

Machine Learning - Lecture 12

Randomized Trees, Forests, and Ferns

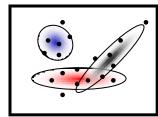
13.06.2016

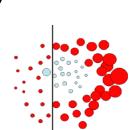
Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de

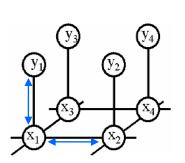
leibe@vision.rwth-aachen.de

Course Outline

- Fundamentals (2 weeks)
 - Bayes Decision Theory
 - Probability Density Estimation
- Discriminative Approaches (5 weeks)
 - Linear Discriminant Functions
 - Statistical Learning Theory & SVMs
 - Ensemble Methods & Boosting
 - Randomized Trees, Forests & Ferns
- Generative Models (4 weeks)
 - Bayesian Networks
 - Markov Random Fields







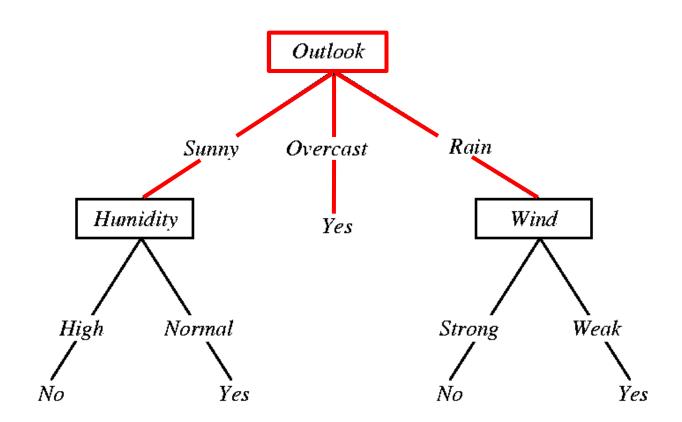
Topics of This Lecture

- Decision Trees
- Randomized Decision Trees
 - Randomized attribute selection
- Random Forests
 - Bootstrap sampling
 - Ensemble of randomized trees
 - Posterior sum combination
 - Analysis
- Extremely randomized trees
 - Random attribute selection
- Ferns

Machine Learning, Summer '1

- Fern structure
- Semi-Naïve Bayes combination
- > Applications

Recap: Decision Trees

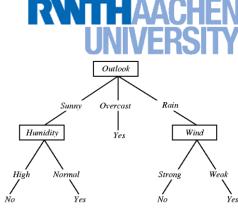


Elements

- Each node specifies a test for some attribute.
- > Each branch corresponds to a possible value of the attribute.

Recap: CART Framework

- Six general questions
 - 1. Binary or multi-valued problem?
 - I.e. how many splits should there be at each node?
 - 2. Which property should be tested at a node?
 - I.e. how to select the query attribute?
 - 3. When should a node be declared a leaf?
 - I.e. when to stop growing the tree?
 - 4. How can a grown tree be simplified or pruned?
 - Goal: reduce overfitting.
 - 5. How to deal with impure nodes?
 - I.e. when the data itself is ambiguous.
 - 6. How should missing attributes be handled?



This will be our focus!

CART - 2. Picking a Good Splitting Feature

- Goal
 - > Want a tree that is as simple/small as possible (Occam's razor).
 - But: Finding a minimal tree is an NP-hard optimization problem.

• Greedy top-down search

- > Efficient, but not guaranteed to find the smallest tree.
- \succ Seek a property T at each node N that makes the data in the child nodes as *pure* as possible.
- > For formal reasons more convenient to define *impurity* i(N).
- Several possible definitions explored.

Ginilvatiance

Picking a Good Splitting Feature

• Goal

Select the query (=split) that decreases impurity the most

$$\Delta i(N) = i(N) - P_L i(N_L) - (1 - P_L)i(N_R)$$

i(P)

fraction of points in left child node

- Impurity measures
 - Entropy impurity (information gain):

$$i(N) = -\sum_{j} p(\mathcal{C}_{j}|N) \log_2 p(\mathcal{C}_{j}|N)$$

Gini impurity:

$$i(N) = \sum_{i \neq j} p(\mathcal{C}_i|N) p(\mathcal{C}_j|N) = \frac{1}{2} \left[1 - \sum_j p^2(\mathcal{C}_j|N) \right]$$

Г

B. Leibe

Image source: R.O. Duda, P.E. Hart, D.G. Stork, 2001

0.5

Overfitting Prevention (Pruning)

- Two basic approaches for decision trees
 - Prepruning: Stop growing tree as some point during top-down construction when there is no longer sufficient data to make reliable decisions.
 - Cross-validation
 - Chi-square test
 - MDL

Machine Learning, Summer '16

- Postpruning: Grow the full tree, then remove subtrees that do not have sufficient evidence.
 - Merging nodes
 - Rule-based pruning

• In practice often preferable to apply post-pruning.

RWTHAACHEN UNIVERSITY

Recap: Decision Trees - Summary

• Properties

- Simple learning procedure, fast evaluation.
- Can be applied to metric, nominal, or mixed data.
- > Often yield interpretable results.

Recap: Decision Trees - Summary

Limitations

- > Often produce noisy (bushy) or weak (stunted) classifiers.
- > Do not generalize too well.
- Training data fragmentation:
 - As tree progresses, splits are selected based on less and less data.
- > Overtraining and undertraining:
 - Deep trees: fit the training data well, will not generalize well to new test data.
 - Shallow trees: not sufficiently refined.
- Stability
 - Trees can be very sensitive to details of the training points.
 - If a single data point is only slightly shifted, a radically different tree may come out!
 - \Rightarrow Result of discrete and greedy learning procedure.
- Expensive learning step
 - Mostly due to costly selection of optimal split.

