

Machine Learning - Lecture 11

AdaBoost & Decision Trees

07.06.2016

Bastian Leibe

RWTH Aachen

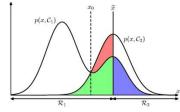
http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de

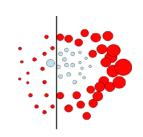
Course Outline

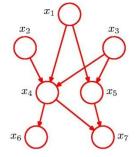
- Fundamentals (2 weeks)
 - Bayes Decision Theory
 - Probability Density Estimation



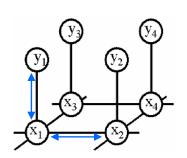


- Discriminative Approaches (5 weeks)
 - Linear Discriminant Functions
 - Statistical Learning Theory & SVMs
 - Ensemble Methods & Boosting
 - Randomized Trees, Forests & Ferns





- Generative Models (4 weeks)
 - Bayesian Networks
 - Markov Random Fields



Recap: Stacking

Idea

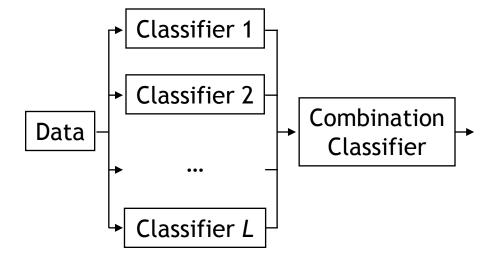
ightharpoonup Learn L classifiers (based on the training data)

lacksquare Find a meta-classifier that takes as input the output of the L

first-level classifiers.

Example

- Learn L classifiers with leave-one-out.
- > Interpret the prediction of the L classifiers as L-dimensional feature vector.
- Learn "level-2" classifier based on the examples generated this way.



Recap: Bayesian Model Averaging

Model Averaging

- Suppose we have H different models h = 1,...,H with prior probabilities p(h).
- Construct the marginal distribution over the data set

$$p(\mathbf{X}) = \sum_{h=1}^{H} p(\mathbf{X}|h)p(h)$$

Average error of committee
$$\mathbb{E}_{COM} = \frac{1}{M}\mathbb{E}_{AV}$$

- > This suggests that the average error of a model can be reduced by a factor of M simply by averaging M versions of the model!
- Unfortunately, this assumes that the errors are all uncorrelated. In practice, they will typically be highly correlated.

Topics of This Lecture

AdaBoost

- Algorithm
- Analysis
- Extensions

Analysis

- Comparing Error Functions
- Applications
 - AdaBoost for face detection

Decision Trees

- > CART
- Impurity measures, Stopping criterion, Pruning
- Extensions, Issues
- Historical development: ID3, C4.5

Recap: AdaBoost - "Adaptive Boosting"

Main idea

[Freund & Schapire, 1996]

- Instead of resampling, reweight misclassified training examples.
 - Increase the chance of being selected in a sampled training set.
 - Or increase the misclassification cost when training on the full set.

Components

- $h_m(\mathbf{x})$: "weak" or base classifier
 - Condition: <50% training error over any distribution
- \rightarrow $H(\mathbf{x})$: "strong" or final classifier

AdaBoost:

Construct a strong classifier as a thresholded linear combination of the weighted weak classifiers:

$$H(\mathbf{x}) = sign\left(\sum_{m=1}^{M} \alpha_m h_m(\mathbf{x})\right)$$

AdaBoost - Algorithm

- **1.** Initialization: Set $w_n^{(1)}=\frac{1}{N}$ for n=1,...,N.
- **2.** For m = 1,...,M iterations
 - a) Train a new weak classifier $h_m(\mathbf{x})$ using the current weighting coefficients $\mathbf{W}^{(m)}$ by minimizing the weighted error function

$$J_m = \sum_{n=1}^{N} w_n^{(m)} I(h_m(\mathbf{x}) \neq t_n) \qquad I(A) = \begin{cases} 1, & \text{if } A \text{ is true} \\ 0, & \text{else} \end{cases}$$

b) Estimate the weighted error of this classifier on X:

$$\epsilon_m = \frac{\sum_{n=1}^{N} w_n^{(m)} I(h_m(\mathbf{x}) \neq t_n)}{\sum_{n=1}^{N} w_n^{(m)}}$$

c) Calculate a weighting coefficient for $h_m(\mathbf{x})$:

$$\alpha_m = ?$$

d) Update the weighting coefficients:

$$w_n^{(m+1)} = ?$$

How should we do this exactly?

AdaBoost - Historical Development

- Originally motivated by Statistical Learning Theory
 - AdaBoost was introduced in 1996 by Freund & Schapire.
 - It was empirically observed that AdaBoost often tends not to overfit. (Breiman 96, Cortes & Drucker 97, etc.)
 - As a result, the margin theory (Schapire et al. 98) developed, which is based on loose generalization bounds.
 - Note: margin for boosting is *not* the same as margin for SVM.
 - A bit like retrofitting the theory...
 - However, those bounds are too loose to be of practical value.
- Different explanation (Friedman, Hastie, Tibshirani, 2000)
 - Interpretation as sequential minimization of an exponential error function ("Forward Stagewise Additive Modeling").
 - Explains why boosting works well.
 - Improvements possible by altering the error function.

Exponential error function

$$E = \sum_{n=1}^{N} \exp\left\{-t_n f_m(\mathbf{x}_n)\right\}$$

where $f_m(\mathbf{x})$ is a classifier defined as a linear combination of base classifiers $h_l(\mathbf{x})$:

$$f_m(\mathbf{x}) = \frac{1}{2} \sum_{l=1}^{m} \alpha_l h_l(\mathbf{x})$$

- Goal
 - Minimize E with respect to both the weighting coefficients α_l and the parameters of the base classifiers $h_l(\mathbf{x})$.

