

> Computed as a linear combination of the training examples

 $\mathbf{w} = \sum_{n=1}^{N} a_n t_n \mathbf{x}_n$

> Again sparse solution: $a_n = 0$ for points outside the margin. \Rightarrow The slack points with $\xi_n > 0$ are now also support vectors! > Compute *b* by averaging over all N_M points with $0 < a_n < C$:

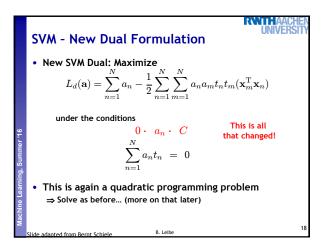
 $b = \frac{1}{N_{\mathcal{M}}} \sum_{n \in \mathcal{M}} \left(t_n - \sum_{m \in \mathcal{M}} a_m t_m \mathbf{x}_m^{\mathrm{T}} \mathbf{x}_n \right)$

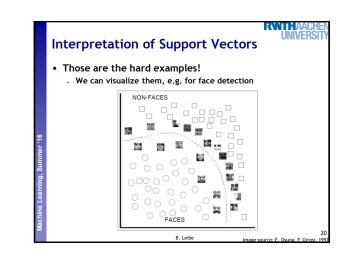
B. Leibe

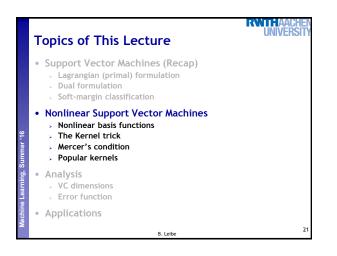
SVM - New Solution

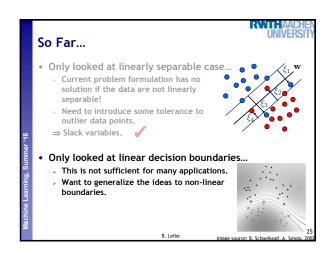
Solution for the hyperplane

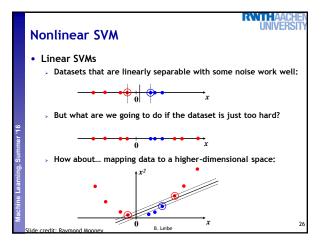
RATHA

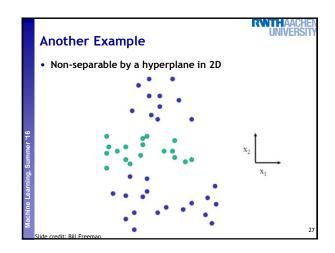


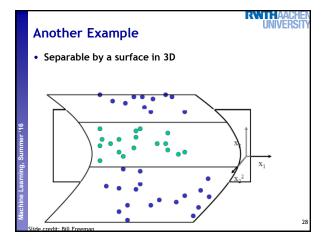


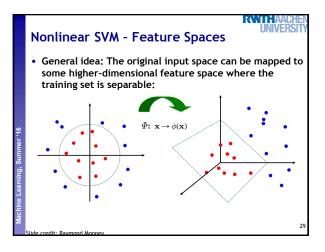












U

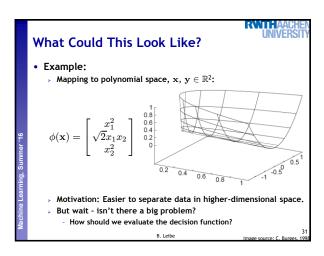
R

- General idea
 - > Nonlinear transformation ϕ of the data points \mathbf{x}_n : $\mathbf{x} \in \mathbb{R}^D \quad \phi : \mathbb{R}^D \to \mathcal{H}$
 - \succ Hyperplane in higher-dim. space ${\cal H}$ (linear classifier in ${\cal H}$)

B. Leibe

$$\mathbf{w}^{\mathrm{T}}\phi(\mathbf{x}) + b = 0$$

 \Rightarrow Nonlinear classifier in \mathbb{R}^{D} .