UNIVERSITY Decision Trees - Computational Complexity

- Given
 - > Data points $\{\mathbf{x}_1, \dots, \mathbf{x}_N\}$
 - \succ Dimensionality D
- Complexity
 - > Storage: O(N)
 - > Test runtime: $O(\log N)$
 - > Training runtime: $O(DN^2 \log N)$
 - Most expensive part.
 - Critical step: selecting the optimal splitting point.
 - Need to check ${\cal D}$ dimensions, for each need to sort N data points.

 $O(DN \log N)$

Topics of This Lecture

- Decision Trees
- Randomized Decision Trees
 - Randomized attribute selection
- Random Forests
 - Bootstrap sampling
 - Ensemble of randomized trees
 - Posterior sum combination
 - Analysis
- Extremely randomized trees
 - Random attribute selection
- Ferns
 - Fern structure
 - Semi-Naïve Bayes combination
 - > Applications

Randomized Decision Trees (Amit & Geman 1997)

- Decision trees: main effort on finding good split
 - > Training runtime: $O(DN^2 \log N)$
 - This is what takes most effort in practice.
 - \blacktriangleright Especially cumbersome with many attributes (large D).
- Idea: randomize attribute selection
 - > No longer look for globally optimal split.
 - > Instead randomly use subset of K attributes on which to base the split.
 - Choose best splitting attribute e.g. by maximizing the information gain (= reducing entropy):

$$\triangle E = \sum_{k=1}^{K} \frac{|S_k|}{|S|} \sum_{j=1}^{N} p_j \log_2(p_j)$$

Randomized Decision Trees

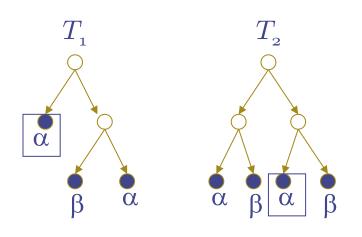
- Randomized splitting
 - > Faster training: $O(KN^2 \log N)$ with $K \ll D$.
 - > Use very simple binary feature tests.
 - > Typical choice
 - K = 10 for root node.
 - K = 100d for node at level d.

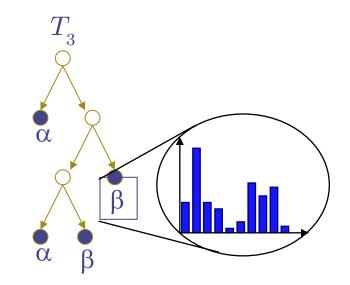
• Effect of random split

- Of course, the tree is no longer as powerful as a single classifier...
- > But we can compensate by building several trees.

RWTHAACHEN UNIVERSITY

Ensemble Combination





- Ensemble combination
 - > Tree leaves (l,η) store posterior probabilities of the target classes. $p_{l,\eta}(\mathcal{C}|\mathbf{x})$
 - Combine the output of several trees by averaging their posteriors (Bayesian model combination)

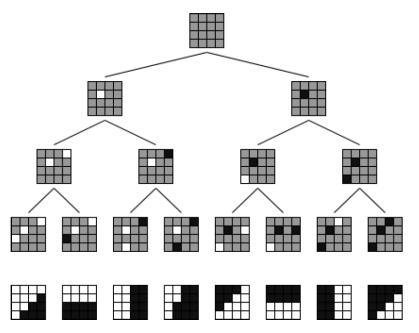
$$p(\mathcal{C}|\mathbf{x}) = rac{1}{L} \sum_{l=1}^{L} p_{l,\eta}(\mathcal{C}|\mathbf{x})$$
 B. Leibe

Machine Learning, Summer '16

17

Applications: Character Recognition

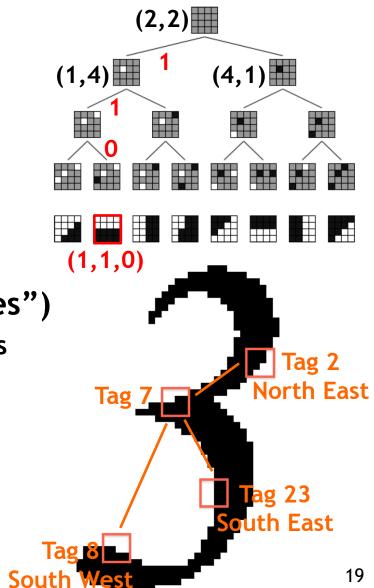
- Computer Vision: Optical character recognition
 - Classify small (14x20) images of hand-written characters/digits into one of 10 or 26 classes.
- Simple binary features
 - Fests for individual binary pixel values.
 - > Organized in randomized tree.



Y. Amit, D. Geman, Shape Quantization and Recognition with Randomized Trees, *Neural Computation*, Vol. 9(7), pp. 1545-1588, 1997.

Applications: Character Recognition

- Image patches ("Tags")
 - Randomly sampled 4×4 patches
 - Construct a randomized tree based on binary single-pixel tests
 - Each leaf node corresponds to a "patch class" and produces a tag
 - Representation of digits ("Queries")
 - Specific spatial arrangements of tags
 - An image answers "yes" if any such structure is found anywhere
 - How do we know which spatial arrangements to look for?