- Sequential Minimization
 - > Suppose that the base classifiers $h_1(\mathbf{x}),...,h_{m\text{-}1}(\mathbf{x})$ and their coefficients $\alpha_1,...,\alpha_{m\text{-}1}$ are fixed.
 - \Rightarrow Only minimize with respect to α_m and $h_m(\mathbf{x})$.

$$E = \sum_{n=1}^{N} \exp\left\{-t_n f_m(\mathbf{x}_n)\right\}$$
 with $f_m(\mathbf{x}) = \frac{1}{2} \sum_{l=1}^{m} \alpha_l h_l(\mathbf{x})$

$$= \sum_{n=1}^{N} \exp\left\{-t_n f_{m-1}(\mathbf{x}_n) - \frac{1}{2} t_n \alpha_m h_m(\mathbf{x}_n)\right\}$$

= const.

$$= \sum_{n=1}^{N} w_n^{(m)} \exp\left\{-\frac{1}{2}t_n \alpha_m h_m(\mathbf{x}_n)\right\}$$

$$E = \sum_{n=1}^{N} w_n^{(m)} \exp\left\{-\frac{1}{2}t_n \alpha_m h_m(\mathbf{x}_n)\right\}$$

- Observation:
 - Correctly classified points: $t_n h_m(\mathbf{x}_n) = +1$
 - $t_n h_m(\mathbf{x}_n) = -1$ \Rightarrow
- \Rightarrow collect in \mathcal{T}_m \Rightarrow collect in \mathcal{F}_m

Rewrite the error function as

- Misclassified points:

$$E = e^{-\alpha_m/2} \sum_{n \in \mathcal{T}_m} w_n^{(m)} + e^{\alpha_m/2} \sum_{n \in \mathcal{F}_m} w_n^{(m)}$$

$$= \left(e^{\alpha_m/2}\right) \sum_{n=1}^{N} w_n^{(m)} I(h_m(\mathbf{x}_n) \neq t_n)$$

$$E = \sum_{n=1}^{N} w_n^{(m)} \exp\left\{-\frac{1}{2}t_n \alpha_m h_m(\mathbf{x}_n)\right\}$$

- Observation:
 - Correctly classified points: $t_n h_m(\mathbf{x}_n) = +1$

 \Rightarrow collect in \mathcal{T}_m

- Misclassified points:

 $t_n h_m(\mathbf{x}_n) = -1$

 \Rightarrow collect in \mathcal{F}_m

Rewrite the error function as

$$E = e^{-\alpha_m/2} \sum_{n \in \mathcal{T}_m} w_n^{(m)} + e^{\alpha_m/2} \sum_{n \in \mathcal{F}_m} w_n^{(m)}$$

$$= \left(e^{\alpha_m/2} - e^{-\alpha_m/2}\right) \sum_{n=1}^N w_n^{(m)} I(h_m(\mathbf{x}_n) \neq t_n) + e^{-\alpha_m/2} \sum_{n=1}^N w_n^{(m)}$$

• Minimize with respect to $h_m(\mathbf{x})$: $\frac{\partial E}{\partial h_m(\mathbf{x}_n)} \stackrel{!}{=} 0$

$$E = \left(e^{\alpha_m/2} - e^{-\alpha_m/2}\right) \sum_{n=1}^{N} w_n^{(m)} I(h_m(\mathbf{x}_n) \neq t_n) + e^{-\alpha_m/2} \sum_{n=1}^{N} w_n^{(m)}$$

$$= const.$$

⇒ This is equivalent to minimizing

$$J_m = \sum_{n=1}^{N} w_n^{(m)} I(h_m(\mathbf{x}) \neq t_n)$$

(our weighted error function from step 2a) of the algorithm)

⇒ We're on the right track. Let's continue...

AdaBoost - Minimizing Exponential Error

• Minimize with respect to α_m : $\frac{\partial E}{\partial \alpha_m} \stackrel{!}{=} 0$

$$E = \left(e^{\alpha_m/2} - e^{-\alpha_m/2}\right) \sum_{n=1}^{N} w_n^{(m)} I(h_m(\mathbf{x}_n) \neq t_n) + e^{-\alpha_m/2} \sum_{n=1}^{N} w_n^{(m)}$$

$$\left(\frac{1}{2}e^{\alpha_m/2} + \frac{1}{2}e^{-\alpha_m/2}\right) \sum_{n=1}^{N} w_n^{(m)} I(h_m(\mathbf{x}_n) \neq t_n) \stackrel{!}{=} \frac{1}{2}e^{-\alpha_m/2} \sum_{n=1}^{N} w_n^{(m)}$$

weighted error
$$\epsilon_m:=\underbrace{\sum_{n=1}^N w_n^{(m)} I(h_m(\mathbf{x}_n) \neq t_n)}_{\sum_{n=1}^N w_n^{(m)}} = \underbrace{\frac{e^{-\alpha_m/2}}{e^{\alpha_m/2} + e^{-\alpha_m/2}}}_{\epsilon_m = \frac{1}{e^{\alpha_m} + 1}}$$

 \Rightarrow Update for the α coefficients:

$$\alpha_m = \ln \left\{ \frac{1 - \epsilon_m}{\epsilon_m} \right\}$$

- Remaining step: update the weights
 - Recall that

$$E = \sum_{n=1}^{N} w_n^{(m)} \exp\left\{-\frac{1}{2}t_n \alpha_m h_m(\mathbf{x}_n)\right\}$$

This becomes $w_n^{(m+1)}$ in the next iteration.

Therefore

$$w_n^{(m+1)} = w_n^{(m)} \exp\left\{-\frac{1}{2}t_n\alpha_m h_m(\mathbf{x}_n)\right\}$$
$$= \dots$$
$$= w_n^{(m)} \exp\left\{\alpha_m I(h_m(\mathbf{x}_n) \neq t_n)\right\}$$

 \Rightarrow Update for the weight coefficients.

