Machine Learning - Lecture 10

Model Combination $\&$ Boosting

$$
06.06 .2016
$$

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de
leibe@vision.rwth-aachen.de
Many slides adapted from B. Schiele

Course Outline

- Fundamentals (2 weeks)
, Bayes Decision Theory
, Probability Density Estimation

- Discriminative Approaches (5 weeks)
, Linear Discriminant Functions
, Statistical Learning Theory \& SVMs
, Ensemble Methods \& Boosting
> Randomized Trees, Forests \& Ferns
- Generative Models (4 weeks)
, Bayesian Networks
, Markov Random Fields

R

Recap: SVM for Non-Separable Data

- Slack variables
, One slack variable $\xi_{n} \geq 0$ for each training data point.
- Interpretation
> $\xi_{n}=0$ for points that are on the correct side of the margin.
> $\xi_{n}=\left|t_{n}-y\left(\mathbf{x}_{n}\right)\right|$ for all other points.

> Point on decision boundary: $\xi_{n}=1$

Misclassified point:

$$
\xi_{n}>1
$$

, We do not have to set the slack variables ourselves!
\Rightarrow They are jointly optimized together with w.

Recap: SVM - New Dual Formulation

- New SVM Dual: Maximize

$$
L_{d}(\mathbf{a})=\sum_{n=1}^{N} a_{n}-\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_{n} a_{m} t_{n} t_{m}\left(\mathbf{x}_{m}^{\mathrm{T}} \mathbf{x}_{n}\right)
$$

under the conditions

$$
\begin{gathered}
0 \cdot a_{n} \cdot C \\
\sum_{n=1}^{N} a_{n} t_{n}=0
\end{gathered}
$$

This is all
that changed!

- This is again a quadratic programming problem
\Rightarrow Solve as before...

Recap: Nonlinear SVMs

- General idea: The original input space can be mapped to some higher-dimensional feature space where the training set is separable:

Recap: The Kernel Trick

- Important observation
> $\phi(\mathbf{x})$ only appears in the form of dot products $\phi(\mathbf{x})^{\top} \phi(\mathbf{y})$:

$$
\begin{aligned}
y(\mathbf{x}) & =\mathbf{w}^{\mathrm{T}} \phi(\mathbf{x})+b \\
& =\sum_{n=1}^{N} a_{n} t_{n} \phi\left(\mathbf{x}_{n}\right)^{\mathrm{T}} \phi(\mathbf{x})+b
\end{aligned}
$$

, Define a so-called kernel function $k(\mathbf{x}, \mathbf{y})=\phi(\mathbf{x})^{\top} \phi(\mathbf{y})$.

- Now, in place of the dot product, use the kernel instead:

$$
y(\mathbf{x})=\sum_{n=1}^{N} a_{n} t_{n} k\left(\mathbf{x}_{n}, \mathbf{x}\right)+b
$$

, The kernel function implicitly maps the data to the higherdimensional space (without having to compute $\phi(\mathbf{x})$ explicitly)!

Recap: Nonlinear SVM - Dual Formulation

- SVM Dual: Maximize

$$
L_{d}(\mathbf{a})=\sum_{n=1}^{N} a_{n}-\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_{n} a_{m} t_{n} t_{m} k\left(\mathbf{x}_{m}, \mathbf{x}_{n}\right)
$$

under the conditions

$$
\begin{gathered}
0 \cdot a_{n} \cdot C \\
\sum_{n=1}^{N} a_{n} t_{n}=0
\end{gathered}
$$

- Classify new data points using

$$
y(\mathbf{x})=\sum_{n=1}^{N} a_{n} t_{n} k\left(\mathbf{x}_{n}, \mathbf{x}\right)+b
$$

SVM - Analysis

- Traditional soft-margin formulation

$$
\min _{\mathbf{w} \in \mathbb{R}^{D}, \xi_{n} \in \mathbb{R}^{+}} \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{n=1}^{N} \xi_{n} \quad \begin{gathered}
\text { "Maximize } \\
\text { the margin" }
\end{gathered}
$$

subject to the constraints

$$
t_{n} y\left(\mathbf{x}_{n}\right) \geq 1-\xi_{n}
$$

"Most points should be on the correct side of the margin"

- Different way of looking at it
, We can reformulate the constraints into the objective function.

$$
\min _{\mathbf{w} \in \mathbb{R}^{D}} \underbrace{\frac{1}{2}\|\mathbf{w}\|^{2}}_{\mathbf{L}_{2} \text { regularizer }}+\underbrace{C \sum_{n=1}^{N}\left[1-t_{n} y\left(\mathbf{x}_{n}\right)\right]_{+}}_{\text {"Hinge loss" }}
$$

where $[x]_{+}:=\max \{0, x\}$.