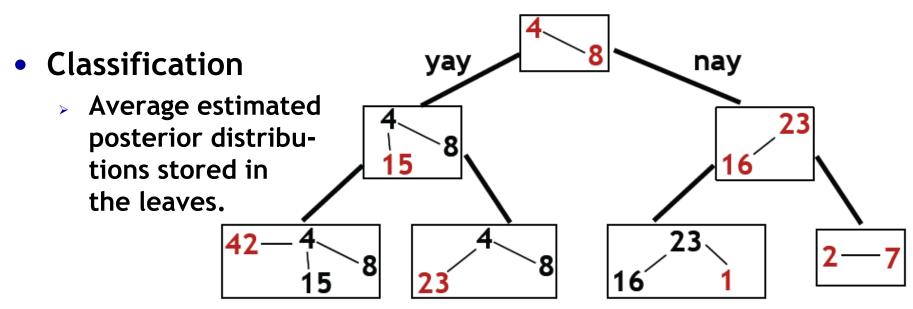
Summer '16

Learni

Machine

Applications: Character Recognition

- Answer: Create a second-level decision tree!
 - Start with two tags connected by an arc
 - Search through extensions of confirmed queries
 (or rather through a subset of them, there are lots!)
 - Select query with best information gain
 - » Recurse...



Machine Learning, Summer '16

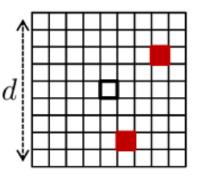
Applications: Fast Keypoint Detection

- Computer Vision: fast keypoint detection
 - Detect keypoints: small patches in the image used for matching
 - Classify into one of ~200 categories (visual words)

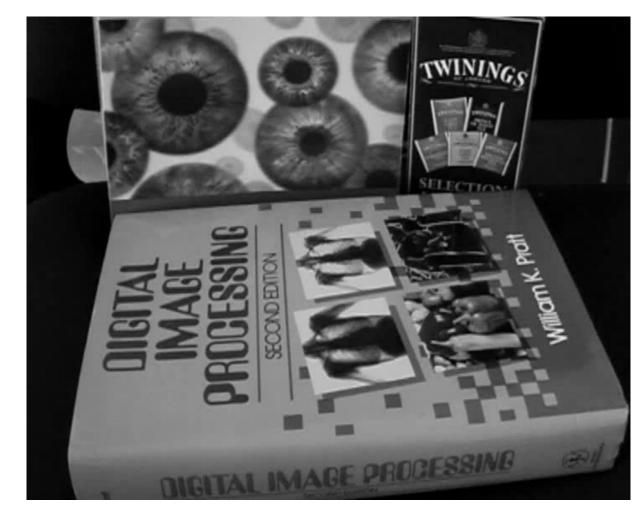
• Extremely simple features

- E.g. pixel value in a color channel (CIELab)
- E.g. sum of two points in the patch
- > E.g. difference of two points in the patch
- E.g. absolute difference of two points

- Each leaf node contains probability distribution over 200 classes
- Can be updated and re-normalized incrementally.



Application: Fast Keypoint Detection



M. Ozuysal, V. Lepetit, F. Fleuret, P. Fua, <u>Feature Harvesting for</u> <u>Tracking-by-Detection</u>. In *ECCV'06*, 2006.

Topics of This Lecture

Randomized Decision Trees
 Randomized attribute selection

Random Forests

- Bootstrap sampling
- Ensemble of randomized trees
- Posterior sum combination
- > Analysis
- Extremely randomized trees
 - Random attribute selection
- Ferns
 - Fern structure
 - Semi-Naïve Bayes combination
 - > Applications

Random Forests (Breiman 2001)

- General ensemble method
 - Idea: Create ensemble of many (very simple) trees.
- Empirically very good results
 - > Often as good as SVMs (and sometimes better)!
 - > Often as good as Boosting (and sometimes better)!
- Standard decision trees: main effort on finding good split
 - Random Forests trees put very little effort in this.
 - > CART algorithm with Gini coefficient, no pruning.
 - Each split is only made based on a random subset of the available attributes.
 - > Trees are grown fully (important!).
- Main secret
 - Injecting the "right kind of randomness".

Random Forests - Algorithmic Goals

- Create many trees (50 1,000)
- Inject randomness into trees such that
 - > Each tree has maximal strength
 - I.e. a fairly good model on its own
 - > Each tree has minimum correlation with the other trees.
 - I.e. the errors tend to cancel out.
- Ensemble of trees votes for final result
 - Simple majority vote for category.

- Optimally reweight the trees via regularized regression (lasso).

α

 T_{z}

α

 T_{2}

α

α

UNIVERSITY Random Forests - Injecting Randomness (1)

- Bootstrap sampling process
 - > Select a training set by choosing N times with replacement from all N available training examples.
 - \Rightarrow On average, each tree is grown on only ~63% of the original training data.
 - Remaining 37% "out-of-bag" (OOB) data used for validation.
 - Provides ongoing assessment of model performance in the current tree.
 - Allows fitting to small data sets without explicitly holding back any data for testing.
 - Error estimate is unbiased and behaves as if we had an independent test sample of the same size as the training sample.