AdaBoost - Final Algorithm

- **1.** Initialization: Set $w_n^{(1)}=\frac{1}{N}$ for n=1,...,N.
- **2.** For m = 1,...,M iterations
 - a) Train a new weak classifier $h_m(\mathbf{x})$ using the current weighting coefficients $\mathbf{W}^{(m)}$ by minimizing the weighted error function

$$J_m = \sum_{n=1}^{\infty} w_n^{(m)} I(h_m(\mathbf{x}) \neq t_n)$$

b) Estimate the weighted error of this classifier on X:

$$\epsilon_m = \frac{\sum_{n=1}^{N} w_n^{(m)} I(h_m(\mathbf{x}) \neq t_n)}{\sum_{n=1}^{N} w_n^{(m)}}$$

c) Calculate a weighting coefficient for $h_m(\mathbf{x})$:

$$\alpha_m = \ln\left\{\frac{1 - \epsilon_m}{\epsilon_m}\right\}$$

d) Update the weighting coefficients:

$$w_n^{(m+1)} = w_n^{(m)} \exp \{\alpha_m I(h_m(\mathbf{x}_n) \neq t_n)\}$$

Topics of This Lecture

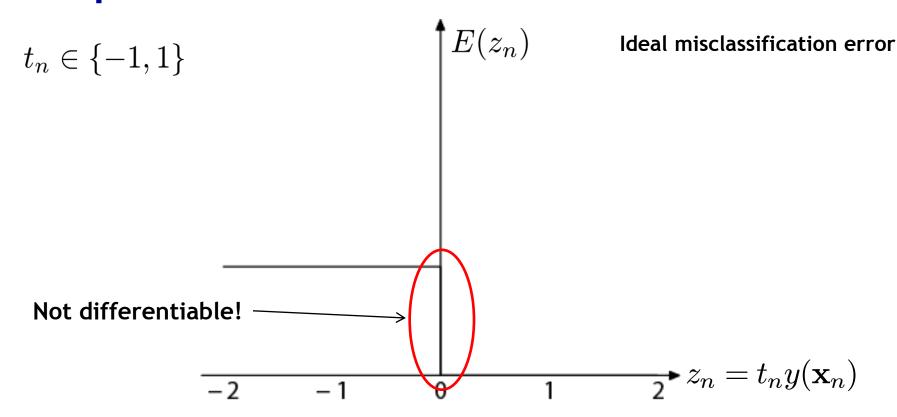
- AdaBoost
 - Algorithm
 - > Analysis
 - Extensions
- Analysis
 - Comparing Error Functions
- Applications
 - AdaBoost for face detection
- Decision Trees
 - > CART
 - Impurity measures, Stopping criterion, Pruning
 - Extensions, Issues
 - Historical development: ID3, C4.5

AdaBoost - Analysis

Result of this derivation

- We now know that AdaBoost minimizes an exponential error function in a sequential fashion.
- This allows us to analyze AdaBoost's behavior in more detail.
- In particular, we can see how robust it is to outlier data points.

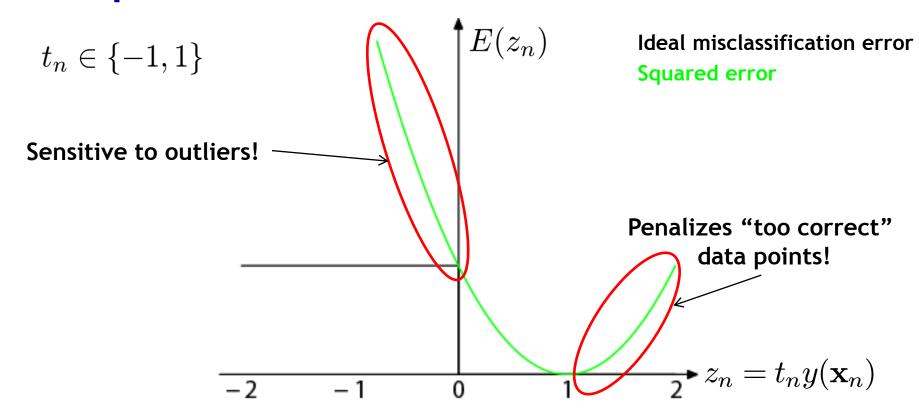
Recap: Error Functions



- Ideal misclassification error function (black)
 - This is what we want to approximate,
 - Unfortunately, it is not differentiable.
 - The gradient is zero for misclassified points.
 - ⇒ We cannot minimize it by gradient descent.

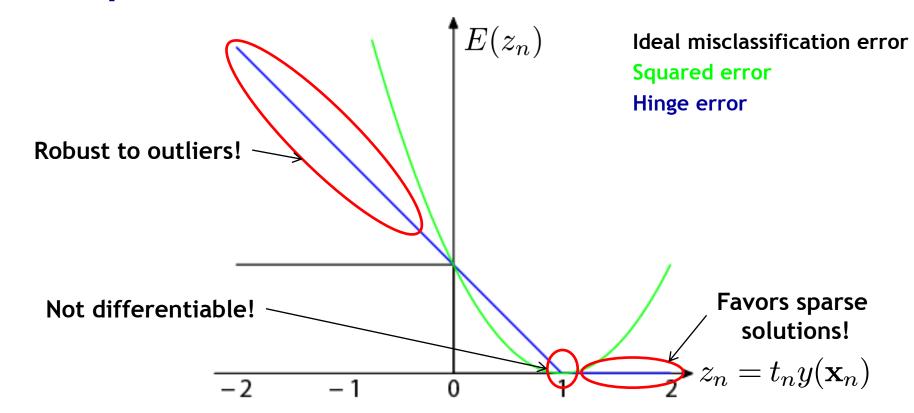
20

Recap: Error Functions



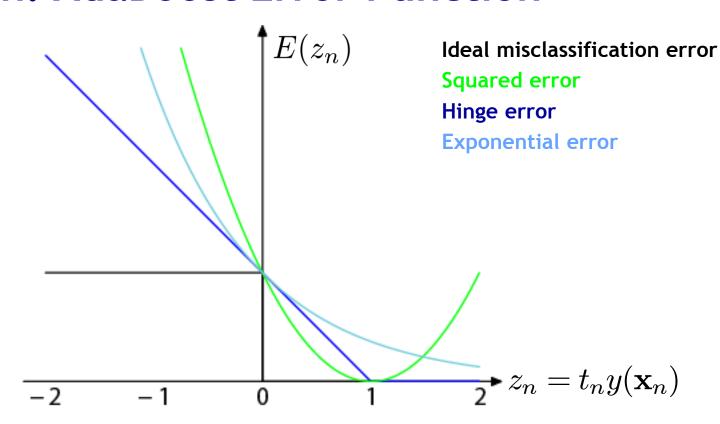
- Squared error used in Least-Squares Classification
 - Very popular, leads to closed-form solutions.
 - However, sensitive to outliers due to squared penalty.
 - > Penalizes "too correct" data points
 - ⇒ Generally does not lead to good classifiers.

