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Course Outline 

• Fundamentals (2 weeks) 

 Bayes Decision Theory 

 Probability Density Estimation 
 

• Discriminative Approaches (5 weeks) 

 Linear Discriminant Functions 

 Statistical Learning Theory & SVMs 

 Ensemble Methods & Boosting 

 Randomized Trees, Forests & Ferns 
 

• Generative Models (4 weeks) 

 Bayesian Networks 

 Markov Random Fields 
 

B. Leibe 
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Topics of This Lecture 

• Decision Trees 
 

• Randomized Decision Trees 
 Randomized attribute selection 

 

• Random Forests 
 Bootstrap sampling 

 Ensemble of randomized trees 

 Posterior sum combination 

 Analysis 
 

• Extremely randomized trees 
 Random attribute selection 
 

• Ferns 
 Fern structure 

 Semi-Naïve Bayes combination 

 Applications 
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Recap: Decision Trees 

 

 

 

 

 

 

 

 

 

• Elements 

 Each node specifies a test for some attribute. 

 Each branch corresponds to a possible value of the attribute. 

4 
B. Leibe Image source: T. Mitchell, 1997 
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Recap: CART Framework 

• Six general questions 

1. Binary or multi-valued problem? 

– I.e. how many splits should there be at each node? 
 

2. Which property should be tested at a node? 

– I.e. how to select the query attribute? 
 

3. When should a node be declared a leaf? 

– I.e. when to stop growing the tree? 
 

4. How can a grown tree be simplified or pruned? 

– Goal: reduce overfitting. 
 

5. How to deal with impure nodes? 

– I.e. when the data itself is ambiguous. 
 

6. How should missing attributes be handled? 

 

5 
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This will be 

our focus! 
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CART – 2. Picking a Good Splitting Feature  

• Goal 

 Want a tree that is as simple/small as possible (Occam’s razor). 

 But: Finding a minimal tree is an NP-hard optimization problem. 

 

• Greedy top-down search 

 Efficient, but not guaranteed to find the smallest tree. 

 Seek a property T at each node N that makes the data in the 

child nodes as pure as possible. 

 For formal reasons more convenient to define impurity i(N). 

 Several possible definitions explored. 
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i(N) =
X

i6=j
p(CijN)p(Cj jN) =

1

2

2
41¡

X

j

p2(Cj jN)

3
5

Picking a Good Splitting Feature  

• Goal 

 Select the query (=split) that decreases impurity the most 

 

 
 

 

• Impurity measures 

 Entropy impurity (information gain):  

 

 
 

 Gini impurity: 

7 
B. Leibe 

4i(N) = i(N)¡PLi(NL)¡ (1¡PL)i(NR)

i(N) = ¡
X

j

p(CjjN) log2 p(CjjN)

i(P )

P

Image source: R.O. Duda, P.E. Hart, D.G. Stork, 2001 

fraction of points 

in left child node 

P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

M
a

c
h

in
e

 L
e

a
rn

in
g

, 
S

u
m

m
e

r 
‘1

6
 

Overfitting Prevention (Pruning) 

• Two basic approaches for decision trees 

 Prepruning: Stop growing tree as some point during top-down 

construction when there is no longer sufficient data to make 

reliable decisions. 

– Cross-validation 

– Chi-square test 

– MDL 

 

 Postpruning: Grow the full tree, then remove subtrees that do 

not have sufficient evidence. 

– Merging nodes 

– Rule-based pruning 

 

• In practice often preferable to apply post-pruning. 
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Recap: Decision Trees – Summary 

• Properties 

 Simple learning procedure, fast evaluation. 

 Can be applied to metric, nominal, or mixed data. 

 Often yield interpretable results. 
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Recap: Decision Trees – Summary 

• Limitations 

 Often produce noisy (bushy) or weak (stunted) classifiers. 

 Do not generalize too well. 

 Training data fragmentation:  

– As tree progresses, splits are selected based on less and less data. 