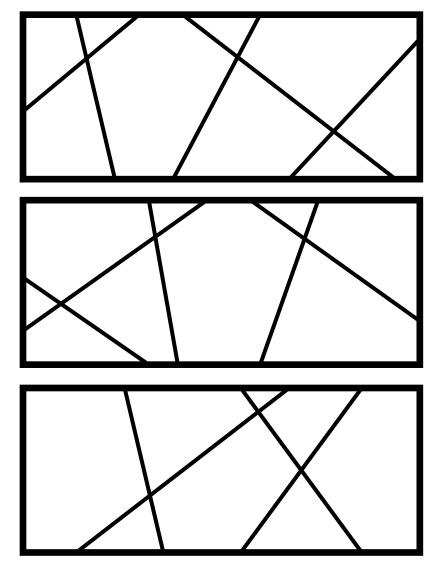
Random Forests - Injecting Randomness (2)

- Random attribute selection
 - > For each node, randomly choose subset of K attributes on which the split is based (typically $K = \sqrt{N_f}$).
 - \Rightarrow Faster training procedure
 - Need to test only few attributes.
 - Minimizes inter-tree dependence
 - Reduce correlation between different trees.
- Each tree is grown to maximal size and is left unpruned
 - > Trees are deliberately overfit
 - \Rightarrow Become some form of nearest-neighbor predictor.

Bet You're Asking...

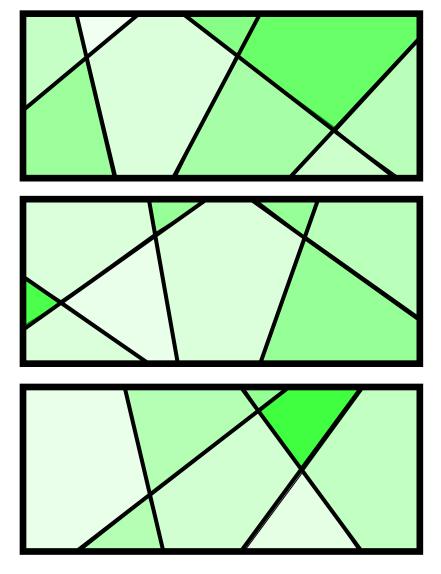
How can this possibly *ever* work???

Different trees induce different partitions on the data.



Machine Learning, Summer '16

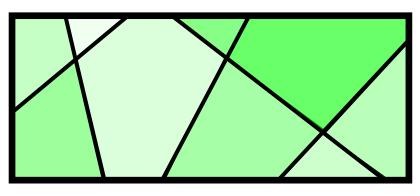
Different trees induce different partitions on the data.

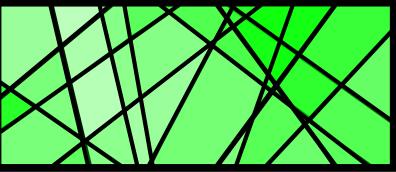


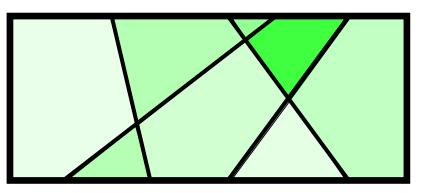
Slide credit: Vincent Lepetit

Different trees induce different partitions on the data.

By combining them, we obtain a finer subdivision of the feature space...

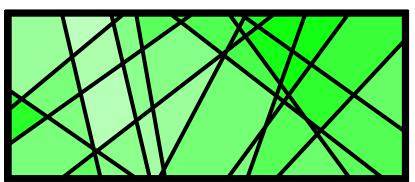






Different trees induce different partitions on the data.

By combining them, we obtain a finer subdivision of the feature space...



...which at the same time also better reflects the uncertainty due to the bootstrapped sampling.

Summary: Random Forests

Properties

- Very simple algorithm.
- Resistant to overfitting generalizes well to new data.
- Faster training
- > Extensions available for clustering, distance learning, etc.

Limitations

- Memory consumption
 - Decision tree construction uses much more memory.
- Well-suited for problems with little training data
 - Little performance gain when training data is really large.

You Can Try It At Home...

- Free implementations available
 - > Original RF implementation by Breiman & Cutler
 - http://www.stat.berkeley.edu/users/breiman/RandomForests/
 - Papers, documentation, and code...
 - ...in Fortran 77.
 - But also newer version available in Fortran 90!
 - <u>http://www.irb.hr/en/research/projects/it/2004/2004-111/</u>
 - Fast Random Forest implementation for Java (Weka)
 - <u>http://code.google.com/p/fast-random-forest/</u>

L. Breiman, <u>Random Forests</u>, *Machine Learning*, Vol. 45(1), pp. 5-32, 2001.

Topics of This Lecture

- Randomized Decision Trees
 - Randomized attribute selection
- Recap: Random Forests
 - Bootstrap sampling
 - > Ensemble of randomized trees
 - > Posterior sum combination
 - > Analysis

• Extremely randomized trees

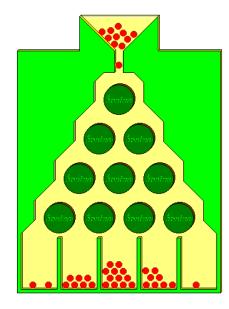
- Random attribute selection
- Ferns
 - Fern structure
 - Semi-Naïve Bayes combination
 - > Applications

A Case Study in Deconstructivism...