Problem with High-dim. Basis Functions

- Problem
- > In order to apply the SVM, we need to evaluate the function $y({\bf x}) = {\bf w}^{\rm T} \phi({\bf x}) + b$
- > Using the hyperplane, which is itself defined as $\frac{N}{N}$

w

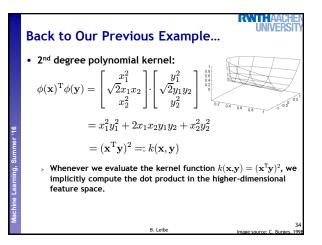
$$\mathbf{v} = \sum_{n=1}^{n} a_n t_n \phi(\mathbf{x}_n)$$

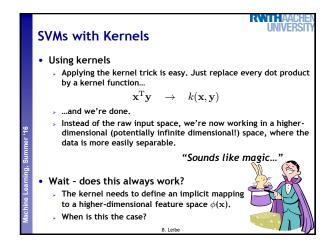
 \Rightarrow What happens if we try this for a million-dimensional feature space $\phi(\mathbf{x})$

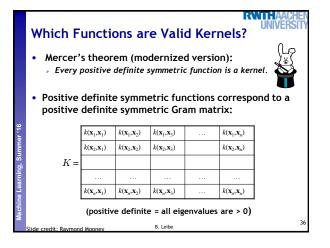
B. Leibe

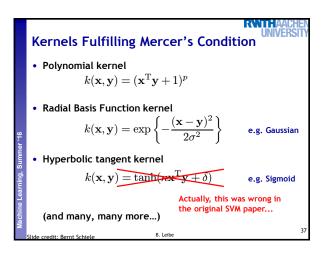
> Oh-oh...

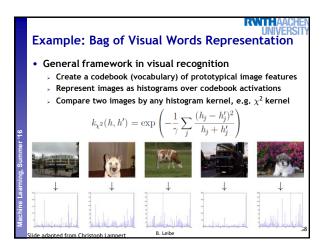
Solution: The Kernel Trick • Important observation • $\phi(\mathbf{x})$ only appears in the form of dot products $\phi(\mathbf{x})^{\mathsf{T}}\phi(\mathbf{y})$: $y(\mathbf{x}) = \mathbf{w}^{\mathsf{T}}\phi(\mathbf{x}) + b$ $= \sum_{n=1}^{N} a_n t_n \phi(\mathbf{x}_n)^{\mathsf{T}}\phi(\mathbf{x}) + b$ • Trick: Define a so-called kernel function $k(\mathbf{x},\mathbf{y}) = \phi(\mathbf{x})^{\mathsf{T}}\phi(\mathbf{y})$. • Now, in place of the dot product, use the kernel instead: $y(\mathbf{x}) = \sum_{n=1}^{N} a_n t_n k(\mathbf{x}_n, \mathbf{x}) + b$ • The kernel function implicitly maps the data to the higherdimensional space (without having to compute $\phi(\mathbf{x})$ explicitly)! •...ette