Recap: Error Functions

$$
t_{n} \in\{-1,1\}
$$

- Ideal misclassification error function (black)
, This is what we want to approximate,
, Unfortunately, it is not differentiable.
, The gradient is zero for misclassified points.
\Rightarrow We cannot minimize it by gradient descent.

Recap: Error Functions

$$
t_{n} \in\{-1,1\}
$$

- Squared error used in Least-Squares Classification
- Very popular, leads to closed-form solutions.
, However, sensitive to outliers due to squared penalty.
, Penalizes "too correct" data points
\Rightarrow Generally does not lead to good classifiers.

Error Functions (Loss Functions)

- "Hinge error" used in SVMs
> Zero error for points outside the margin $\left(z_{n}>1\right) \quad \Rightarrow$ sparsity
, Linear penalty for misclassified points $\left(z_{n}<1\right) \quad \Rightarrow$ robustness
, Not differentiable around $z_{n}=1 \Rightarrow$ Cannot be optimized directly.

SVM - Discussion

- SVM optimization function

$$
\min _{\mathbf{w} \in \mathbb{R}^{D}} \underbrace{}_{\mathrm{L}_{2}} \underbrace{\frac{1}{2}\|\mathbf{w}\|^{2}}_{\text {regularizer }}+\underbrace{C \sum_{n=1}^{N}\left[1-t_{n} y\left(\mathbf{x}_{n}\right)\right]_{+}}_{\text {Hinge loss }}
$$

- Hinge loss enforces sparsity
, Only a subset of training data points actually influences the decision boundary.
, This is different from sparsity obtained through the regularizer! There, only a subset of input dimensions are used.
, Unconstrained optimization, but non-differentiable function.
, Solve, e.g. by subgradient descent
, Currently most efficient: stochastic gradient descent

Applications of SVMs: Text Classification

- Problem:
, Classify a document in a number of categories

- Representation:
, "Bag-of-words" approach
, Histogram of word counts (on learned dictionary)

- Very high-dimensional feature space (~ 10.000 dimensions)
- Few irrelevant features
- This was one of the first applications of SVMs
> T. Joachims (1997)

Example Application: Text Classification

- Results:

Example Application: Text Classification

- This is also how you could implement a simple spam filter...

Incoming email

Dictionary

Word activations

Trash

Example Application: OCR

- Handwritten digit recognition
, US Postal Service Database
, Standard benchmark task for many learning algorithms

3601496点714637103721497
 3 301038102966231092912 94052506741012455029855 $510125018032-70124.42064$ 161176057189600158701898 115755721257968.31249516 99505,720253622203242372
 13791419.2919251912014
 K 35972 2 29929922.51046701 3084115910106154061053.1

 $101+25018 x 1,2991089870984$ 91097275973.3720135198s委 107551,9551828438090963
 182

Historical Importance

- USPS benchmark
, 2.5\% error: human performance
- Different learning algorithms
, 16.2\% error: Decision tree (C4.5)
> 5.9\% error: (best) 2-layer Neural Network
> 5.1\% error: LeNet 1 - (massively hand-tuned) 5-layer network
- Different SVMs
, 4.0\% error: Polynomial kernel ($p=3,274$ support vectors)
, 4.1\% error: Gaussian kernel ($\sigma=0.3,291$ support vectors)

Example Application: OCR

- Results
, Almost no overfitting with higher-degree kernels.

degree of polynomial	dimensionality of feature space	support vectors	raw error
1	256	282	8.9
2	≈ 33000	227	4.7
3	$\approx 1 \times 10^{6}$	274	4.0
4	$\approx 1 \times 10^{9}$	321	4.2
5	$\approx 1 \times 10^{12}$	374	4.3
6	$\approx 1 \times 10^{14}$	377	4.5
7	$\approx 1 \times 10^{16}$	422	4.5

Example Application: Object Detection

- Sliding-window approach

- E.g. histogram representation (HOG)
, Map each grid cell in the input window to a histogram of gradient orientations.
- Train a linear SVM using training set of pedestrian vs. non-pedestrian windows.

Example Application: Pedestrian Detection

N. Dalal, B. Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 2005

So Far...