 Overtraining and undertraining: 

– Deep trees: fit the training data well, will not generalize well to 

new test data. 

– Shallow trees: not sufficiently refined. 

 Stability 

– Trees can be very sensitive to details of the training points. 

– If a single data point is only slightly shifted, a radically different 

tree may come out! 

 Result of discrete and greedy learning procedure.  

 Expensive learning step 

– Mostly due to costly selection of optimal split. 12 
B. Leibe 
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Decision Trees – Computational Complexity  

• Given 

 Data points {x1,…,xN}  

 Dimensionality D  
 

• Complexity 
 

 Storage: 
 

 Test runtime: 
 

 Training runtime: 

– Most expensive part. 

– Critical step: selecting the optimal splitting point. 

– Need to check D dimensions, for each need to sort N data points. 
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O(DN2 logN)

O(logN)
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O(DN logN)
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Topics of This Lecture 

• Decision Trees 
 

• Randomized Decision Trees 
 Randomized attribute selection 

 

• Random Forests 
 Bootstrap sampling 

 Ensemble of randomized trees 

 Posterior sum combination 

 Analysis 
 

• Extremely randomized trees 
 Random attribute selection 
 

• Ferns 
 Fern structure 

 Semi-Naïve Bayes combination 

 Applications 
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Randomized Decision Trees (Amit & Geman 1997) 

• Decision trees: main effort on finding good split 

 Training runtime:  

 This is what takes most effort in practice. 

 Especially cumbersome with many attributes (large D). 
 

• Idea: randomize attribute selection 

 No longer look for globally optimal split. 

 Instead randomly use subset of K attributes on which to base 

the split. 

 Choose best splitting attribute e.g. by maximizing the 

information gain (= reducing entropy): 

15 
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O(DN2 logN)

4E =

KX

k=1

jSkj
jSj

NX

j=1

pj log2(pj)
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Randomized Decision Trees 

• Randomized splitting 

 Faster training:                            with               . 

 Use very simple binary feature tests. 

 Typical choice 

– K = 10 for root node. 

– K = 100d  for node at level d. 
 

• Effect of random split 

 Of course, the tree is no longer as powerful as a single 

classifier… 

 But we can compensate by building several trees. 
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Ensemble Combination 

 

 

 

 

 
 

• Ensemble combination 

 Tree leaves (l,´) store posterior probabilities of the target 

classes. 
 

 Combine the output of several trees by averaging their 

posteriors (Bayesian model combination) 
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pl;´(Cjx)

p(Cjx) = 1

L

LX

l=1

pl;´(Cjx)

a 

a 

a 

a 

a a   
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Applications: Character Recognition 

• Computer Vision: Optical character recognition 

 Classify small (14x20) images of hand-written characters/digits 

into one of 10 or 26 classes. 

 

• Simple binary features 

 Tests for individual binary pixel 

values. 

 Organized in randomized tree. 

18 
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Y. Amit, D. Geman, Shape Quantization and Recognition with Randomized Trees,  

Neural Computation, Vol. 9(7), pp. 1545-1588, 1997. 
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Applications: Character Recognition 

• Image patches (“Tags”) 

 Randomly sampled 44 patches 

 Construct a randomized tree 

based on binary single-pixel tests 

 Each leaf node corresponds to a  

“patch class” and produces a tag 

 

• Representation of digits (“Queries”) 

 Specific spatial arrangements of tags 

 An image answers “yes” if any such 

structure is found anywhere 

 

 How do we know which spatial  

arrangements to look for? 
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(2,2) 

(1,4) (4,1) 

Tag 2 

North East 

Tag 23 

South East 

Tag 7 

Tag 8 

South West 

1 

1 

0 

(1,1,0) 

Slide adapted from Jan Hosang 
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Applications: Character Recognition 

• Answer: Create a second-level decision tree! 

 Start with two tags connected by an arc 

 Search through extensions of confirmed queries 

(or rather through a subset of them, there are lots!) 