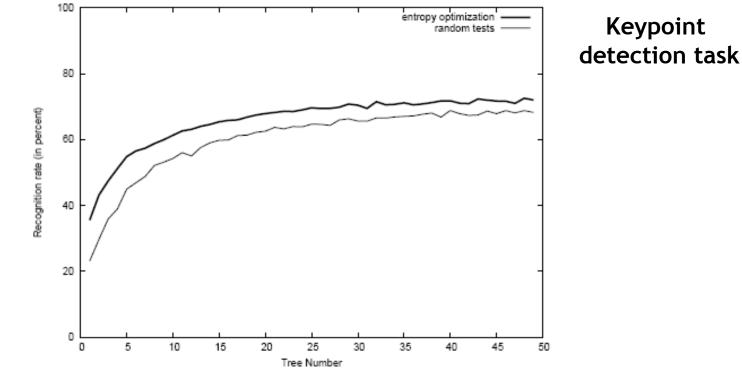
- What we've done so far
 - > Take the original decision tree idea.
 - Throw out all the complicated bits (pruning, etc.).
 - Learn on random subset of training data (bootstrapping/bagging).
 - Select splits based on random choice of candidate queries.
 - So as to maximize information gain.
 - Complexity: $O(KN^2 \log N)$
 - \Rightarrow Ensemble of weaker classifiers.
- How can we further simplify that?
 - Main effort still comes from selecting the optimal split (from reduced set of options)...
 - Simply choose a random query at each node.
 - Complexity: O(N)
 - \Rightarrow Extremely randomized decision trees

Extremely Randomized Decision Trees

- Random queries at each node...
 - Tree gradually develops from a classifier to a flexible container structure.
 - Node queries define (randomly selected) structure.
 - Each leaf node stores posterior probabilities
- Learning (e.g. for keypoint detection)
 - Patches are "dropped down" the trees.
 - Only pairwise pixel comparisons at each node.
 - Directly update posterior distributions at leaves
 - \Rightarrow Very fast procedure, only few pixel-wise comparisons \Rightarrow No need to store the original patches!



Performance Comparison



Results

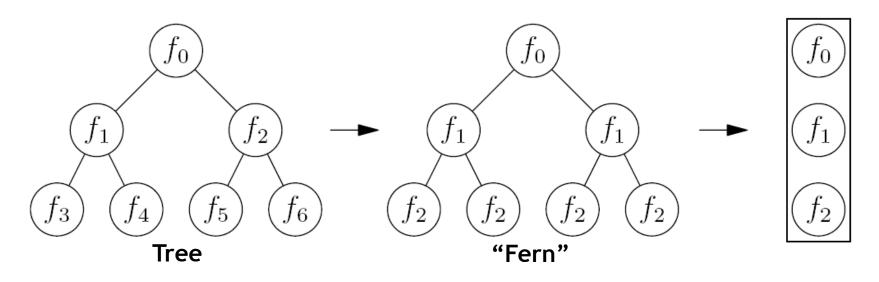
Almost equal performance for random tests when a sufficient number of trees is available (and much faster to train!).

V. Lepetit, P. Fua, Keypoint Recognition using Randomized Trees, *IEEE Trans. Pattern Analysis and Machine Intelligence*, Vol. 28(9), pp. 1465–1479, 2006.

Topics of This Lecture

- Randomized Decision Trees
 - Randomized attribute selection
- Recap: Random Forests
 - Bootstrap sampling
 - > Ensemble of randomized trees
 - Posterior sum combination
 - > Analysis
- Extremely randomized trees
 - Random attribute selection
- Ferns
 - Fern structure
 - Semi-Naïve Bayes combination
 - Applications

From Trees to Ferns...



• Observation

- If we select the node queries randomly anyway, what is the point of choosing different ones for each node?
- \Rightarrow Keep the same query for all nodes at a certain level.
- This effectively enumerates all 2^M possible outcomes of the M tree queries.
- Tree can be collapsed into a fern-like structure.

What Does This Mean?

- Interpretation of the decision tree
 - We model the class conditional probabilities of a large number of binary features (the node queries).
 - Notation
 - f_i : Binary feature
 - N_f : Total number of features in the model.
 - \mathcal{C}_k : Target class
 - \succ Given $f_{\scriptscriptstyle 1}, ..., f_{N\!f}$, we want to select class \mathcal{C}_k such that

$$k = \arg\max_{k} p(\mathcal{C}_k | f_1, \dots, f_{N_f})$$

> Assuming a uniform prior over classes, this is the equal to

$$k = \arg\max_{k} p(f_1, \dots, f_{N_f} | \mathcal{C}_k)$$

Main issue: How do we model the joint distribution?

- Full Joint
 - Model all correlations between features

$$p(f_1,\ldots,f_{N_f}|\mathcal{C}_k)$$

 \Rightarrow Model with 2^{N_f} parameters, not feasible to learn.

- Naive Bayes classifier
 - > Assumption: all features are independent.

$$p(f_1,\ldots,f_{N_f}|\mathcal{C}_k) = \prod_{i=1}^{N_f} p(f_i|\mathcal{C}_k)$$

- \Rightarrow Too simplistic, assumption does not really hold!
- \Rightarrow Naïve Bayes model ignores correlation between features.

- Decision tree
 - Each path from the root to a leaf corresponds to a specific combination of feature outcomes, e.g.

$$p_{leaf_m}(\mathcal{C}_k) = p(f_{m1} = 1, f_{m2} = 0, \dots, f_{md} = 1 | \mathcal{C}_k)$$

> Those path outcomes are independent, therefore

$$p(f_1,\ldots,f_{N_f}|\mathcal{C}_k) \approx \prod_{m=1}^M p_{leaf_m}(\mathcal{C}_k)$$

But not all feature outcomes are represented here...