- We've seen already a variety of different classifiers
, k-NN
, Bayes classifiers
, Linear discriminants
, SVMs

Topics of This Lecture

- Ensembles of Classifiers
- Constructing Ensembles
, Cross-validation
, Bagging
- Combining Classifiers
, Stacking
, Bayesian model averaging
. Boosting
- AdaBoost
, Intuition
, Algorithm
, Analysis
, Extensions
- Applications

Ensembles of Classifiers

- Intuition
, Assume we have K classifiers.
, They are independent (i.e., their errors are uncorrelated).
, Each of them has an error probability $p<0.5$ on training data.
- Why can we assume that p won't be larger than 0.5 ?
, Then a simple majority vote of all classifiers should have a lower error than each individual classifier...

Topics of This Lecture

- Ensembles of Classifiers
- Constructing Ensembles
, Cross-validation
, Bagging
- Combining Classifiers
, Stacking
, Bayesian Model Averaging
Methods for combining different classifiers
Methods for obtaining a set of classifiers
- Boosting
- AdaBoost
, Intuition
, Algorithm
- Analysis
. Extensions
- Applications

Constructing Ensembles

- How do we get different classifiers?
, Simplest case: train same classifier on different data.
, But... where shall we get this additional data from?
- Recall: training data is very expensive!
- Idea: Subsample the training data
, Reuse the same training algorithm several times on different subsets of the training data.
- Well-suited for "unstable" learning algorithms
, Unstable: small differences in training data can produce very different classifiers
- E.g., Decision trees, neural networks, rule learning algorithms,...
, Stable learning algorithms
- E.g., Nearest neighbor, linear regression, SVMs,...

Constructing Ensembles

- Cross-Validation
, Split the available data into N disjunct subsets.
, In each run, train on $N-1$ subsets for training a classifier.
- Estimate the generalization error on the held-out validation set.
- E.g. 5-fold cross-validation

train	train	train	train	test
train	train	train	test	train
train	train	test	train	train
train	test	train	train	train
test	train	train	train	train

Constructing Ensembles

- Bagging = "Bootstrap aggregation" (Breiman 1996)
, In each run of the training algorithm, randomly select M samples from the full set of N training data points.
, If $M=N$, then on average, 63.2% of the training points will be represented. The rest are duplicates.
- Injecting randomness
- Many (iterative) learning algorithms need a random initialization (e.g. k-means, EM)
> Perform mutliple runs of the learning algorithm with different random initializations.

Topics of This Lecture

- Ensembles of Classifiers
- Constructing Ensembles
, Cross-validation
, Bagging
- Combining Classifiers
, Stacking
, Bayesian Model Averaging
Methods for obtaining a set of classifiers

Methods for combining different classifiers
, Boosting

- AdaBoost
, Intuition
, Algorithm
, Analysis
, Extensions
- Applications

Stacking

- Idea
, Learn L classifiers (based on the training data)
, Find a meta-classifier that takes as input the output of the L first-level classifiers.
- Example
, Learn L classifiers with leave-one-out cross-validation.

, Interpret the prediction of the L classifiers as L-dimensional feature vector.
, Learn "level-2" classifier based on the examples generated this way.

Stacking

- Why can this be useful?
, Simplicity
- We may already have several existing classifiers available.
\Rightarrow No need to retrain those, they can just be combined with the rest.
, Correlation between classifiers
- The combination classifier can learn the correlation.
\Rightarrow Better results than simple Naïve Bayes combination.
, Feature combination
- E.g. combine information from different sensors or sources (vision, audio, acceleration, temperature, radar, etc.).
- We can get good training data for each sensor individually, but data from all sensors together is rare.
\Rightarrow Train each of the L classifiers on its own input data. Only combination classifier needs to be trained on combined input.

Model Combination

- E.g. Mixture of Gaussians
, Several components are combined probabilistically.
> Interpretation: different data points can be generated by different components.
, We model the uncertainty which mixture component is responsible for generating the corresponding data point:

$$
p(\mathbf{x})=\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

, For i.i.d. data, we write the marginal probability of a data set $\mathbf{X}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathrm{N}}\right\}$ in the form:

$$
p(\mathbf{X})=\prod_{n=1}^{N} p\left(\mathbf{x}_{n}\right)=\prod_{n=1}^{N} \sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

Bayesian Model Averaging

- Model Averaging
, Suppose we have H different models $h=1, \ldots, H$ with prior probabilities $p(h)$.
, Construct the marginal distribution over the data set

$$
p(\mathbf{X})=\sum_{h=1}^{H} p(\mathbf{X} \mid h) p(h)
$$

- Interpretation
, Just one model is responsible for generating the entire data set.
, The probability distribution over h just reflects our uncertainty which model that is.
. As the size of the data set increases, this uncertainty reduces, and $p(\mathbf{X} \mid h)$ becomes focused on just one of the models.

!

Note the Different Interpretations!