 Select query with best information gain 

 Recurse… 

 

• Classification 

 Average estimated 

posterior distribu- 

tions stored in  

the leaves. 

20 
B. Leibe Slide adapted from Jan Hosang 
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Applications: Fast Keypoint Detection 

• Computer Vision: fast keypoint detection 

 Detect keypoints: small patches in the image used for matching 

 Classify into one of ~200 categories (visual words) 

 

• Extremely simple features 

 E.g. pixel value in a color channel (CIELab) 

 E.g. sum of two points in the patch 

 E.g. difference of two points in the patch 

 E.g. absolute difference of two points 

 

• Create forest of randomized decision trees 

 Each leaf node contains probability distribution over 200 classes 

 Can be updated and re-normalized incrementally. 

21 
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Application: Fast Keypoint Detection 

22 
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M. Ozuysal, V. Lepetit, F. Fleuret, P. Fua, Feature Harvesting for  

Tracking-by-Detection. In ECCV’06, 2006. 
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Topics of This Lecture 

• Randomized Decision Trees 
 Randomized attribute selection 

 

• Random Forests 
 Bootstrap sampling 

 Ensemble of randomized trees 

 Posterior sum combination 

 Analysis 
 

• Extremely randomized trees 
 Random attribute selection 
 

• Ferns 
 Fern structure 

 Semi-Naïve Bayes combination 

 Applications 
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Random Forests (Breiman 2001) 

• General ensemble method 

 Idea: Create ensemble of many (very simple) trees. 
 

• Empirically very good results 

 Often as good as SVMs (and sometimes better)! 

 Often as good as Boosting (and sometimes better)! 
 

• Standard decision trees: main effort on finding good split 

 Random Forests trees put very little effort in this. 

 CART algorithm with Gini coefficient, no pruning. 

 Each split is only made based on a random subset of the 

available attributes. 

 Trees are grown fully (important!). 
 

• Main secret 

 Injecting the “right kind of randomness”. 

 

 

 

24 
B. Leibe 

P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

M
a

c
h

in
e

 L
e

a
rn

in
g

, 
S

u
m

m
e

r 
‘1

6
 

Random Forests – Algorithmic Goals 

• Create many trees (50 – 1,000) 
 

• Inject randomness into trees such that  

 Each tree has maximal strength 

– I.e. a fairly good model on its own 

 Each tree has minimum correlation with the other trees. 

– I.e. the errors tend to cancel out. 
 

• Ensemble of trees votes for final result 

 Simple majority vote for category. 

 

 

 
 

 Alternative (Friedman) 

– Optimally reweight the trees via regularized regression (lasso). 
25 
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Random Forests – Injecting Randomness (1)  

• Bootstrap sampling process 

 Select a training set by choosing N times with replacement from 

all N available training examples. 

 On average, each tree is grown on only ~63% of the original 

training data. 

 Remaining 37% “out-of-bag” (OOB) data used for validation. 

– Provides ongoing assessment of model performance in the current 

tree. 

– Allows fitting to small data sets without explicitly holding back any 

data for testing. 

– Error estimate is unbiased and behaves as if we had an independent 

test sample of the same size as the training sample. 
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http://cvlab.epfl.ch/~vlepetit/papers/ozuysal_eccv06.pdf
http://cvlab.epfl.ch/~vlepetit/papers/ozuysal_eccv06.pdf
http://cvlab.epfl.ch/~vlepetit/papers/ozuysal_eccv06.pdf
http://cvlab.epfl.ch/~vlepetit/papers/ozuysal_eccv06.pdf
http://cvlab.epfl.ch/~vlepetit/papers/ozuysal_eccv06.pdf
http://cvlab.epfl.ch/~vlepetit/papers/ozuysal_eccv06.pdf
http://cvlab.epfl.ch/~vlepetit/papers/ozuysal_eccv06.pdf
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Random Forests – Injecting Randomness (2) 

• Random attribute selection 

 For each node, randomly choose subset of K attributes on which 

the split is based (typically                   ). 

