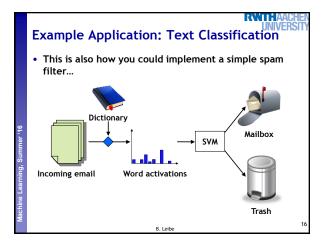
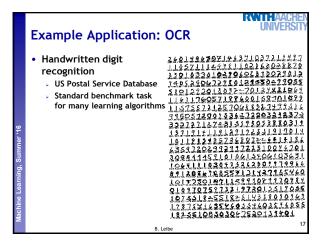


	Example Application: Text Classification													
	 Result 	s:												
						SVM (poly)					SVM (rbf)			
						degree $d =$				width $\gamma =$				
		Bayes	Rocchio	C4.5	k-NN	1	2	3	4	5	0.6	0.8	1.0	1.2
	earn	95.9	96.1	96.1	97.3	98.2	98.4	98.5	98.4	98.3	98.5	98.5	98.4	98.3
	acq	91.5	92.1	85.3	92.0	92.6	94.6	95.2	95.2	95.3	95.0	95.3	95.3	95.4
	money-fx	62.9	67.6	69.4	78.2	66.9	72.5	75.4	74.9	76.2	74.0	75.4	76.3	75.9
•	grain	72.5	79.5	89.1	82.2	91.3	93.1	92.4	91.3	89.9	93.1	91.9	91.9	90.6
	crude	81.0	81.5	75.5	85.7	86.0	87.3	88.6	88.9	87.8	88.9	89.0	88.9	88.2
E	trade	50.0	77.4	59.2	77.4	69.2	75.5	76.6	77.3	77.1	76.9	78.0	77.8	76.8
	interest	58.0	72.5	49.1	74.0	69.8	63.3	67.9	73.1	76.2	74.4	75.0	76.2	76.1
ō	ship	78.7	83.1	80.9	79.2	82.0	85.4	86.0	86.5	86.0	85.4	86.5	87.6	87.1
2	wheat	60.6	79.4	85.5	76.6	83.1	84.5	85.2	85.9	83.8	85.2	85.9	85.9	85.9
	corn	47.3	62.2	87.7						83.9				84.5
маслине цеаглинд, зититег по	microavg.	72.0	79.9	79.4	82.3				86.2 86.0	85.9	86.4 cor		86.3 ed: 86	
INIGOLI						B. Leit	e							





Historical Importance	UNIV
USPS benchmark	
2.5% error: human performance	

FR

- Different learning algorithms
 - > 16.2% error: Decision tree (C4.5)
 - 5.9% error: (best) 2-layer Neural Network
 - > 5.1% error: LeNet 1 (massively hand-tuned) 5-layer network
- Different SVMs
 - 4.0% error: Polynomial kernel (p=3, 274 support vectors)

B. Leibe

4.1% error: Gaussian kernel (σ =0.3, 291 support vectors)

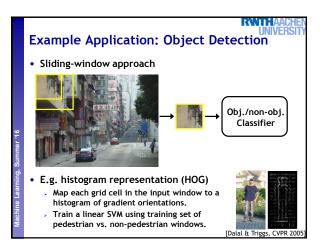
Example Application: OCR

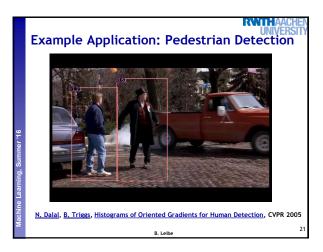
Results

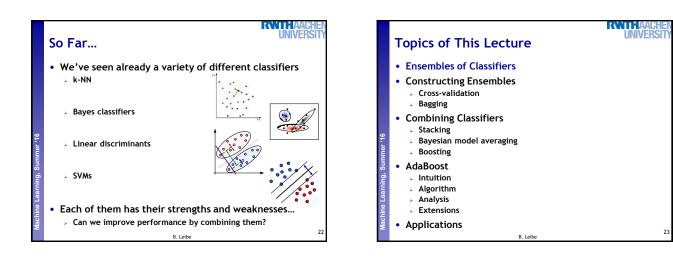
> Almost no overfitting with higher-degree kernels.