- Model Combination
, Different data points generated by different model components.
, Uncertainty is about which component created which data point.
\Rightarrow One latent variable \mathbf{z}_{n} for each data point:

$$
p(\mathbf{X})=\prod_{n=1}^{N} p\left(\mathbf{x}_{n}\right)=\prod_{n=1}^{N} \sum_{\mathbf{z}_{n}} p\left(\mathbf{x}_{n}, \mathbf{z}_{n}\right)
$$

- Bayesian Model Averaging
, The whole data set is generated by a single model.
, Uncertainty is about which model was responsible.
\Rightarrow One latent variable z for the entire data set:

$$
p(\mathbf{X})=\sum_{\mathbf{z}} p(\mathbf{X}, \mathbf{z})
$$

Model Averaging: Expected Error

- Combine M predictors $y_{m}(\mathbf{x})$ for target output $h(\mathbf{x})$.
, E.g. each trained on a different bootstrap data set by bagging.
, The committee prediction is given by

$$
y_{C O M}(\mathbf{x})=\frac{1}{M} \sum_{m=1}^{M} y_{m}(\mathbf{x})
$$

, The output can be written as the true value plus some error.

$$
y(\mathbf{x})=h(\mathbf{x})+\epsilon(\mathbf{x})
$$

, Thus, the expected sum-of-squares error takes the form

$$
\mathbb{E}_{\mathbf{x}}=\left[\left\{y_{m}(\mathbf{x})-h(\mathbf{x})\right\}^{2}\right]=\mathbb{E}_{\mathbf{x}}\left[\epsilon_{m}(\mathbf{x})^{2}\right]
$$

Model Averaging: Expected Error

- Average error of individual models

$$
\mathbb{E}_{A V}=\frac{1}{M} \sum_{m=1}^{M} \mathbb{E}_{\mathbf{x}}\left[\epsilon_{m}(\mathbf{x})^{2}\right]
$$

- Average error of committee

$$
\mathbb{E}_{C O M}=\mathbb{E}_{\mathbf{x}}\left[\left\{\frac{1}{M} \sum_{m=1}^{M} y_{m}(\mathbf{x})-h(\mathbf{x})\right\}^{2}\right]=\mathbb{E}_{\mathbf{x}}\left[\left\{\frac{1}{M} \sum_{m=1}^{M} \epsilon_{m}(\mathbf{x})\right\}^{2}\right]
$$

- Assumptions
, Errors have zero mean: $\mathbb{E}_{\mathbf{x}}\left[\epsilon_{m}(\mathbf{x})\right]=0$
, Errors are uncorrelated: $\mathbb{E}_{\mathbf{x}}\left[\epsilon_{m}(\mathbf{x}) \epsilon_{j}(\mathbf{x})\right]=0$
- Then:

$$
\mathbb{E}_{C O M}=\frac{1}{M} \mathbb{E}_{A V}
$$

$$
\begin{aligned}
& \text { Isn't this } \\
& \text { spectacular? }
\end{aligned}
$$

Model Averaging: Expected Error

- Average error of committee

$$
\mathbb{E}_{C O M}=\frac{1}{M} \mathbb{E}_{A V}
$$

, This suggests that the average error of a model can be reduced by a factor of M simply by averaging M versions of the model!
, Spectacular indeed...
. This sounds almost too good to be true...

- And it is... Can you see where the problem is?
, Unfortunately, this result depends on the assumption that the errors are all uncorrelated.
, In practice, they will typically be highly correlated.
, Still, it can be shown that

$$
\mathbb{E}_{C O M} \cdot \mathbb{E}_{A V}
$$

Discussion: Ensembles of Classifiers

- Set of simple methods for improving classification
, Often effective in practice.
- Apparent contradiction
, We have stressed before that a classifier should be trained on samples from the distribution on which it will be tested.
, Resampling seems to violate this recommendation.
- Why can a classifier trained on a weighted data distribution do better than one trained on the i.i.d. sample?
- Explanation
> We do not attempt to model the full category distribution here.
, Instead, try to find the decision boundary more directly.
- Also, increasing number of component classifiers broadens the class of implementable decision functions.