 Faster training procedure 

– Need to test only few attributes. 

 Minimizes inter-tree dependence 

– Reduce correlation between different trees. 
 

• Each tree is grown to maximal size and is left unpruned 

 Trees are deliberately overfit 

 Become some form of nearest-neighbor predictor. 

27 
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Bet You’re Asking… 

 

 

 

 

How can this possibly ever work??? 
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A Graphical Interpretation 

29 
B. Leibe Slide credit: Vincent Lepetit 

Different trees 

induce different 

partitions on the 

data. 
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A Graphical Interpretation 

30 
B. Leibe Slide credit: Vincent Lepetit 

Different trees 

induce different 

partitions on the 

data. 
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A Graphical Interpretation 

31 
B. Leibe Slide credit: Vincent Lepetit 

Different trees 

induce different 

partitions on the 

data. 

By combining  

them, we obtain 

a finer subdivision 

of the feature  

space… 

P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

M
a

c
h

in
e

 L
e

a
rn

in
g

, 
S

u
m

m
e

r 
‘1

6
 

A Graphical Interpretation 

32 
B. Leibe Slide credit: Vincent Lepetit 

Different trees 

induce different 

partitions on the 

data. 

By combining  

them, we obtain 

a finer subdivision 

of the feature  

space… 

…which at the 

same time also 

better reflects the 

uncertainty due to 

the bootstrapped 

sampling.  
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Summary: Random Forests 

• Properties 

 Very simple algorithm. 

 Resistant to overfitting – generalizes well to new data. 

 Faster training 

 Extensions available for clustering, distance learning, etc. 
 

• Limitations 

 Memory consumption 

– Decision tree construction uses much more memory. 

 Well-suited for problems with little training data 

– Little performance gain when training data is really large. 
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You Can Try It At Home… 

• Free implementations available 

 Original RF implementation by Breiman & Cutler 

– http://www.stat.berkeley.edu/users/breiman/RandomForests/ 

– Papers, documentation, and code… 

– …in Fortran 77. 
 

 But also newer version available in Fortran 90! 

– http://www.irb.hr/en/research/projects/it/2004/2004-111/ 

 

 Fast Random Forest implementation for Java (Weka) 

– http://code.google.com/p/fast-random-forest/ 
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L. Breiman, Random Forests, Machine Learning, Vol. 45(1), pp. 5-32, 2001. 
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Topics of This Lecture 

• Randomized Decision Trees 
 Randomized attribute selection 

 

• Recap: Random Forests 
 Bootstrap sampling 

 Ensemble of randomized trees 

 Posterior sum combination 

 Analysis 
 

• Extremely randomized trees 
 Random attribute selection 
 

• Ferns 
 Fern structure 

 Semi-Naïve Bayes combination 

 Applications 
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A Case Study in Deconstructivism… 

• What we’ve done so far 

 Take the original decision tree idea. 

 Throw out all the complicated bits (pruning, etc.). 

 Learn on random subset of training data (bootstrapping/bagging). 

 Select splits based on random choice of candidate queries. 

– So as to maximize information gain. 

– Complexity:  

 Ensemble of weaker classifiers. 
 

• How can we further simplify that? 

 Main effort still comes from selecting the optimal split (from 

reduced set of options)… 

 Simply choose a random query at each node. 

– Complexity:  

 Extremely randomized decision trees 
36 
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O(KN2 logN)

O(N)
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Extremely Randomized Decision Trees 

• Random queries at each node… 

 Tree gradually develops from a classifier to a  

flexible container structure. 

 Node queries define (randomly selected)  

structure. 

 Each leaf node stores posterior probabilities  

 

• Learning (e.g. for keypoint detection) 

 Patches are “dropped down” the trees. 

– Only pairwise pixel comparisons at each node. 

– Directly update posterior distributions at leaves 

 Very fast procedure, only few pixel-wise comparisons 

 No need to store the original patches! 