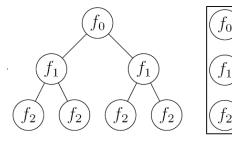
- Ferns
 - > A fern F is defined as a set of S binary features $\{f_l, \dots, f_{l+S}\}$.
 - > M: number of ferns, $N_f = S \cdot M$.
 - > This represents a compromise:

$$p(f_1, \dots, f_{N_f} | \mathcal{C}_k) \approx \prod_{j=1}^M p(F_j | \mathcal{C}_k)$$

= $p(f_1, \dots, f_S | \mathcal{C}_k) \cdot p(f_{S+1}, \dots, f_{2S} | \mathcal{C}_k) \cdot \dots$
Full joint Naïve Bayes between ferns

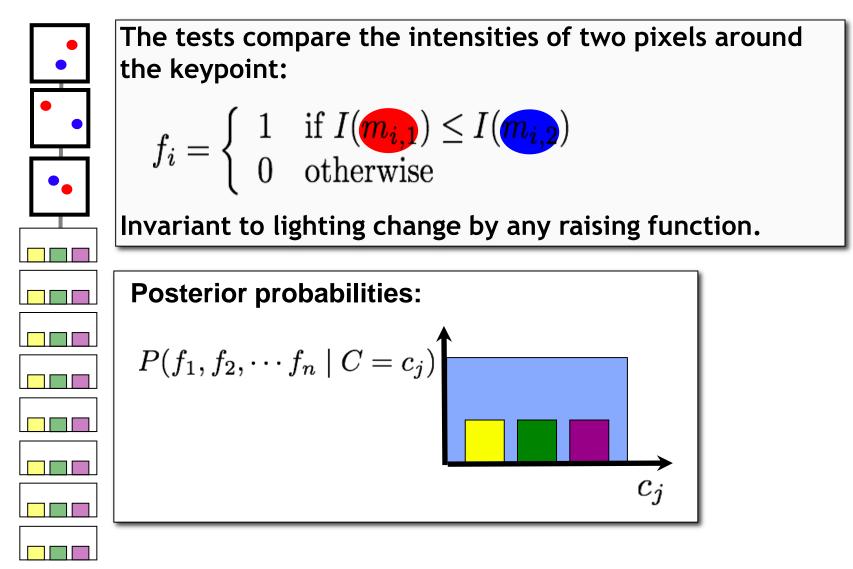
⇒ Model with $M \cdot 2^S$ parameters ("Semi-Naïve"). ⇒ Flexible solution that allows complexity/performance tuning.

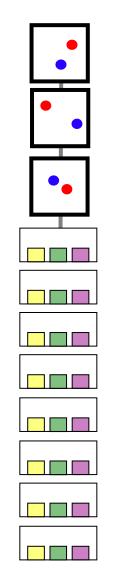
- Ferns
 - > Ferns are thus semi-naive Bayes classifiers.
 - They assume independence between sets of features (between the ferns)...
 - …and enumerate all possible outcomes inside each set.

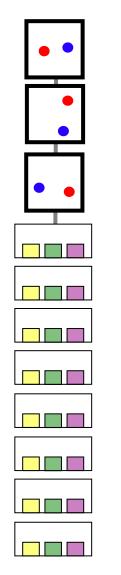


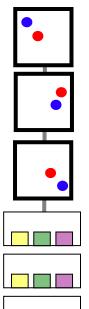
Interpretation

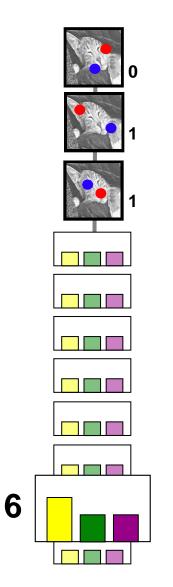
- > Combine the tests f_l, \ldots, f_{l+S} into a binary number.
- > Update the "fern leaf" corresponding to that number.

