7jx4; x5)p(x7jx4; x5)

p(x7jx4; x5)

p(x6jx4)p(x5jx1; x3)p(x6jx4)p(x5jx1; x3)
p(x2)p(x3)p(x1)p(x2)p(x3)p(x1)

p(x2)p(x3)

p(x1)
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Comparison of Expressive Power 

• Both types of graphs have unique configurations. 

41 
B. Leibe 

No directed graph can  

represent these and only 

these independencies. 

No undirected graph can  

represent these and only 

these independencies. 

Image source: C. Bishop, 2006 Slide adapted from Chris Bishop 
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Topics of This Lecture 

• Recap: Directed Graphical Models (Bayesian Networks) 
 Factorization properties 

 Conditional independence 

 Bayes Ball algorithm 
 

• Undirected Graphical Models (Markov Random Fields) 
 Conditional Independence 

 Factorization 

 Example application: image restoration 

 Converting directed into undirected graphs 
 

 

• Exact Inference in Graphical Models 
 Marginalization for undirected graphs 

 Inference on a chain 

 Inference on a tree 

 Message passing formalism 
 

42 
B. Leibe 
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Inference in Graphical Models 

• Example 1: 

 

 

 

 

• Example 2: 

43 
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= p(a)p(b = b0ja)

= p(cjb = b0)

Goal: compute the marginals 

p(a) = ?

p(b) = ?p(b) =
X

a;c

p(a)p(bja)p(cjb)

p(ajb = b0) = ?

p(a) =
X

b;c

p(a)p(bja)p(cjb)

p(cjb = b0) = ?

p(ajb = b0) =
X

c

p(a)p(b = b0ja)p(cjb = b0)

p(cjb = b0) =
X

a

p(a)p(b = b0ja)p(cjb = b0)

Slide adapted from Stefan Roth, Bernt Schiele 
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Inference in Graphical Models 

• Inference – General definition 

 Evaluate the probability distribution over  

some set of variables, given the values of 

another set of variables (=observations). 

 

 

• Example: 

 
 

 How can we compute p(A|C = c) ? 

 

 Idea: 

44 
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p(A;B;C;D;E) = ?p(A;B;C;D;E) = p(A)p(B)p(CjA;B)p(DjB;C)p(EjC;D)

p(AjC = c) =
p(A; C = c)

p(C = c)

Slide credit: Zoubin Gharahmani 
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Inference in Graphical Models 

• Computing p(A|C = c)… 

 We know 

 
 

 Assume each variable is binary. 
 

• Naïve approach: 

 

45 
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p(A;B;C;D;E) = p(A)p(B)p(CjA;B)p(DjB;C)p(EjC;D)

p(A; C = c) =
X

B;D;E

p(A; B; C = c; D; E)

p(C = c) =
X

A

p(A; C = c)

p(AjC = c) =
p(A; C = c)

p(C = c)

16 operations 

2 operations 

2 operations 

Total: 16+2+2 = 20 operations 

Slide credit: Zoubin Gharahmani 

Two possible values for each  24 terms 
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Inference in Graphical Models 

 We know 

 
 

• More efficient method for p(A|C = c): 

 

 

 

 

 
 

 Rest stays the same: 
 

 Strategy: Use the conditional independence in a graph to 

perform efficient inference. 

 For singly connected graphs, exponential gains in efficiency! 
 46 

B. Leibe 

p(A;B;C;D;E) = p(A)p(B)p(CjA;B)p(DjB;C)p(EjC;D)

p(A; C = c) =
X

B;D;E

p(A)p(B)p(C = cjA;B)p(DjB; C = c)p(EjC = c; D)

=
X

B

p(A)p(B)p(C = cjA; B)
X

D

p(DjB; C = c)
X

E

p(EjC = c;D)

=
X

B

p(A)p(B)p(C = cjA; B) 4 operations 

Total: 4+2+2 = 8 operations 

Slide credit: Zoubin Gharahmani 

=1 =1 
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Computing Marginals 

• How do we apply graphical models? 

 Given some observed variables,  

we want to compute distributions 

of the unobserved variables. 

 In particular, we want to compute  

marginal distributions, for example p(x4). 

 

• How can we compute marginals? 

 Classical technique: sum-product algorithm by Judea Pearl. 

 In the context of (loopy) undirected models, this is also called 

(loopy) belief propagation [Weiss, 1997]. 

 Basic idea: message-passing. 

47 
B. Leibe Slide credit: Bernt Schiele, Stefan Roth 
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Inference on a Chain 

• Chain graph 

 

 

 

 Joint probability 

 

 
 

 Marginalization 

48 
B. Leibe Image source: C. Bishop, 2006 Slide adapted from Chris Bishop 
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Inference on a Chain 

 

 

 

 

 Idea: Split the computation into two parts (“messages”). 

49 
B. Leibe Image source: C. Bishop, 2006 Slide adapted from Chris Bishop 
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Inference on a Chain 

 

 

 

 

 We can define the messages recursively… 

 

50 
B. Leibe Image source: C. Bishop, 2006 Slide adapted from Chris Bishop 
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Inference on a Chain 

 

 

 

 

 Until we reach the leaf nodes… 

 

 

 Interpretation 

– We pass messages from the two ends towards the query node xn. 
 

 We still need the normalization constant Z. 

– This can be easily obtained from the marginals: 

51 
B. Leibe Image source: C. Bishop, 2006 
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Summary: Inference on a Chain 

• To compute local marginals: 

 Compute and store all forward messages ¹®(xn). 