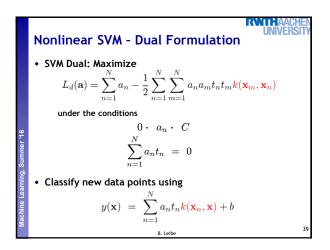


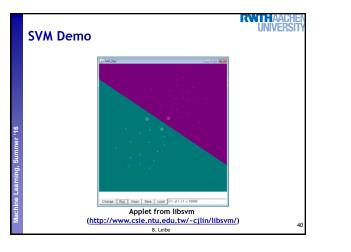


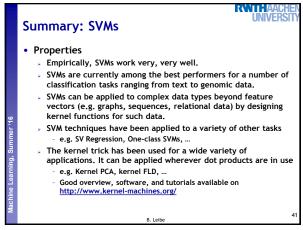










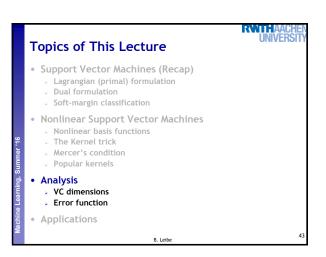


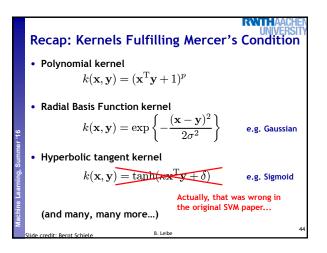
Summary: SVMs

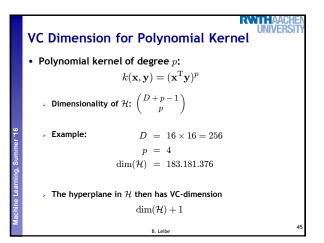
Limitations

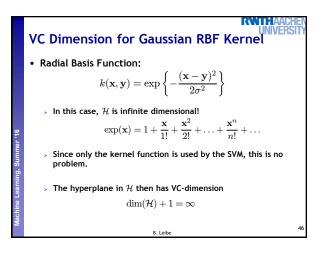
- How to select the right kernel?
- Best practice guidelines are available for many applications
- How to select the kernel parameters?
 - (Massive) cross-validation.
 - Usually, several parameters are optimized together in a grid search.
- Solving the quadratic programming problem
 - Standard QP solvers do not perform too well on SVM task. Dedicated methods have been developed for this, e.g. SMO.
- Speed of evaluation

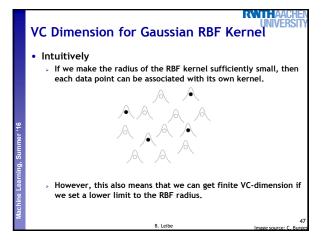
 - Evaluating $y(\mathbf{x})$ scales linearly in the number of SVs. - Too expensive if we have a large number of support vectors.
 - \Rightarrow There are techniques to reduce the effective SV set.
- Training for very large datasets (millions of data points)
 - Stochastic gradient descent and other approximations can be used B. Leibe