Topics of This Lecture

- Ensembles of Classifiers
- Constructing Ensembles
, Cross-validation
, Bagging
- Combining Classifiers
, Stacking
, Bayesian model averaging
- Boosting
- AdaBoost
, Intuition
, Algorithm
, Analysis
, Extensions
- Applications

AdaBoost - "Adaptive Boosting"

- Main idea
[Freund \& Schapire, 1996]
, Instead of resampling, reweight misclassified training examples.
- Increase the chance of being selected in a sampled training set.
- Or increase the misclassification cost when training on the full set.
- Components
> $h_{m}(\mathbf{x})$: "weak" or base classifier
- Condition: < 50\% training error over any distribution
> $H(\mathbf{x})$: "strong" or final classifier
- AdaBoost:
, Construct a strong classifier as a thresholded linear combination of the weighted weak classifiers:

$$
H(\mathbf{x})=\operatorname{sign}\left(\sum_{\substack{m=1 \\ \text { B. Leibe }}}^{M} \alpha_{m} h_{m}(\mathbf{x})\right)
$$

AdaBoost: Intuition

> Consider a 2D feature space with positive and negative examples.

Each weak classifier splits the training examples with at least 50\% accuracy.

Examples misclassified by a previous weak learner are given more emphasis at future rounds.

AdaBoost: Intuition

AdaBoost: Intuition

Final classifier is combination of the weak classifiers

AdaBoost - Formalization

- 2-class classification problem
, Given: training set $\mathbf{X}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\}$ with target values $\mathbf{T}=\left\{t_{1}, \ldots, t_{N}\right\}, t_{n} \in\{-1,1\}$.
, Associated weights $\mathbf{W}=\left\{w_{1}, \ldots, w_{N}\right\}$ for each training point.
- Basic steps
, In each iteration, AdaBoost trains a new weak classifier $h_{m}(\mathbf{x})$ based on the current weighting coefficients $\mathbf{W}^{(m)}$.
, We then adapt the weighting coefficients for each point
- Increase w_{n} if \mathbf{x}_{n} was misclassified by $h_{m}(\mathbf{x})$.
- Decrease w_{n} if \mathbf{x}_{n} was classified correctly by $h_{m}(\mathbf{x})$.
, Make predictions using the final combined model

$$
H(\mathbf{x})=\operatorname{sign}\left(\sum_{\substack{m=1 \\ \text { B. Leibe }}}^{M} \alpha_{m} h_{m}(\mathbf{x})\right)
$$

AdaBoost - Algorithm

1. Initialization: Set $w_{n}^{(1)}=\frac{1}{N}$ for $n=1, \ldots, N$.
2. For $m=1, \ldots, M$ iterations
a) Train a new weak classifier $h_{m}(\mathbf{x})$ using the current weighting coefficients $\mathbf{W}^{(m)}$ by minimizing the weighted error function

$$
J_{m}=\sum_{n=1}^{N} w_{n}^{(m)} I\left(h_{m}(\mathbf{x}) \neq t_{n}\right) \quad I(A)= \begin{cases}1, & \text { if } A \text { is true } \\ 0, & \text { else }\end{cases}
$$

b) Estimate the weighted error of this classifier on \mathbf{X} :

$$
\epsilon_{m}=\frac{\sum_{n=1}^{N} w_{n}^{(m)} I\left(h_{m}(\mathbf{x}) \neq t_{n}\right)}{\sum_{n=1}^{N} w_{n}^{(m)}}
$$

c) Calculate a weighting coefficient for $h_{m}(\mathbf{x})$:

$$
\alpha_{m}=?
$$

d) Update the weighting coefficients:

$$
w_{n}^{(m+1)}=?
$$

How should we do this exactly?

AdaBoost - Historical Development

- Originally motivated by Statistical Learning Theory
, AdaBoost was introduced in 1996 by Freund \& Schapire.
, It was empirically observed that AdaBoost often tends not to overfit. (Breiman 96, Cortes \& Drucker 97, etc.)
, As a result, the margin theory (Schapire et al. 98) developed, which is based on loose generalization bounds.
- Note: margin for boosting is not the same as margin for SVM.
- A bit like retrofitting the theory...
, However, those bounds are too loose to be of practical value.
- Different explanation
(Friedman, Hastie, Tibshirani, 2000)
, Interpretation as sequential minimization of an exponential error function ("Forward Stagewise Additive Modeling").
, Explains why boosting works well.
, Improvements possible by altering the error function.

AdaBoost - Minimizing Exponential Error

- Exponential error function

$$
E=\sum_{n=1}^{N} \exp \left\{-t_{n} f_{m}\left(\mathbf{x}_{n}\right)\right\}
$$

, where $f_{m}(\mathbf{x})$ is a classifier defined as a linear combination of base classifiers $h_{l}(\mathbf{x})$:

$$
f_{m}(\mathbf{x})=\frac{1}{2} \sum_{l=1}^{m} \alpha_{l} h_{l}(\mathbf{x})
$$

- Goal
- Minimize E with respect to both the weighting coefficients α_{l} and the parameters of the base classifiers $h_{l}(\mathbf{x})$.