Recap: Error Functions



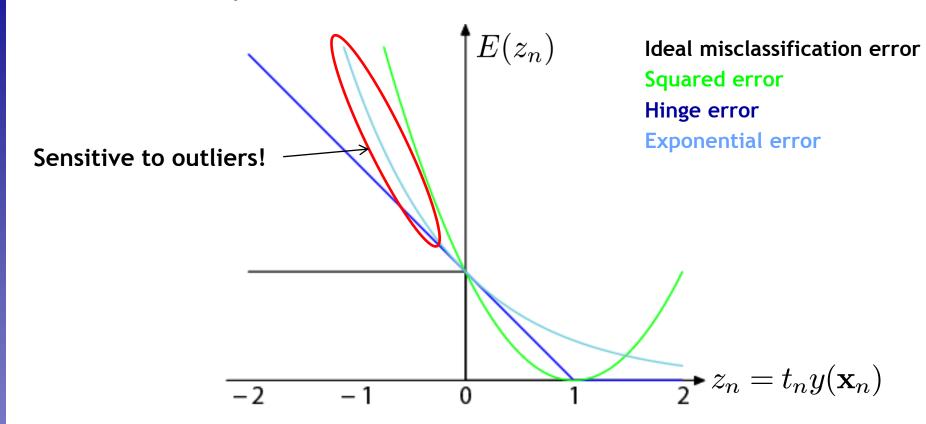
- "Hinge error" used in SVMs
 - > Zero error for points outside the margin ($z_n > 1$) \Rightarrow sparsity
 - > Linear penalty for misclassified points ($z_n < 1$) \implies robustness
 - Not differentiable around $z_{\text{B.}} = 1 \Rightarrow \text{Cannot be optimized directly2}$ Image source: Bishop, 2006

Discussion: AdaBoost Error Function



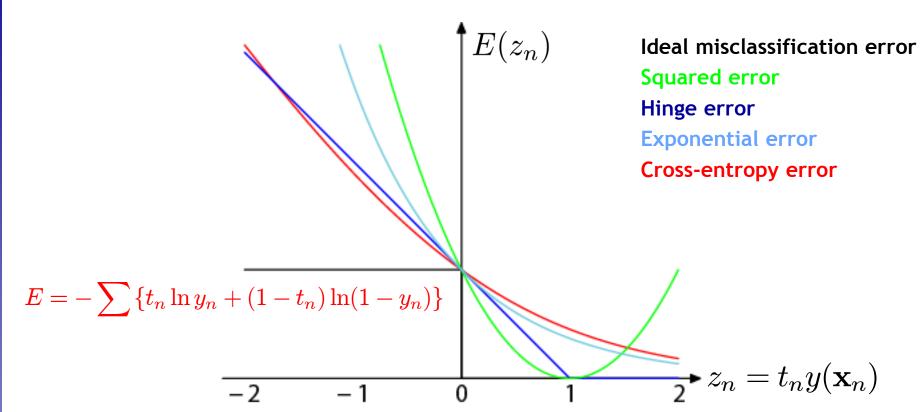
- Exponential error used in AdaBoost
 - Continuous approximation to ideal misclassification function.
 - Sequential minimization leads to simple AdaBoost scheme.
 - Properties?

Discussion: AdaBoost Error Function



- Exponential error used in AdaBoost
 - No penalty for too correct data points, fast convergence.
 - Disadvantage: exponential penalty for large negative values!
 - ⇒ Less robust to outliers or misclassified data points!

Discussion: Other Possible Error Functions



- "Cross-entropy error" used in Logistic Regression
 - ightarrow Similar to exponential error for $z{>}0$.
 - \succ Only grows linearly with large negative values of z.
 - ⇒ Make AdaBoost more robust by switching to this error function.
 - ⇒ "GentleBoost"

Summary: AdaBoost

Properties

- Simple combination of multiple classifiers.
- Easy to implement.
- Can be used with many different types of classifiers.
 - None of them needs to be too good on its own.
 - In fact, they only have to be slightly better than chance.
- Commonly used in many areas.
- Empirically good generalization capabilities.

Limitations

- Original AdaBoost sensitive to misclassified training data points.
 - Because of exponential error function.
 - Improvement by GentleBoost
- Single-class classifier
 - Multiclass extensions available

Topics of This Lecture

- Recap: AdaBoost
 - > Algorithm
 - > Analysis
 - Extensions
- Analysis
 - Comparing Error Functions
- Applications
 - AdaBoost for face detection
- Decision Trees
 - > CART
 - Impurity measures, Stopping criterion, Pruning
 - Extensions, Issues
 - Historical development: ID3, C4.5

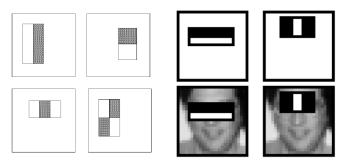
Example Application: Face Detection

- Frontal faces are a good example of a class where global appearance models + a sliding window detection approach fit well:
 - Regular 2D structure
 - Center of face almost shaped like a "patch"/window

 Now we'll take AdaBoost and see how the Viola-Jones face detector works

Feature extraction

"Rectangular" filters

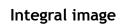


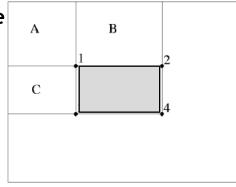
Feature output is difference between adjacent regions

Efficiently computable with integral image: any sum can be computed in constant time

Avoid scaling images → scale features directly for same cost

Value at (x,y) is sum of pixels above and to the left of (x,y)