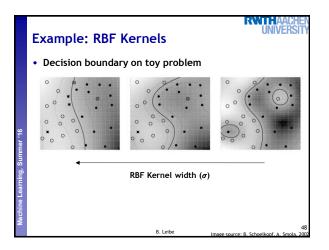


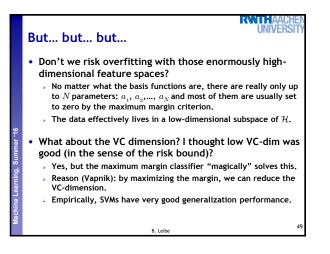


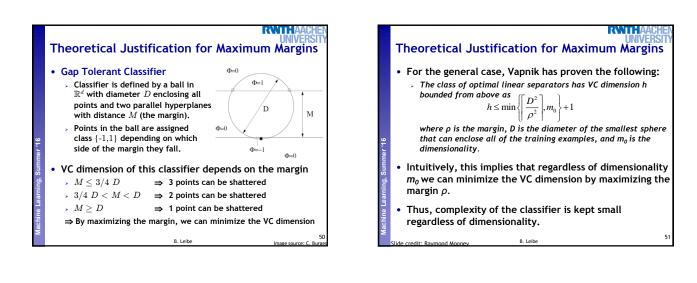


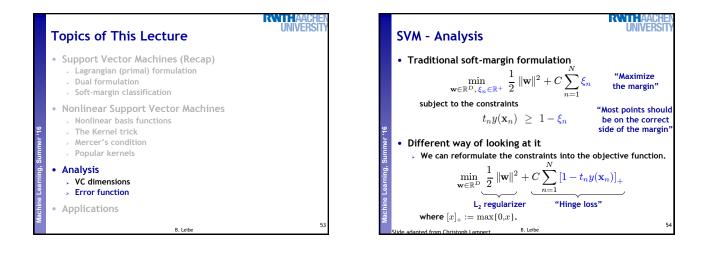


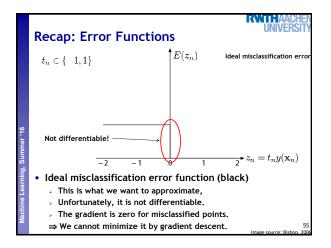


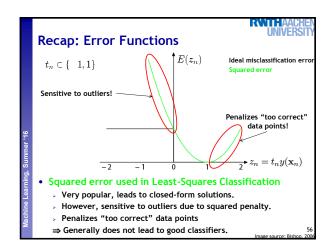


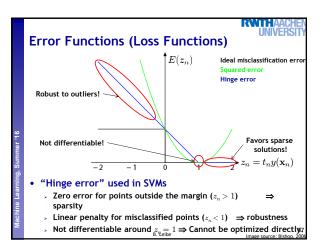


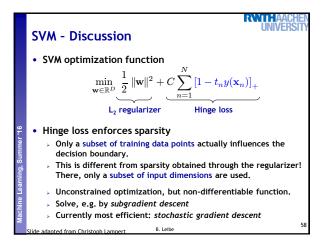


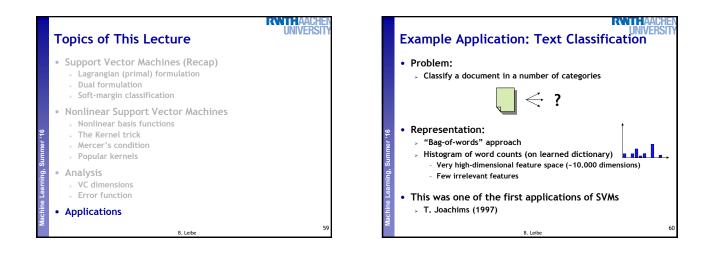




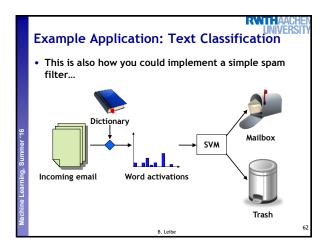


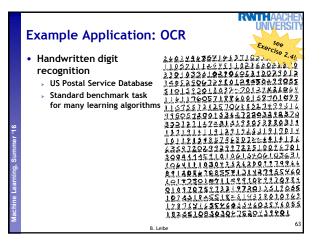


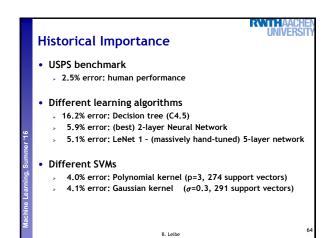




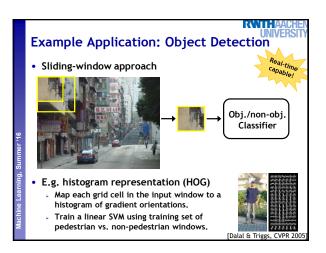
Examp • Result		Appli	cat	tion	n: 1	Геу	ct (Cla	ssif	ica	tic	NIVE Sn	RS
				· · ·	SVM (poly) degree $d =$				SVM (rbf) width $\gamma =$				
	Bayes	Rocchio	C4.5	k-NN	1	2	3	4	5	0.6	0.8	1.0	1.2
earn	95.9	96.1	96.1	97.3	98.2	98.4	98.5	98.4	98.3	98.5	98.5	98.4	98.3
acq	91.5	92.1	85.3	92.0						95.0			
money-fx	62.9	67.6	69.4	78.2	66.9	72.5	75.4	74.9	76.2	74.0	75.4	76.3	75.9
grain	72.5	79.5	89.1	82.2						93.1			
crude	81.0	81.5	75.5	85.7	86.0	87.3	88.6	88.9	87.8	88.9	89.0	88.9	88.2
trade	50.0	77.4	59.2						77.1			77.8	
interest	58.0	72.5	49.1	74.0	69.8	63.3	67.9	73.1	76.2	74.4	75.0	76.2	76.1
ship	78.7	83.1	80.9	79.2	82.0	85.4	86.0	86.5	86.0	85.4	86.5	87.6	87.1
wheat	60.6	79.4	85.5	76.6	83.1	84.5	85.2	85.9	83.8	85.2	85.9	85.9	85.9
corn	47.3	62.2	87.7	77.9	86.0	86.5	85.3	85.7	83.9	85.1	85.7	85.7	84.5
microavg.	72.0	79.9	79.4	82.3				86.2 86.0		86.4 cor		86.3 ed: 86	
					B. Leit								