37 
B. Leibe Image source: Wikipedia 
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Performance Comparison 

 

 

 

 

 

 

 
 

• Results 

 Almost equal performance for random tests when a sufficient 

number of trees is available (and much faster to train!). 
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V. Lepetit, P. Fua, Keypoint Recognition using Randomized Trees, IEEE Trans.  

Pattern Analysis and Machine Intelligence, Vol. 28(9), pp. 1465—1479, 2006. 

Keypoint  

detection task 

http://www.stat.berkeley.edu/users/breiman/RandomForests/
http://www.irb.hr/en/research/projects/it/2004/2004-111/
http://www.irb.hr/en/research/projects/it/2004/2004-111/
http://www.irb.hr/en/research/projects/it/2004/2004-111/
http://code.google.com/p/fast-random-forest/
http://code.google.com/p/fast-random-forest/
http://code.google.com/p/fast-random-forest/
http://code.google.com/p/fast-random-forest/
http://code.google.com/p/fast-random-forest/
http://www.stat.berkeley.edu/users/breiman/RandomForests/
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Topics of This Lecture 

• Randomized Decision Trees 
 Randomized attribute selection 

 

• Recap: Random Forests 
 Bootstrap sampling 

 Ensemble of randomized trees 

 Posterior sum combination 

 Analysis 
 

• Extremely randomized trees 
 Random attribute selection 
 

• Ferns 
 Fern structure 

 Semi-Naïve Bayes combination 

 Applications 
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From Trees to Ferns… 

 

 

 

 

 

 

• Observation 

 If we select the node queries randomly anyway, what is the 

point of choosing different ones for each node? 

 Keep the same query for all nodes at a certain level. 

 This effectively enumerates all 2M possible outcomes of the M 

tree queries. 

 Tree can be collapsed into a fern-like structure. 
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Tree “Fern” 
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What Does This Mean? 

• Interpretation of the decision tree 

 We model the class conditional probabilities of a large number  

of binary features (the node queries). 

 Notation 

–  fi  :  Binary feature 

–  Nf: Total number of features in the model. 

–  Ck :  Target class 

 Given f1,…,fNf , we want to select class Ck such that 

 
 

 Assuming a uniform prior over classes, this is the equal to 

 

 

 Main issue: How do we model the joint distribution? 
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k = argmax
k

p(Ckjf1; : : : ; fNf )

k = argmax
k

p(f1; : : : ; fNf jCk)
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Modeling the Joint Distribution 

• Full Joint 

 Model all correlations between features 
 

 

 Model with        parameters, not feasible to learn. 

 

• Naïve Bayes classifier 

 Assumption: all features are independent. 

 

 
 

 Too simplistic, assumption does not really hold! 

 Naïve Bayes model ignores correlation between features. 
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p(f1; : : : ; fNf jCk) =
NfY

i=1

p(fijCk)

p(f1; : : : ; fNf jCk)
2Nf
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Modeling the Joint Distribution 

• Decision tree 

 Each path from the root to a leaf corresponds to a specific 

combination of feature outcomes, e.g. 

 
 

 Those path outcomes are independent, therefore 

 

 
 

 But not all feature outcomes are represented here… 
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pleafm(Ck) = p(fm1 = 1; fm2 = 0; : : : ; fmd = 1jCk)

p(f1; : : : ; fNf jCk) ¼
MY

m=1

pleafm(Ck)
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Modeling the Joint Distribution 

• Ferns 

 A fern F is defined as a set of S binary features {fl,…,fl+S}. 

 M: number of ferns, Nf = S¢M. 

 This represents a compromise: 

 

 

 

 
 

 

 

 Model with              parameters (“Semi-Naïve”). 

 Flexible solution that allows complexity/performance tuning. 
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p(f1; : : : ; fNf jCk) ¼
MY

j=1

p(FjjCk)

M ¢ 2S

= p(f1; : : : ; fSjCk) ¢ p(fS+1; : : : ; f2SjCk) ¢ : : :

Full joint  

inside fern 

Naïve Bayes 

between ferns 
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Modeling the Joint Distribution 

• Ferns 

 Ferns are thus semi-naïve Bayes classifiers. 