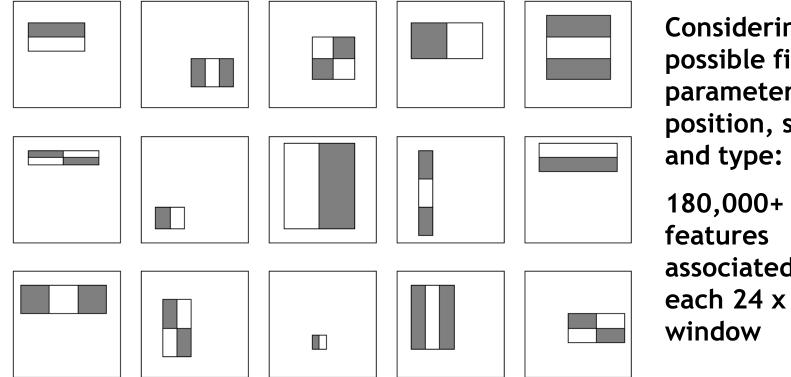
$$D = 1 + 4 - (2 + 3)$$

$$= A + (A + B + C + D) - (A + C + A + B)$$

$$= D$$

B. Leibe

Large Library of Filters



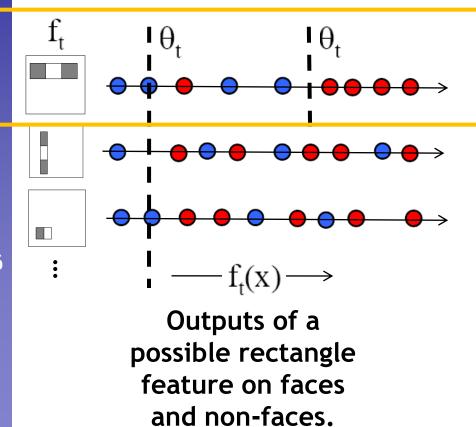
Considering all possible filter parameters: position, scale,

180,000+ possible associated with each 24 x 24

Use AdaBoost both to select the informative features and to form the classifier

AdaBoost for Feature+Classifier Selection

 Want to select the single rectangle feature and threshold that best separates positive (faces) and negative (nonfaces) training examples, in terms of weighted error.



Resulting weak classifier:

$$h_{t}(x) = \begin{cases} +1 & \text{if } f_{t}(x) > \theta_{t} \\ -1 & \text{otherwise} \end{cases}$$

For next round, reweight the examples according to errors, choose another filter/threshold combo.

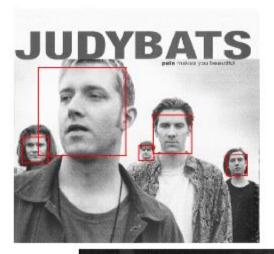
AdaBoost for Efficient Feature Selection

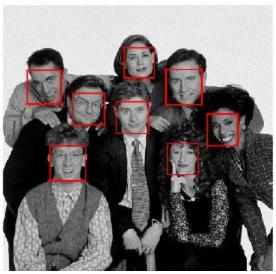
- Image features = weak classifiers
- For each round of boosting:
 - > Evaluate each rectangle filter on each example
 - Sort examples by filter values
 - Select best threshold for each filter (min error)
 - Sorted list can be quickly scanned for the optimal threshold
 - Select best filter/threshold combination
 - Weight on this features is a simple function of error rate
 - Reweight examples

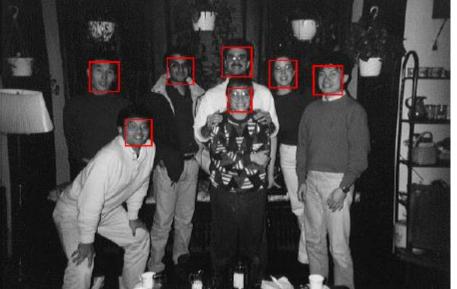
P. Viola, M. Jones, <u>Robust Real-Time Face Detection</u>, IJCV, Vol. 57(2), 2004. (first version appeared at CVPR 2001)

Slide credit: Kristen Grauman

Viola-Jones Face Detector: Results

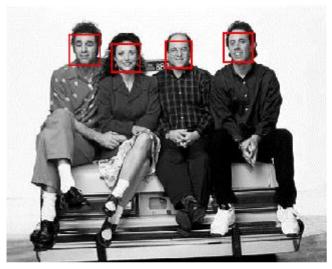


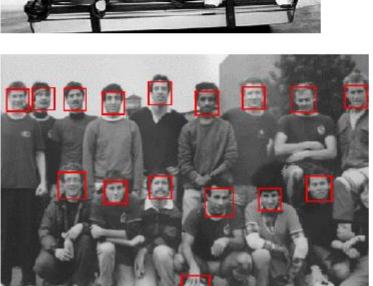


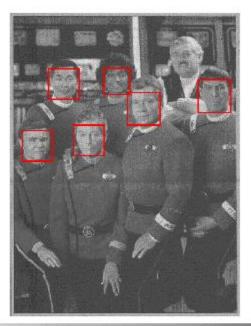


33

Viola-Jones Face Detector: Results





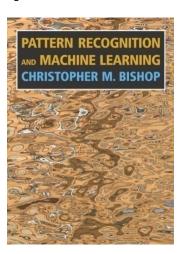


Viola-Jones Face Detector: Results

References and Further Reading

 More information on Classifier Combination and Boosting can be found in Chapters 14.1-14.3 of Bishop's book.

> Christopher M. Bishop Pattern Recognition and Machine Learning Springer, 2006



- A more in-depth discussion of the statistical interpretation of AdaBoost is available in the following paper:
 - J. Friedman, T. Hastie, R. Tibshirani, <u>Additive Logistic</u> <u>Regression: a Statistical View of Boosting</u>, *The Annals of Statistics*, Vol. 38(2), pages 337-374, 2000.