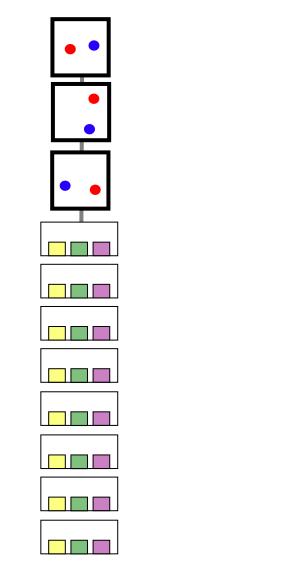


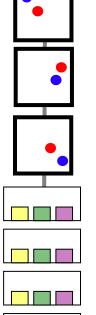


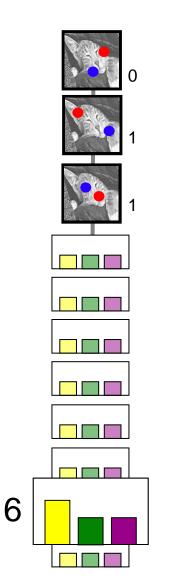


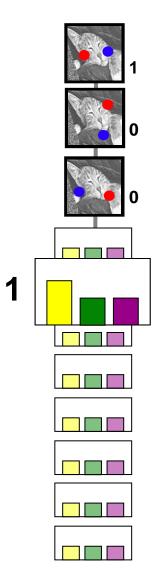


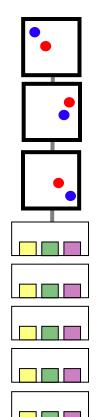


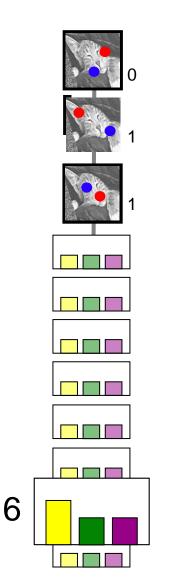


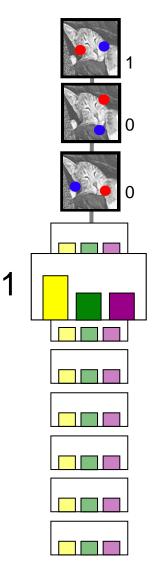


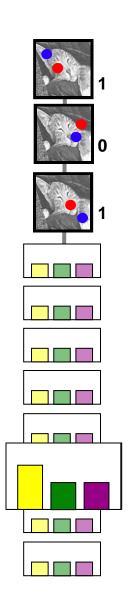






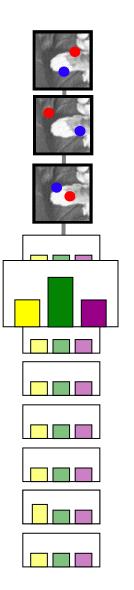


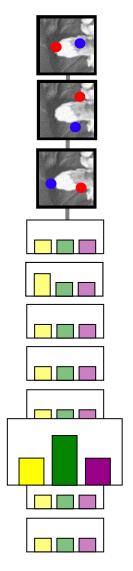


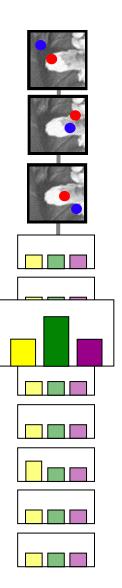


5

Slide credit: Vincent Lepetit

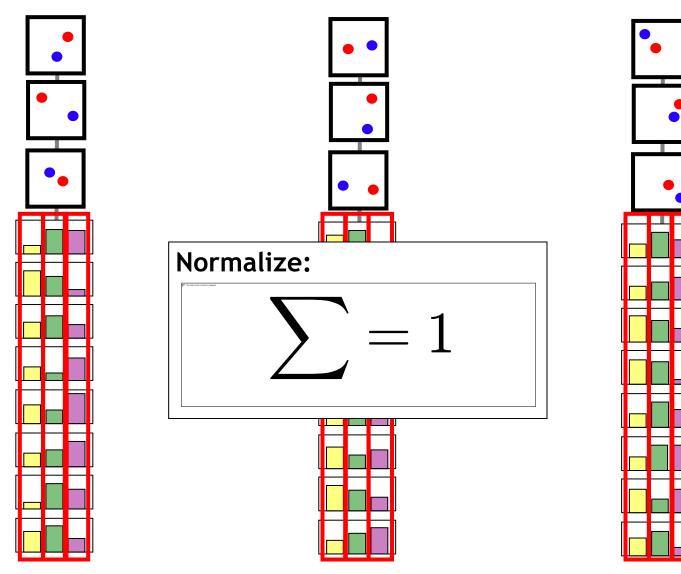






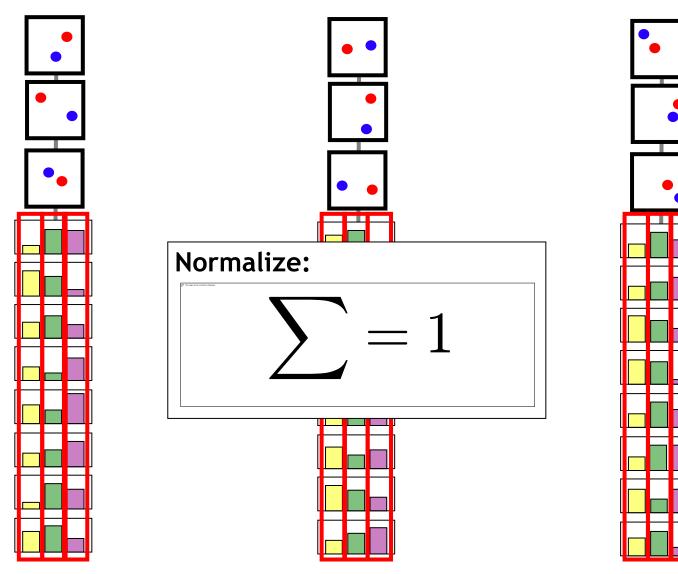
Slide credit: Vincent Lepetit

Ferns - Training Results

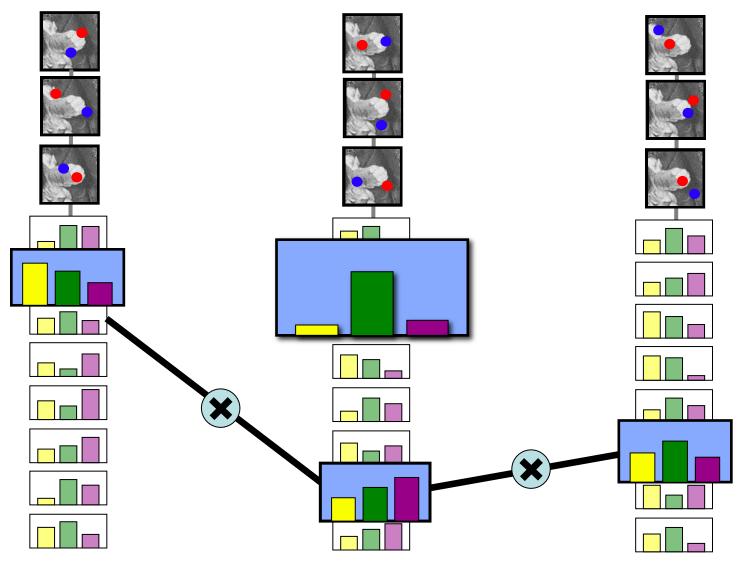


Slide credit: Vincent Lepetit

Ferns - Training Results



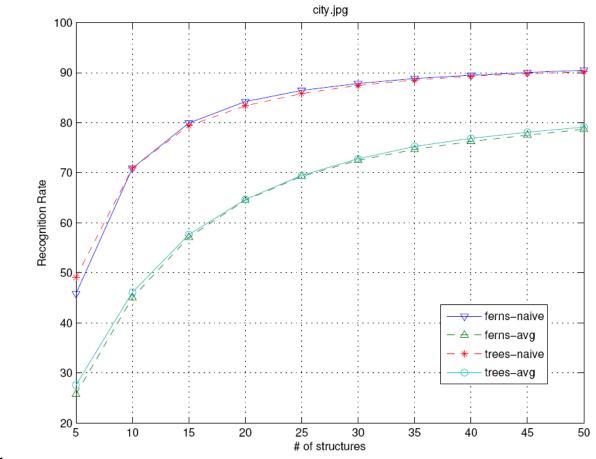
Ferns - Recognition



Slide credit: Vincent Lepetit

RWTHAACHEN UNIVERSITY

Performance Comparison



Results

- > Ferns perform as well as randomized trees (but are much faster)
- > Naïve Bayes combination better than averaging posteriors.

Keypoint Recognition in 10 Lines of Code

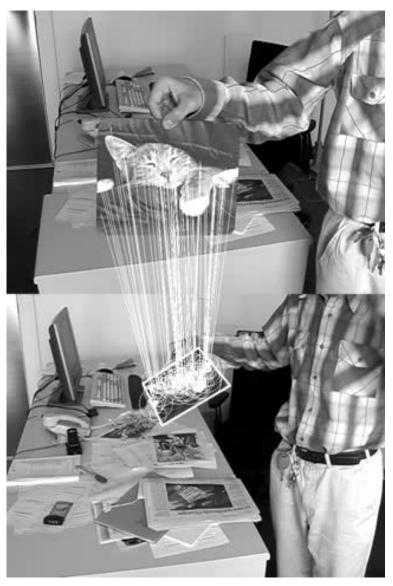
```
1: for(int i = 0; i < H; i++) P[i] = 0.;
 2: for(int k = 0; k < M; k++) {
      int index = 0, * d = D + k * 2 * S;
 3:
      for(int j = 0; j < S; j++) {</pre>
 4:
        index <<= 1;
 5:
 6:
        if (*(K + d[0]) < *(K + d[1]))
          index++;
 7:
        d += 2;
 8:
      }
      p = PF + k * shift2 + index * shift1;
 9:
10:
      for(int i = 0; i < H; i++) P[i] += p[i];
```

Properties

- Very simple to implement;
- Almost) no parameters to tune;
- Very fast.

M. Ozuysal, M. Calonder, V. Lepetit, P. Fua, <u>Fast Keypoint Recognition using Random</u> <u>Ferns</u>. In *IEEE*. *Trans*. *Pattern Analysis and Machine Intelligence*, 2009.

Application: Keypoint Matching with Ferns



RWTHAACHEN UNIVERSITY Application: Mobile Augmented Reality

Mobile Phone Augmented Reality

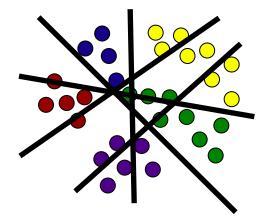