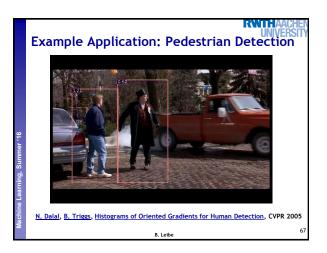


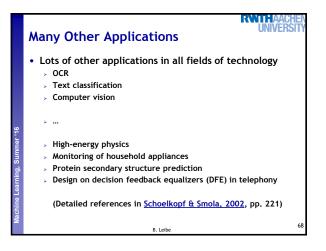


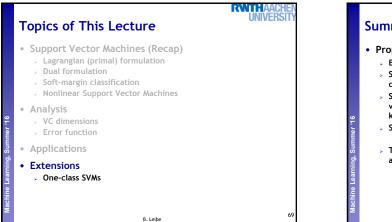


Ex	ample App	lication: OCR		UNIVE	CHI RSI
• 1	Results > Almost no ove	rfitting with higher-deg	ree kernels.		
	degree of	dimensionality of	support	raw	
	polynomial	feature space	vectors	error	
	1	256	282	8.9	
	2	≈ 33000	227	4.7	
	3	$\approx 1 \times 10^{6}$	274	4.0	
	4	$\approx 1 \times 10^9$	321	4.2	
	5	$pprox 1 imes 10^{12}$	374	4.3	
	6	$pprox 1 imes 10^{14}$	377	4.5	
	7	$\approx 1 \times 10^{16}$	422	4.5	
		B. Leibe			



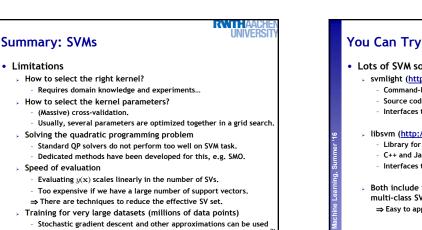


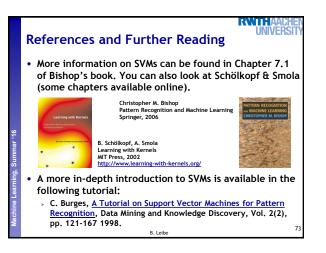




Summary: SVMs Properties Empirically, SVMs work very, very well. SVMs are currently among the best performers for a number of classification tasks ranging from text to genomic data. SVMs can be applied to complex data types beyond feature vectors (e.g. graphs, sequences, relational data) by designing kernel functions for such data. SVM techniques have been applied to a variety of other tasks e.g. SV Regression, One-class SVMs, ... The kernel trick has been used for a wide variety of applications. It can be applied wherever dot products are in use e.g. Kernel PCA, kernel FLD, ... Good overview, software, and tutorials available on http://www.kernel-machines.org/

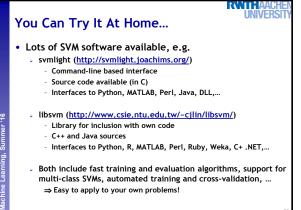
B. Leibe





B. Leibe

Limitations



B. Leibe