Topics of This Lecture

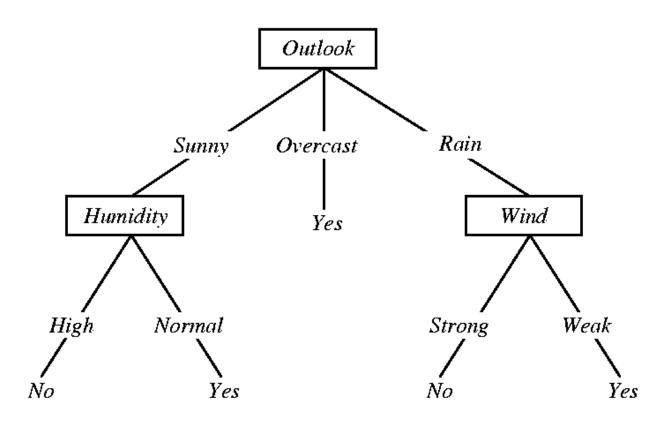
- Recap: AdaBoost
 - > Algorithm
 - > Analysis
 - Extensions
- Analysis
 - Comparing Error Functions
- Applications
 - AdaBoost for face detection
- Decision Trees
 - > CART
 - Impurity measures, Stopping criterion, Pruning
 - Extensions, Issues
 - Historical development: ID3, C4.5

Decision Trees

- Very old technique
 - Origin in the 60s, might seem outdated.

- Can be used for problems with nominal data
 - **E.g. attributes** color ∈ {red, green, blue} **or** weather ∈ {sunny, rainy}.
 - Discrete values, no notion of similarity or even ordering.
- Interpretable results
 - Learned trees can be written as sets of if-then rules.
- Methods developed for handling missing feature values.
- Successfully applied to broad range of tasks
 - E.g. Medical diagnosis
 - E.g. Credit risk assessment of loan applicants
- Some interesting novel developments building on top of them...

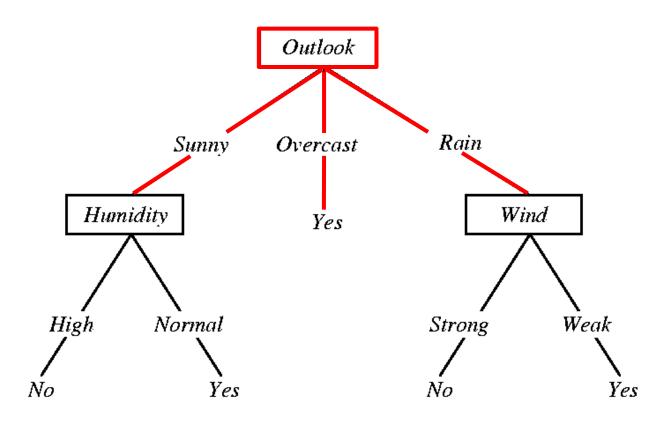
Decision Trees



Example:

"Classify Saturday mornings according to whether they're suitable for playing tennis."

Decision Trees



Elements

- Each node specifies a test for some attribute.
- Each branch corresponds to a possible value of the attribute.

Rain

Strong

Wind

Weak

Outlook

Overcast

Yes

Sunny

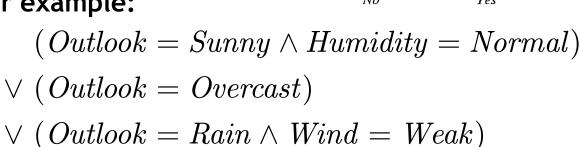
Humidity

Decision Trees

- Assumption
 - Links must be mutually distinct and exhaustive
 - I.e. one and only one link will be followed at each step.

Interpretability

- Information in a tree can then be rendered as logical expressions.
- In our example:



Training Decision Trees

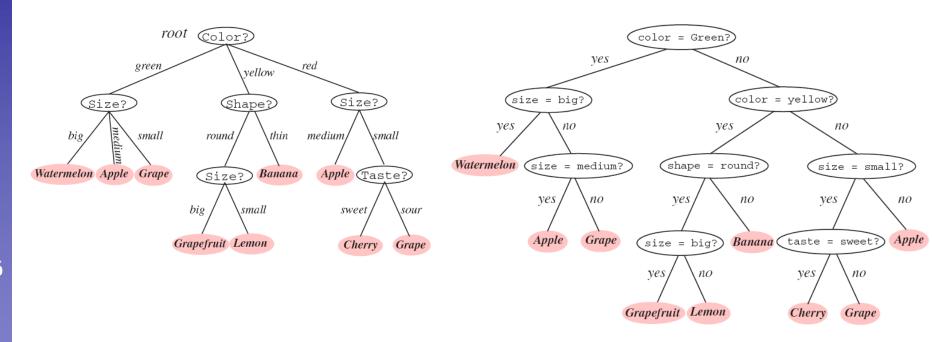
- Finding the optimal decision tree is NP-hard...
- Common procedure: Greedy top-down growing
 - Start at the root node.
 - Progressively split the training data into smaller and smaller subsets.
 - In each step, pick the best attribute to split the data.
 - If the resulting subsets are pure (only one label) or if no further attribute can be found that splits them, terminate the tree.
 - Else, recursively apply the procedure to the subsets.
- CART framework
 - Classification And Regression Trees (Breiman et al. 1993)
 - Formalization of the different design choices.

CART Framework

- Six general questions
 - 1. Binary or multi-valued problem?
 - I.e. how many splits should there be at each node?
 - 2. Which property should be tested at a node?
 - I.e. how to select the query attribute?
 - 3. When should a node be declared a leaf?
 - I.e. when to stop growing the tree?
 - 4. How can a grown tree be simplified or pruned?
 - Goal: reduce overfitting.
 - 5. How to deal with impure nodes?
 - I.e. when the data itself is ambiguous.
 - 6. How should missing attributes be handled?

CART - 1. Number of Splits

Each multi-valued tree can be converted into an equivalent binary tree:



⇒ Only consider binary trees here...