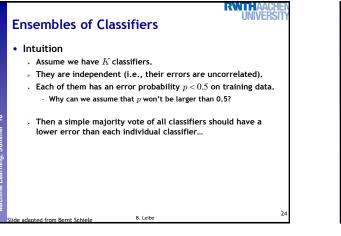
R

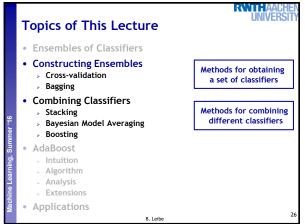
degree of	dimensionality of	support	raw
polynomial	feature space	vectors	error
1	256	282	8.9
2	≈ 33000	227	4.7
3	$\approx 1 \times 10^{6}$	274	4.0
4	$\approx 1 \times 10^9$	321	4.2
5	$pprox 1 imes 10^{12}$	374	4.3
6	$pprox 1 imes 10^{14}$	377	4.5
7	$\approx 1 \times 10^{16}$	422	4.5
u	4		
	B. Leibe		

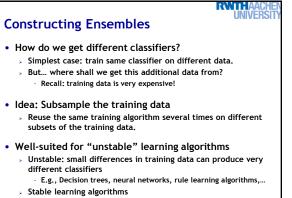












- E.g., Nearest neighbor, linear regression, SVMs,...

B. Leibe

Constructing Ensembles

Cross-Validation

- \succ Split the available data into N disjunct subsets.
- \succ In each run, train on N-1 subsets for training a classifier.
- > Estimate the generalization error on the held-out validation set.

• E.g. 5-fold cross-validation

train	train	train	train	test		
train	train	train	test	train		
train	train	test	train	train		
train	test	train	train	train		
test	train	train	train	train		
B. Leibe						

Constructing Ensembles

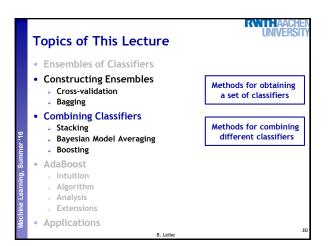
- Bagging = "Bootstrap aggregation" (Breiman 1996)
 In each run of the training algorithm, randomly select M samples from the full set of N training data points.
 - > If M = N, then on average, 63.2% of the training points will be represented. The rest are duplicates.

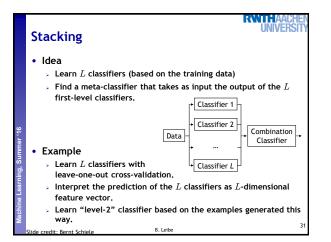
RVVIII A

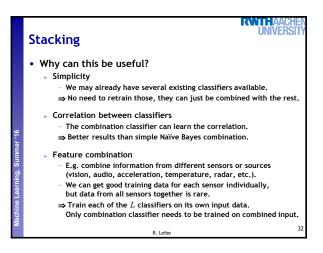
Injecting randomness

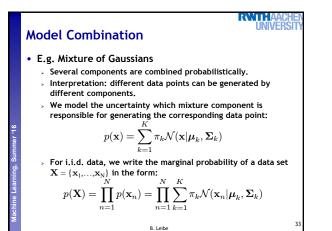
- Many (iterative) learning algorithms need a random initialization (e.g. k-means, EM)
- Perform mutliple runs of the learning algorithm with different random initializations.

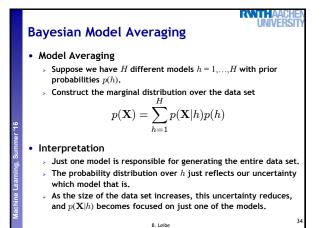
B. Leibe



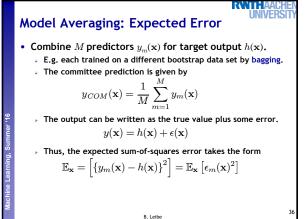


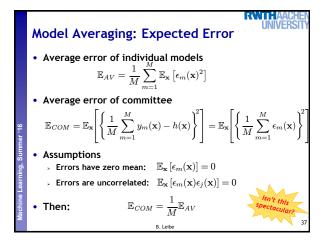


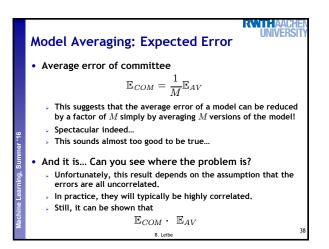




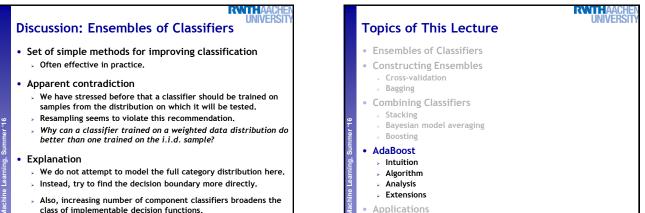
Note the Different Interpretations! • Model Combination • Different data points generated by different model components. • Uncertainty is about which component created which data point. \Rightarrow One latent variable \mathbf{z}_n for each data point: $p(\mathbf{X}) = \prod_{n=1}^{N} p(\mathbf{x}_n) = \prod_{n=1}^{N} \sum_{\mathbf{z}_n} p(\mathbf{x}_n, \mathbf{z}_n)$ • Bayesian Model Averaging • The whole data set is generated by a single model.