AdaBoost - Minimizing Exponential Error

- Sequential Minimization
, Suppose that the base classifiers $h_{1}(\mathbf{x}), \ldots, h_{m-1}(\mathbf{x})$ and their coefficients $\alpha_{1}, \ldots, \alpha_{m-1}$ are fixed.
\Rightarrow Only minimize with respect to α_{m} and $h_{m}(\mathbf{x})$.

$$
\begin{aligned}
E & =\sum_{n=1}^{N} \exp \left\{-t_{n} f_{m}\left(\mathbf{x}_{n}\right)\right\} \quad \text { with } \quad f_{m}(\mathbf{x})=\frac{1}{2} \sum_{l=1}^{m} \alpha_{l} h_{l}(\mathbf{x}) \\
& =\sum_{n=1}^{N} \exp \{\underbrace{-t_{n} f_{m-1}\left(\mathbf{x}_{n}\right)}_{=\text {const }}-\frac{1}{2} t_{n} \alpha_{m} h_{m}\left(\mathbf{x}_{n}\right)\} \\
& =\sum_{n=1}^{N} w_{n}^{(m)} \exp \left\{-\frac{1}{2} t_{n} \alpha_{m} h_{m}\left(\mathbf{x}_{n}\right)\right\}
\end{aligned}
$$

AdaBoost - Minimizing Exponential Error

$$
E=\sum_{n=1}^{N} w_{n}^{(m)} \exp \left\{-\frac{1}{2} t_{n} \alpha_{m} h_{m}\left(\mathbf{x}_{n}\right)\right\}
$$

, Observation:

- Correctly classified points: $t_{n} h_{m}\left(\mathbf{x}_{n}\right)=+1$
\Rightarrow collect in \mathcal{T}_{m}
- Misclassified points: $\quad t_{n} h_{m}\left(\mathbf{x}_{n}\right)=-1$
\Rightarrow collect in \mathcal{F}_{m}
, Rewrite the error function as

$$
\begin{aligned}
E & =e^{-\alpha_{m} / 2} \sum_{n \in \mathcal{T}_{m}} w_{n}^{(m)}+e^{\alpha_{m} / 2} \sum_{n \in \mathcal{F}_{m}} w_{n}^{(m)} \\
& =\left(e^{\alpha_{m} / 2}\right) \sum_{n=1}^{N} w_{n}^{(m)} I\left(h_{m}\left(\mathbf{x}_{n}\right) \neq t_{n}\right)
\end{aligned}
$$

AdaBoost - Minimizing Exponential Error

$$
E=\sum_{n=1}^{N} w_{n}^{(m)} \exp \left\{-\frac{1}{2} t_{n} \alpha_{m} h_{m}\left(\mathbf{x}_{n}\right)\right\}
$$

, Observation:

- Correctly classified points: $t_{n} h_{m}\left(\mathbf{x}_{n}\right)=+1 \quad \Rightarrow$ collect in \mathcal{T}_{m}
- Misclassified points: $\quad t_{n} h_{m}\left(\mathbf{x}_{n}\right)=-1 \quad \Rightarrow$ collect in \mathcal{F}_{m}
, Rewrite the error function as

AdaBoost - Minimizing Exponential Error

- Minimize with respect to $h_{m}(\mathbf{x}): \frac{\partial E}{\partial h_{m}\left(\mathbf{x}_{n}\right)} \stackrel{!}{=} 0$

$$
E=\underbrace{\left(e^{\alpha_{m} / 2}-e^{-\alpha_{m} / 2}\right)}_{=\text {const. }} \sum_{n=1}^{N} w_{n}^{(m)} I\left(h_{m}\left(\mathbf{x}_{n}\right) \neq t_{n}\right)+\underbrace{e^{-\alpha_{m} / 2} \sum_{n=1}^{N} w_{n}^{(m)}}_{=\text {const } .}
$$

\Rightarrow This is equivalent to minimizing

$$
J_{m}=\sum_{n=1}^{N} w_{n}^{(m)} I\left(h_{m}(\mathbf{x}) \neq t_{n}\right)
$$

(our weighted error function from step 2a) of the algorithm)
\Rightarrow We're on the right track. Let's continue...