at 30 Frames per Second using Natural Feature Tracking

(all processing and rendering done in software)

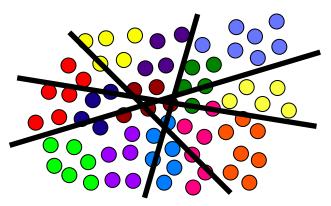
D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, D. Schmalstieg, <u>Pose Tracking from Natural Features on Mobile Phones</u>. In *ISMAR 2008*.

Practical Issues - Selecting the Tests

- For a small number of classes
 - > We can try several tests.
 - Retain the best one according to some criterion.
 - E.g. entropy, Gini



- When the number of classes is large
 - Any test does a decent job.



Summer '16

<u>earning</u>

Machine

Summary

- We started from full decision trees...
 - Successively simplified the classifiers...
- ...and ended up with very simple randomized versions
 - > Ensemble methods: Combination of many simple classifiers
 - Good overall performance
 - Very fast to train and to evaluate
- Common limitations of Randomized Trees and Ferns?
 - Need large amounts of training data!
 - In order to fill the many probability distributions at the leaves.
 - Memory consumption!
 - Linear in the number of trees.
 - Exponential in the tree depth.
 - Linear in the number of classes (histogram at each leaf!)

References and Further Reading

• The original papers for Randomized Trees

- Y. Amit, D. Geman, Shape Quantization and Recognition with Randomized Trees, Neural Computation, Vol. 9(7), pp. 1545-1588, 1997.
- V. Lepetit, P. Fua, Keypoint Recognition using Randomized Trees, IEEE Trans.
 Pattern Analysis and Machine Intelligence, Vol. 28(9), pp. 1465–1479, 2006.

• The original paper for Random Forests:

L. Breiman, Random Forests, Machine Learning, Vol. 45(1), pp. 5-32, 2001.

• The papers for Ferns:

- M. Ozuysal, M. Calonder, V. Lepetit, P. Fua, <u>Fast Keypoint Recognition using</u> <u>Random Ferns</u>. In IEEE. Trans. Pattern Analysis and Machine Intelligence, 2009.
- D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, D. Schmalstieg, <u>Pose Tracking</u> <u>from Natural Features on Mobile Phones</u>. In *ISMAR 2008*.