 They assume independence between sets of 

features (between the ferns)… 

 …and enumerate all possible outcomes  

inside each set. 

 

• Interpretation 

 Combine the tests fl,…,fl+S into a binary number. 

 Update the “fern leaf” corresponding to that number. 
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0 

0 

1 

Update leaf 1002 = 4 
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Ferns – Training 
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The tests compare the intensities of two pixels around 

the keypoint: 
 

 

 

 
 

Invariant to lighting change by any raising function. 

Posterior probabilities: 

Slide credit: Vincent Lepetit 
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Ferns – Training 
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Ferns – Training  
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0 

1 

1 

6 

Slide credit: Vincent Lepetit 
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Ferns – Training 
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Slide credit: Vincent Lepetit 
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Ferns – Training 
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Slide credit: Vincent Lepetit 
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Ferns – Training 
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Ferns – Training Results 
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Normalize: 

Slide credit: Vincent Lepetit 

X
= 1
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Ferns – Training Results 
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Normalize: 

Slide credit: Vincent Lepetit 

X
= 1
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Ferns – Recognition 

 

54 
B. Leibe Slide credit: Vincent Lepetit 

P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

M
a

c
h

in
e

 L
e

a
rn

in
g

, 
S

u
m

m
e

r 
‘1

6
 

Performance Comparison 
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• Results 

 Ferns perform as well as randomized trees (but are much faster) 

 Naïve Bayes combination better than averaging posteriors. P
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Keypoint Recognition in 10 Lines of Code 

 

 

 

 

 

 

 

• Properties 

 Very simple to implement; 

 (Almost) no parameters to tune; 

 Very fast. 
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 1: for(int i = 0; i < H; i++) P[i ] = 0.; 

 2: for(int k = 0; k < M; k++) { 

 3:   int index = 0, * d = D + k * 2 * S; 

 4:   for(int j = 0; j < S; j++) { 

 5:     index <<= 1; 

 6:     if (*(K + d[0]) < *(K + d[1])) 

 7:       index++; 

 8:     d += 2; 

      } 

 9:   p = PF + k * shift2 + index * shift1; 

10:   for(int i = 0; i < H; i++) P[i] += p[i]; 

     } 

M. Ozuysal, M. Calonder, V. Lepetit, P. Fua, Fast Keypoint Recognition using Random  

Ferns. In IEEE. Trans. Pattern Analysis and Machine Intelligence, 2009. 

http://cvlab.epfl.ch/publications/publications/2009/OzuysalCLF09.pdf
http://cvlab.epfl.ch/publications/publications/2009/OzuysalCLF09.pdf
http://cvlab.epfl.ch/publications/publications/2009/OzuysalCLF09.pdf
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Application: Keypoint Matching with Ferns 
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Application: Mobile Augmented Reality 
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D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, D. Schmalstieg,  

Pose Tracking from Natural Features on Mobile Phones. In ISMAR 2008. 
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Practical Issues – Selecting the Tests 

• For a small number of classes 

 We can try several tests. 

 Retain the best one according to some  

criterion. 

– E.g. entropy, Gini 

 

 
 

• When the number of classes is large 

 Any test does a decent job. 
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B. Leibe Slide credit: Vincent Lepetit 
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Summary 

• We started from full decision trees… 

 Successively simplified the classifiers… 
 

• …and ended up with very simple randomized versions 

 Ensemble methods: Combination of many simple classifiers 

 Good overall performance 

 Very fast to train and to evaluate 
 

• Common limitations of Randomized Trees and Ferns? 

 Need large amounts of training data! 

– In order to fill the many probability distributions at the leaves.  

 Memory consumption! 

– Linear in the number of trees. 

– Exponential in the tree depth. 

– Linear in the number of classes (histogram at each leaf!) 
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