> Uncertainty is about which model was responsible.
 ⇒ One latent variable z for the entire data set:



class of implementable decision functions. B. Leibe

> Instead of resampling, reweight misclassified training examples.

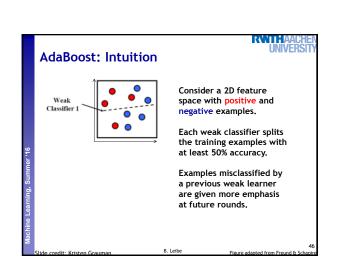
Increase the chance of being selected in a sampled training set.

- Or increase the misclassification cost when training on the full set.

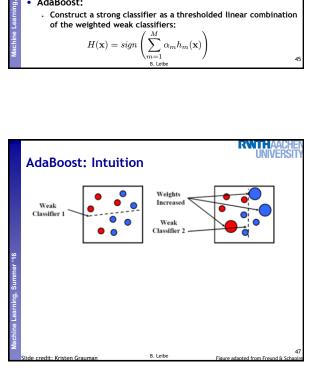
AdaBoost - "Adaptive Boosting"

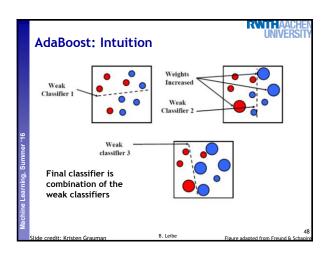
[Freund & Schapire, 1996]

INIVERS



B. Leibe

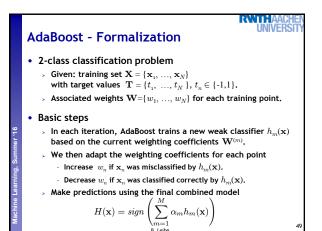


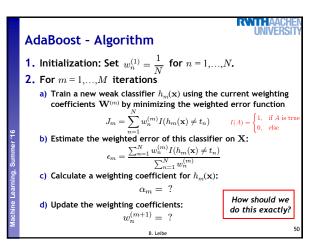


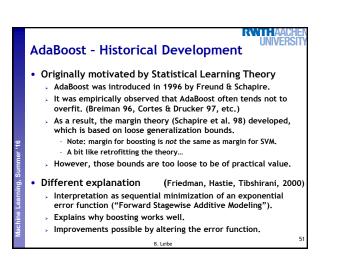
> $H(\mathbf{x})$: "strong" or final classifier

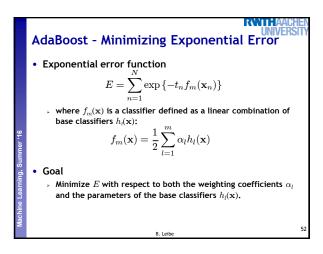
Main idea

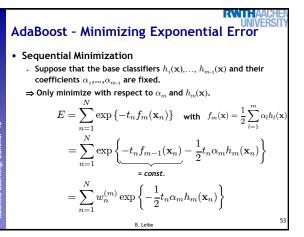
AdaBoost:

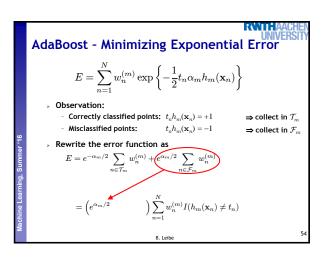


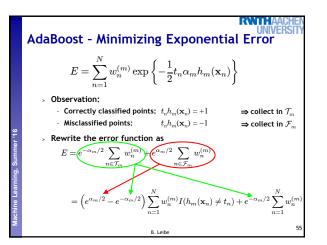


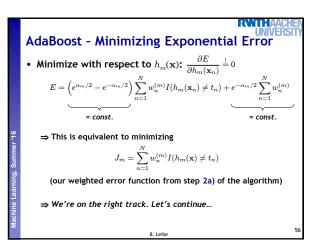


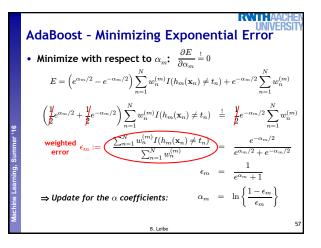


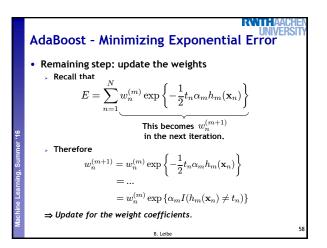


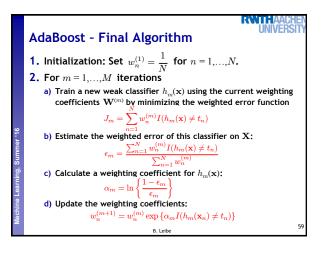


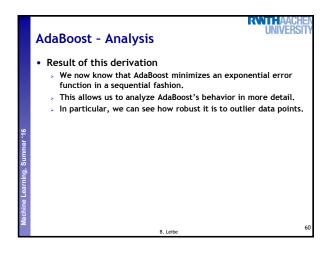


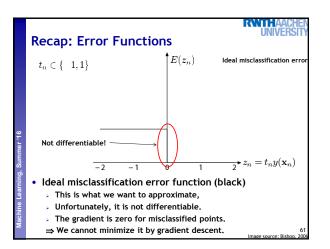


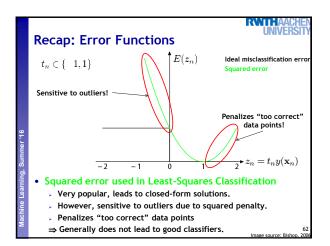


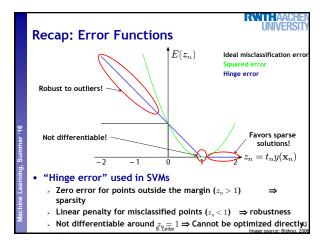


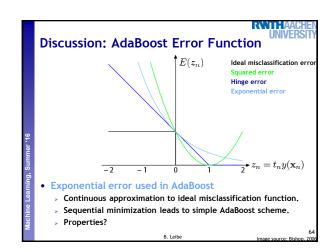


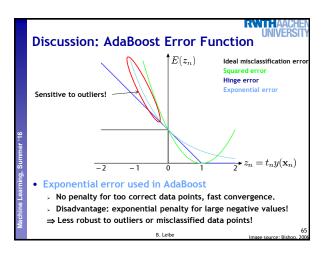




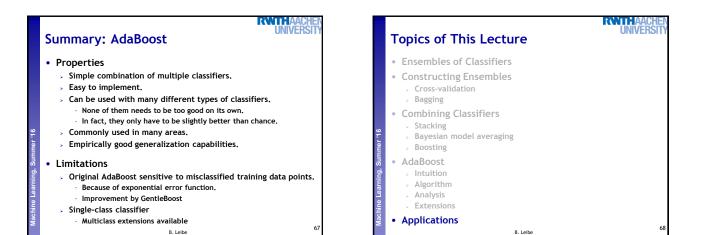






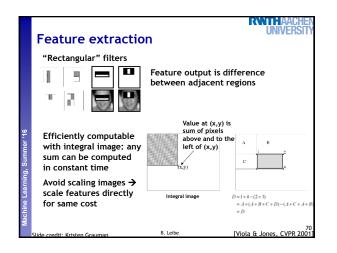


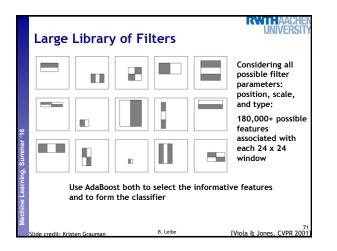




Frontal faces are a good example of a class where global appearance models + a sliding window detection approach fit well:
Regular 2D structure
Center of face almost shaped like a "patch"/window
Other of face almost shaped like a "patch"/window
Now we'll take AdaBoost and see how the ViolaJones face detector works

B. Leibe



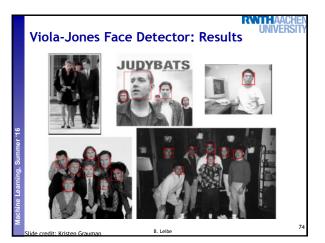


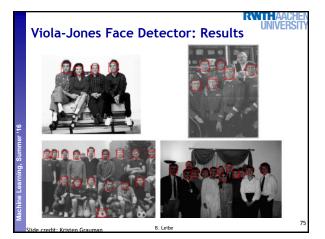


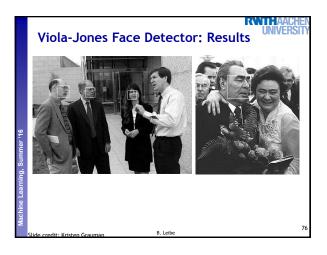
- For each round of boosting:

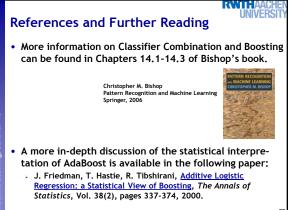
 - > Evaluate each rectangle filter on each example
 - Sort examples by filter values
 - > Select best threshold for each filter (min error)
 - Sorted list can be quickly scanned for the optimal threshold
 - Select best filter/threshold combination
 - > Weight on this features is a simple function of error rate
 - Reweight examples

P. Viola, M. Jones, <u>Robust Real-Time Face Detection</u>, IJCV, Vol. 57(2), 2004. (first version appeared at CVPR 2001) credit: Kristen Grauman B. Leibe









B. Leibe