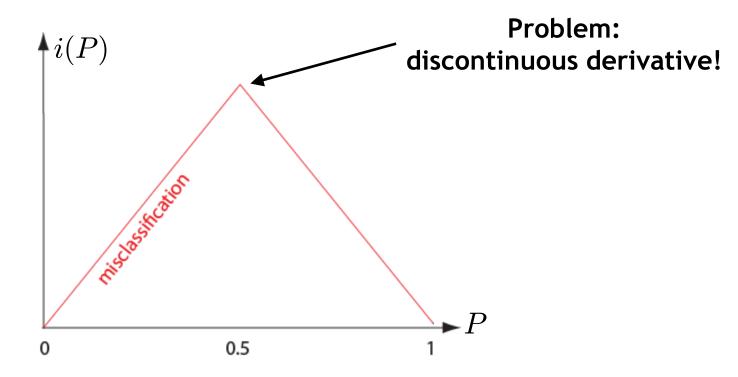
CART - 2. Picking a Good Splitting Feature

Goal

- Want a tree that is as simple/small as possible (Occam's razor).
- > But: Finding a minimal tree is an NP-hard optimization problem.

Greedy top-down search

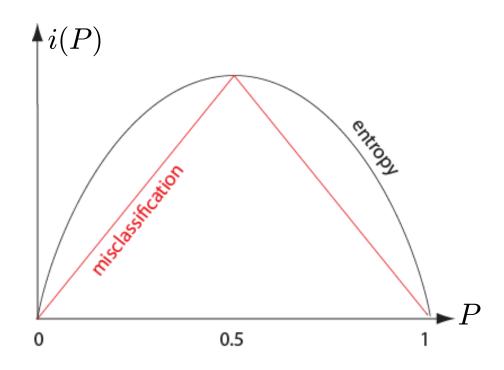
- Efficient, but not guaranteed to find the smallest tree.
- > Seek a property T at each node N that makes the data in the child nodes as *pure* as possible.
- ightharpoonup For formal reasons more convenient to define *impurity* i(N).
- Several possible definitions explored.



Misclassification impurity

$$i(N) = 1 - \max_{j} p(\mathcal{C}_{j}|N)$$

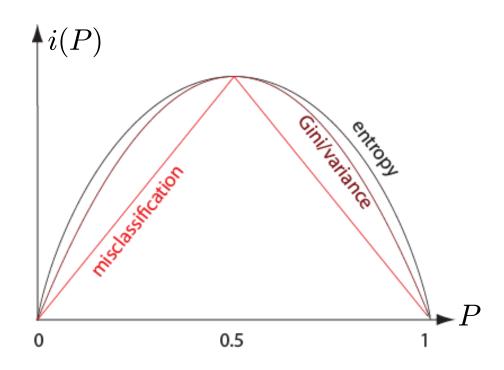
"Fraction of the training patterns in category C_j that end up in node N."



Entropy impurity

$$i(N) = -\sum_{j} p(\mathcal{C}_{j}|N) \log_{2} p(\mathcal{C}_{j}|N)$$

"Reduction in entropy = gain in information."



Gini impurity (variance impurity)

$$i(N) = \sum_{i \neq j} p(\mathcal{C}_i|N)p(\mathcal{C}_j|N)$$

= $\frac{1}{2}[1 - \sum_{j} p^2(\mathcal{C}_j|N)]$

"Expected error rate at node N if the category label is selected randomly."

- Which impurity measure should we choose?
 - Some problems with misclassification impurity.
 - Discontinuous derivative.
 - ⇒ Problems when searching over continuous parameter space.
 - Sometimes misclassification impurity does not decrease when Gini impurity would.
 - Both entropy impurity and Gini impurity perform well.
 - No big difference in terms of classifier performance.
 - In practice, stopping criterion and pruning method are often more important.

CART - 2. Picking a Good Splitting Feature

- Application
 - Select the query that decreases impurity the most

$$\triangle i(N) = i(N) - P_L i(N_L) - (1 - P_L)i(N_R)$$

- Multiway generalization (gain ratio impurity):
 - Maximize

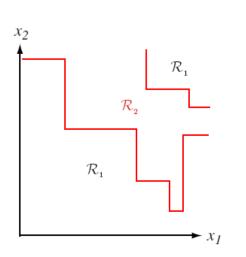
$$\triangle i(s) = \frac{1}{Z} \left(i(N) - \sum_{k=1}^{K} P_k i(N_k) \right)$$

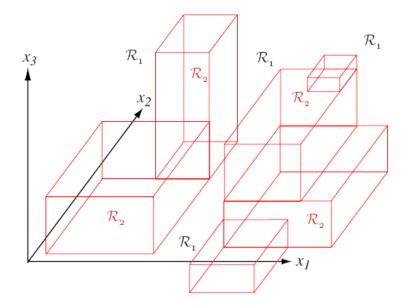
where the normalization factor ensures that large K are not inherently favored:

$$Z = -\sum_{k=1}^{K} P_k \log_2 P_k$$

CART - Picking a Good Splitting Feature

- For efficiency, splits are often based on a single feature
 - "Monothetic decision trees"





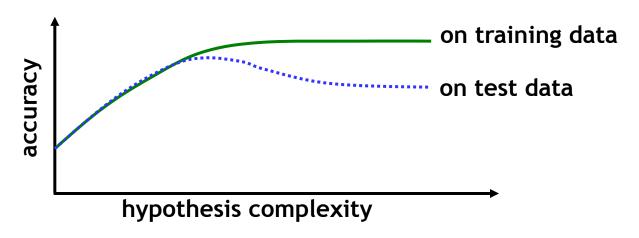
- Evaluating candidate splits
 - Nominal attributes: exhaustive search over all possibilities.
 - Real-valued attributes: only need to consider changes in label.
 - Order all data points based on attribute $x_ioldsymbol{.}$
 - Only need to test candidate splits where $label(x_i) \neq label(x_{i+1})$.

CART - 3. When to Stop Splitting

Problem: Overfitting

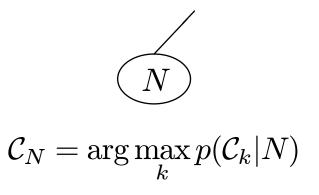
- Learning a tree that classifies the training data perfectly may not lead to the tree with the best generalization to unseen data.
- Reasons
 - Noise or errors in the training data.
 - Poor decisions towards the leaves of the tree that are based on very little data.