AdaBoost - Minimizing Exponential Error

- Minimize with respect to $\alpha_{m}: \frac{\partial E}{\partial \alpha_{m}} \stackrel{!}{=} 0$

$$
\begin{aligned}
E=\left(e^{\alpha_{m} / 2}-e^{-\alpha_{m} / 2}\right) \sum_{n=1}^{N} w_{n}^{(m)} I\left(h_{m}\left(\mathbf{x}_{n}\right) \neq t_{n}\right) & +e^{-\alpha_{m} / 2} \sum_{n=1}^{N} w_{n}^{(m)} \\
\left(\frac{1}{2} e^{\alpha_{m} / 2}+\frac{1}{2} e^{-\alpha_{m} / 2}\right) \sum_{n=1}^{N} w_{n}^{(m)} I\left(h_{m}\left(\mathbf{x}_{n}\right) \neq t_{n}\right) & \stackrel{!}{=} 2^{-\alpha_{m} / 2} \sum_{n=1}^{N} w_{n}^{(m)} \\
\begin{array}{l}
\text { weighted } \\
\text { error }
\end{array} \epsilon_{m}:=\frac{\sum_{n=1}^{N} w_{n}^{(m)} I\left(h_{m}\left(\mathbf{x}_{n}\right) \neq t_{n}\right)}{\sum_{n=1}^{N} w_{n}^{(m)}} & =\frac{e^{-\alpha_{m} / 2}}{e^{\alpha_{m} / 2}+e^{-\alpha_{m} / 2}} \\
& =\frac{1}{e^{\alpha_{m}}+1} \\
\Rightarrow \text { Update for the } \alpha \text { coefficients: } \quad \alpha_{m} & =\ln \left\{\frac{1-\epsilon_{m}}{\epsilon_{m}}\right\}
\end{aligned}
$$

AdaBoost - Minimizing Exponential Error

- Remaining step: update the weights
, Recall that

$$
E=\sum_{n=1}^{N} \underbrace{w_{n}^{(m)} \exp \left\{-\frac{1}{2} t_{n} \alpha_{m} h_{m}\left(\mathbf{x}_{n}\right)\right\}}_{\begin{array}{c}
\text { This becomes } w_{n}^{(m+1)} \\
\text { in the next iteration. }
\end{array}}
$$

, Therefore

$$
\begin{aligned}
w_{n}^{(m+1)} & =w_{n}^{(m)} \exp \left\{-\frac{1}{2} t_{n} \alpha_{m} h_{m}\left(\mathbf{x}_{n}\right)\right\} \\
& =\ldots \\
& =w_{n}^{(m)} \exp \left\{\alpha_{m} I\left(h_{m}\left(\mathbf{x}_{n}\right) \neq t_{n}\right)\right\}
\end{aligned}
$$

\Rightarrow Update for the weight coefficients.

AdaBoost - Final Algorithm

1. Initialization: Set $w_{n}^{(1)}=\frac{1}{N}$ for $n=1, \ldots, N$.
2. For $m=1, \ldots, M$ iterations
a) Train a new weak classifier $h_{m}(\mathbf{x})$ using the current weighting coefficients $\mathbf{W}^{(m)}$ by minimizing the weighted error function

$$
J_{m}=\sum_{n=1}^{N} w_{n}^{(m)} I\left(h_{m}(\mathbf{x}) \neq t_{n}\right)
$$

b) Estimate the weighted error of this classifier on \mathbf{X} :

$$
\epsilon_{m}=\frac{\sum_{n=1}^{N} w_{n}^{(m)} I\left(h_{m}(\mathbf{x}) \neq t_{n}\right)}{\sum_{n=1}^{N} w_{n}^{(m)}}
$$

c) Calculate a weighting coefficient for $h_{m}(\mathbf{x})$:

$$
\alpha_{m}=\ln \left\{\frac{1-\epsilon_{m}}{\epsilon_{m}}\right\}
$$

d) Update the weighting coefficients:

$$
w_{n}^{(m+1)}=w_{n}^{(m)} \exp \left\{\alpha_{m} I\left(h_{m}\left(\mathbf{x}_{n}\right) \neq t_{n}\right)\right\}
$$

AdaBoost - Analysis

- Result of this derivation
, We now know that AdaBoost minimizes an exponential error function in a sequential fashion.
, This allows us to analyze AdaBoost's behavior in more detail.
> In particular, we can see how robust it is to outlier data points.

Recap: Error Functions

$$
t_{n} \in\{-1,1\}
$$

- Ideal misclassification error function (black)
, This is what we want to approximate,
, Unfortunately, it is not differentiable.
, The gradient is zero for misclassified points.
\Rightarrow We cannot minimize it by gradient descent.

Recap: Error Functions

$$
t_{n} \in\{-1,1\}
$$

- Squared error used in Least-Squares Classification
, Very popular, leads to closed-form solutions.
, However, sensitive to outliers due to squared penalty.
, Penalizes "too correct" data points
\Rightarrow Generally does not lead to good classifiers.