 Compute and store all backward messages ¹¯(xn). 

 Compute Z at any node xm. 

 Compute 

 

 
 

for all variables required. 

 

• Inference through message passing 

 We have thus seen a first message passing algorithm. 

 How can we generalize this? 

52 
B. Leibe Slide adapted from Chris Bishop 
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Inference on Trees 

• Let’s next assume a tree graph. 

 Example: 

 

 

 

 

 

 We are given the following joint distribution: 

 

 

 

 Assume we want to know the marginal p(E)… 

53 
B. Leibe Slide credit: Bernt Schiele, Stefan Roth 

p(A;B;C;D;E) = ?p(A;B; C; D; E) =
1

Z
f1(A;B) ¢ f2(B; D) ¢ f3(C;D) ¢ f4(D; E)
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Inference on Trees 

• Strategy 

 Marginalize out all other variables by  

summing over them. 

 

 

 Then rearrange terms: 
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p(E) =
X

A

X

B

X

C

X

D

p(A; B; C; D; E)

Slide credit: Bernt Schiele, Stefan Roth 

=
X

A

X

B

X

C

X

D

1

Z
f1(A; B) ¢ f2(B; D) ¢ f3(C;D) ¢ f4(D; E)

=
1

Z

ÃX

D

f4(D; E)¢
ÃX

C

f3(C; D)

!
¢
ÃX

B

f2(B; D)¢
ÃX

A

f1(A; B)

!!!
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Marginalization with Messages 

• Use messages to express the marginalization: 
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mA!B =
X

A

f1(A; B)

Slide credit: Bernt Schiele, Stefan Roth 

p(E) =
1

Z

ÃX

D

f4(D; E)¢
ÃX

C

f3(C; D)

!
¢
ÃX

B

f2(B; D)¢
ÃX

A

f1(A; B)

!!!

mC!D =
X

C

f3(C; D)

mB!D =
X

B

f2(B; D)mA!B(B)

mD!E =
X

D

f4(D; E)mB!D(D)mC!D(D)

=
1

Z

ÃX

D

f4(D; E)¢
ÃX

C

f3(C; D)

!
¢
ÃX

B

f2(B; D)¢mA!B(B)

!!
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Marginalization with Messages 

• Use messages to express the marginalization: 
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B. Leibe Slide credit: Bernt Schiele, Stefan Roth 

p(E) =
1

Z

ÃX

D

f4(D; E)¢
ÃX

C

f3(C; D)

!
¢
ÃX

B

f2(B; D)¢
ÃX

A

f1(A; B)

!!!

mC!D =
X

C

f3(C; D)

=
1

Z

ÃX

D

f4(D; E)¢
ÃX

C

f3(C; D)

!
¢mB!D(D)

!

mA!B =
X

A

f1(A; B)

mB!D =
X

B

f2(B; D)mA!B(B)

mD!E =
X

D

f4(D; E)mB!D(D)mC!D(D)
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Marginalization with Messages 

• Use messages to express the marginalization: 

 

 

 

57 
B. Leibe Slide credit: Bernt Schiele, Stefan Roth 

p(E) =
1

Z

ÃX

D

f4(D; E)¢
ÃX

C

f3(C; D)

!
¢
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B

f2(B; D)¢
ÃX

A

f1(A; B)

!!!

mC!D =
X

C

f3(C; D)

=
1

Z

ÃX

D

f4(D; E)¢mC!D(D)¢mB!D(D)

!

mA!B =
X

A

f1(A; B)

mB!D =
X

B

f2(B; D)mA!B(B)

mD!E =
X

D

f4(D; E)mB!D(D)mC!D(D)
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Marginalization with Messages 

• Use messages to express the marginalization: 
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B. Leibe Slide credit: Bernt Schiele, Stefan Roth 

p(E) =
1

Z

ÃX

D

f4(D; E)¢
ÃX

C

f3(C; D)

!
¢
ÃX

B

f2(B; D)¢
ÃX

A

f1(A; B)

!!!

mC!D =
X

C

f3(C; D)

=
1

Z
mD!E(E)

mA!B =
X

A

f1(A; B)

mB!D =
X

B

f2(B; D)mA!B(B)

mD!E =
X

D

f4(D; E)mB!D(D)mC!D(D)
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Inference on Trees 

• We can generalize this for all tree graphs. 

 Root the tree at the variable that we want to compute the 

marginal of. 

 Start computing messages at the leaves. 

 Compute the messages for all nodes for which all incoming 

messages have already been computed. 

 Repeat until we reach the root. 

 

• If we want to compute the marginals for all possible 

nodes (roots), we can reuse some of the messages. 

 Computational expense linear in the number of nodes. 

59 
B. Leibe Slide credit: Bernt Schiele, Stefan Roth 
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Trees – How Can We Generalize? 

 

 

 

 

 

 

 

 

• Next lecture 

 Formalize the message-passing idea      Sum-product algorithm 

 Common representation of the above   Factor graphs 

 Deal with loopy graphs structures         Junction tree algorithm 

60 
B. Leibe 

Undirected 

Tree 

Directed Tree Polytree 

Image source: C. Bishop, 2006 
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References and Further Reading 

• A thorough introduction to Graphical Models in general 

and Bayesian Networks in particular can be found in 

Chapter 8 of Bishop’s book.  
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