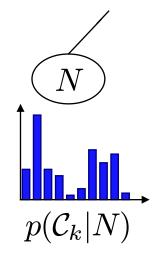
Typical behavior



CART - Overfitting Prevention (Pruning)

- Two basic approaches for decision trees
 - Prepruning: Stop growing tree as some point during top-down construction when there is no longer sufficient data to make reliable decisions.
 - Postpruning: Grow the full tree, then remove subtrees that do not have sufficient evidence.
- Label leaf resulting from pruning with the majority class of the remaining data, or a class probability distribution.





Decision Trees - Handling Missing Attributes

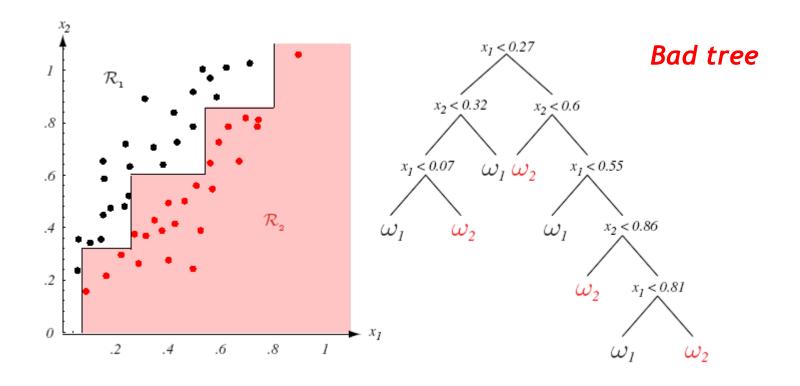
During training

- Calculate impurities at a node using only the attribute information present.
- ightharpoonup E.g. 3-dimensional data, one point is missing attribute $x_{
 m 3}$.
 - Compute possible splits on $x_{\scriptscriptstyle 1}$ using all N points.
 - Compute possible splits on $x_{\scriptscriptstyle 2}$ using all N points.
 - Compute possible splits on $x_{\scriptscriptstyle 3}$ using N-1 non-deficient points.
 - ⇒ Choose split which gives greatest reduction in impurity.

During test

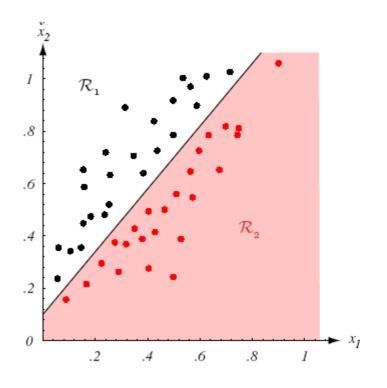
- Cannot handle test patterns that are lacking the decision attribute!
- ⇒ In addition to primary split, store an ordered set of surrogate splits that try to approximate the desired outcome based on different attributes.

Decision Trees - Feature Choice



Best results if proper features are used

Decision Trees - Feature Choice



Good tree

 $-1.2 x_1 + x_2 < 0.1$

- Best results if proper features are used
 - Preprocessing to find important axes often pays off.

Decision Trees - Non-Uniform Cost

- Incorporating category priors
 - Often desired to incorporate different priors for the categories.
 - Solution: weight samples to correct for the prior frequencies.
- Incorporating non-uniform loss
 - ightarrow Create loss matrix λ_{ij}
 - Loss can easily be incorporated into Gini impurity

$$i(N) = \sum_{ij} \lambda_{ij} p(C_i) p(C_j)$$

Historical Development

ID3 (Quinlan 1986)

- One of the first widely used decision tree algorithms.
- Intended to be used with nominal (unordered) variables
 - Real variables are first binned into discrete intervals.
- General branching factor
 - Use gain ratio impurity based on entropy (information gain) criterion.

Algorithm

- \triangleright Select attribute a that best classifies examples, assign it to root.
- ightarrow For each possible value v_i of a,
 - Add new tree branch corresponding to test $a=v_ioldsymbol.$
 - If example_list(v_i) is empty, add leaf node with most common label in example_list(a).
 - Else, recursively call ID3 for the subtree with attributes $A \setminus a$.

Historical Development

- C4.5 (Quinlan 1993)
 - Improved version with extended capabilities.
 - Ability to deal with real-valued variables.
 - Multiway splits are used with nominal data
 - Using gain ratio impurity based on entropy (information gain) criterion.
 - Heuristics for pruning based on statistical significance of splits.
 - Rule post-pruning

Main difference to CART

- Strategy for handling missing attributes.
- When missing feature is queried, C4.5 follows all B possible answers.
- > Decision is made based on all B possible outcomes, weighted by decision probabilities at node N.

Decision Trees - Computational Complexity

Given

- ightharpoonup Data points $\{\mathbf{x}_1,...,\mathbf{x}_N\}$
- $\,\,lacksquare$ Dimensionality D

Complexity

ightharpoonup Storage: O(N)

> Test runtime: $O(\log N)$

- > Training runtime: $O(DN^2 \log N)$
 - Most expensive part.
 - Critical step: selecting the optimal splitting point.
 - Need to check \boldsymbol{D} dimensions, for each need to sort \boldsymbol{N} data points.

$$O(DN \log N)$$

Summary: Decision Trees

Properties

- Simple learning procedure, fast evaluation.
- Can be applied to metric, nominal, or mixed data.
- Often yield interpretable results.

Summary: Decision Trees

Limitations

- Often produce noisy (bushy) or weak (stunted) classifiers.
- Do not generalize too well.
- Training data fragmentation:
 - As tree progresses, splits are selected based on less and less data.
- Overtraining and undertraining:
 - Deep trees: fit the training data well, will not generalize well to new test data.
 - Shallow trees: not sufficiently refined.
- Stability
 - Trees can be very sensitive to details of the training points.
 - If a single data point is only slightly shifted, a radically different tree may come out!
 - ⇒ Result of discrete and greedy learning procedure.
- Expensive learning step
 - Mostly due to costly selection of optimal split.

References and Further Reading

 More information on Decision Trees can be found in Chapters 8.2-8.4 of Duda & Hart.

> R.O. Duda, P.E. Hart, D.G. Stork Pattern Classification 2nd Ed., Wiley-Interscience, 2000