Recap: Error Functions

- "Hinge error" used in SVMs
> Zero error for points outside the margin $\left(z_{n}>1\right) \quad \Rightarrow$ sparsity
, Linear penalty for misclassified points $\left(z_{n}<1\right) \quad \Rightarrow$ robustness
$>$ Not differentiable around $z_{\text {B. Reibe }}=1 \Rightarrow$ Cannot be optimized directlyz

Discussion: AdaBoost Error Function

- Exponential error used in AdaBoost
, Continuous approximation to ideal misclassification function.
, Sequential minimization leads to simple AdaBoost scheme.
, Properties?

Discussion: AdaBoost Error Function

- Exponential error used in AdaBoost
, No penalty for too correct data points, fast convergence.
, Disadvantage: exponential penalty for large negative values!
\Rightarrow Less robust to outliers or misclassified data points!

Discussion: Other Possible Error Functions

$$
E=-\sum\left\{t_{n} \ln y_{n}+\underset{\left.\left(1-t_{n}\right) \ln \left(1-y_{n}\right)\right\}}{(-1}\right.
$$

Ideal misclassification error Squared error
Hinge error
Exponential error
Cross-entropy error

- "Cross-entropy error" used in Logistic Regression
, Similar to exponential error for $z>0$.
, Only grows linearly with large negative values of z.
\Rightarrow Make AdaBoost more robust by switching to this error function.
\Rightarrow "GentleBoost"
B. Leibe

Summary: AdaBoost

- Properties
, Simple combination of multiple classifiers.
, Easy to implement.
> Can be used with many different types of classifiers.
- None of them needs to be too good on its own.
- In fact, they only have to be slightly better than chance.
, Commonly used in many areas.
, Empirically good generalization capabilities.
- Limitations
, Original AdaBoost sensitive to misclassified training data points.
- Because of exponential error function.
- Improvement by GentleBoost
, Single-class classifier
- Multiclass extensions available

Topics of This Lecture

- Ensembles of Classifiers
- Constructing Ensembles
, Cross-validation
, Bagging
- Combining Classifiers
, Stacking
, Bayesian model averaging
- Boosting
- AdaBoost
> Intuition
, Algorithm
, Analysis
, Extensions
- Applications

RW ion

Example Application: Face Detection

- Frontal faces are a good example of a class where global appearance models + a sliding window detection approach fit well:
, Regular 2D structure
, Center of face almost shaped like a "patch"/window

- Now we'll take AdaBoost and see how the ViolaJones face detector works

Feature extraction

"Rectangular" filters

Feature output is difference between adjacent regions

> Efficiently computable with integral image: any sum can be computed in constant time

Avoid scaling images \rightarrow scale features directly for same cost

Large Library of Filters

Considering all possible filter parameters: position, scale, and type:

180,000+ possible features associated with each 24×24 window

Use AdaBoost both to select the informative features and to form the classifier

AdaBoost for Feature+Classifier Selection

- Want to select the single rectangle feature and threshold that best separates positive (faces) and negative (nonfaces) training examples, in terms of weighted error.

Resulting weak classifier:

$$
\underset{h_{t}(x)}{ }= \begin{cases}+1 & \text { if } f_{\mathrm{t}}(x)>\theta_{t} \\ -1 & \text { otherwise }\end{cases}
$$

For next round, reweight the examples according to errors, choose another filter/threshold combo.

AdaBoost for Efficient Feature Selection

- Image features = weak classifiers
- For each round of boosting:
, Evaluate each rectangle filter on each example
, Sort examples by filter values
, Select best threshold for each filter (min error)
- Sorted list can be quickly scanned for the optimal threshold
, Select best filter/threshold combination
, Weight on this features is a simple function of error rate
- Reweight examples
P. Viola, M. Jones, Robust Real-Time Face Detection, IJCV, Vol. 57(2), 2004. (first version appeared at CVPR 2001)

R

Viola-Jones Face Detector: Results

P

Viola-Jones Face Detector: Results

Slide credit: Kristen Grauman
B. Leibe

Viola-Jones Face Detector: Results

References and Further Reading

- More information on Classifier Combination and Boosting can be found in Chapters 14.1-14.3 of Bishop's book.

Christopher M. Bishop
Pattern Recognition and Machine Learning Springer, 2006

- A more in-depth discussion of the statistical interpretation of AdaBoost is available in the following paper:
, J. Friedman, T. Hastie, R. Tibshirani, Additive Logistic Regression: a Statistical View of Boosting, The Annals of Statistics, Vol. 38(2), pages 337-374, 2000.

