## Machine Learning - Lecture 8

## Linear Support Vector Machines

$$
24.05 .2016
$$

Bastian Leibe<br>RWTH Aachen<br>http://www.vision.rwth-aachen.de/<br>leibe@vision.rwth-aachen.de

## Course Outline

- Fundamentals (2 weeks)
, Bayes Decision Theory
, Probability Density Estimation

- Discriminative Approaches (5 weeks)
, Linear Discriminant Functions
, Statistical Learning Theory \& SVMs
, Ensemble Methods \& Boosting
> Randomized Trees, Forests \& Ferns
- Generative Models (4 weeks)
, Bayesian Networks
, Markov Random Fields




## Recap: Generalization and Overfitting



- Goal: predict class labels of new observations
, Train classification model on limited training set.
- The further we optimize the model parameters, the more the training error will decrease.
> However, at some point the test error will go up again.
$\Rightarrow$ Overfitting to the training set!


## Recap: Risk

- Empirical risk
, Measured on the training/validation set

$$
R_{e m p}(\alpha)=\frac{1}{N} \sum_{i=1}^{N} L\left(y_{i}, f\left(\mathbf{x}_{i} ; \alpha\right)\right)
$$

- Actual risk (= Expected risk)
, Expectation of the error on all data.

$$
R(\alpha)=\int L\left(y_{i}, f(\mathbf{x} ; \alpha)\right) d P_{X, Y}(\mathbf{x}, y)
$$

, $P_{X, Y}(\mathbf{x}, y)$ is the probability distribution of $(\mathbf{x}, y)$. It is fixed, but typically unknown.
$\Rightarrow$ In general, we can't compute the actual risk directly!

## Recap: Statistical Learning Theory

- Idea
, Compute an upper bound on the actual risk based on the empirical risk

$$
R(\alpha) \cdot R_{e m p}(\alpha)+\epsilon\left(N, p^{*}, h\right)
$$

, where
$N$ : number of training examples
$p^{*}$ : probability that the bound is correct
$h$ : capacity of the learning machine ("VC-dimension")

## Recap: VC Dimension

- Vapnik-Chervonenkis dimension
, Measure for the capacity of a learning machine.
- Formal definition:
, If a given set of $\ell$ points can be labeled in all possible $2^{\ell}$ ways, and for each labeling, a member of the set $\{f(\alpha)\}$ can be found which correctly assigns those labels, we say that the set of points is shattered by the set of functions.
, The VC dimension for the set of functions $\{f(\alpha)\}$ is defined as the maximum number of training points that can be shattered by $\{f(\alpha)\}$.


## VC Dimension

- Interpretation as a two-player game
, Opponent's turn: He says a number $N$.
, Our turn: We specify a set of $N$ points $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\}$.
, Opponent's turn: He gives us a labeling $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\} \in\{0,1\}^{N}$
, Our turn:
We specify a function $f(\alpha)$ which correctly classifies all $N$ points.
$\Rightarrow$ If we can do that for all $2^{N}$ possible labelings, then the VC dimension is at least $N$.


## VC Dimension

- Example
, The VC dimension of all oriented lines in $\mathbb{R}^{2}$ is 3.

1. Shattering 3 points with an oriented line:

2. More difficult to show: it is not possible to shatter 4 points (XOR)...
> More general: the VC dimension of all hyperplanes in $\mathbb{R}^{n}$ is $n+1$.

## VC Dimension

- Intuitive feeling (unfortunately wrong)
, The VC dimension has a direct connection with the number of parameters.
- Counterexample

$$
\begin{aligned}
f(x ; \alpha) & =g(\sin (\alpha x)) \\
g(x) & = \begin{cases}1, & x>0 \\
-1, & x \cdot\end{cases}
\end{aligned}
$$

, Just a single parameter $\alpha$.
, Infinite VC dimension

- Proof: Choose $\quad x_{i}=10^{-i}, \quad i=1, \ldots, \ell$

Slide adapted from Bernt Schiele

$$
\alpha=\pi\left(1+\sum_{i=1}^{\ell} \frac{\left(1-y_{i}\right) 10^{i}}{2}\right)
$$

## Upper Bound on the Risk

- Important result (Vapnik 1979, 1995)
, With probability $(1-\eta)$, the following bound holds

$$
R(\alpha) \cdot R_{e m p}(\alpha)+\underbrace{\sqrt{\frac{h(\log (2 N / h)+1)-\log (\eta / 4)}{N}}}_{\text {"VC confidence" }}
$$

, This bound is independent of $P_{X, Y}(\mathbf{x}, y)$ !
, Typically, we cannot compute the left-hand side (the actual risk)

- If we know $h$ (the VC dimension), we can however easily compute the risk bound

$$
R(\alpha) \cdot R_{e m p}(\alpha)+\epsilon\left(N, p^{*}, h\right)
$$

## Upper Bound on the Risk


B. Leibe

\section*{| R |
| :--- |}

## Recap: Structural Risk Minimization

- How can we implement Structural Risk Minimization?

$$
R(\alpha) \cdot R_{e m p}(\alpha)+\epsilon\left(N, p^{*}, h\right)
$$

- Classic approach
, Keep $\epsilon\left(N, p^{*}, h\right)$ constant and minimize $R_{\text {emp }}(\alpha)$.
> $\epsilon\left(N, p^{*}, h\right)$ can be kept constant by controlling the model parameters.
- Support Vector Machines (SVMs)
, Keep $R_{\text {emp }}(\alpha)$ constant and minimize $\epsilon\left(N, p^{*}, h\right)$.
, In fact: $R_{e m p}(\alpha)=0$ for separable data.
, Control $\epsilon\left(N, p^{*}, h\right)$ by adapting the VC dimension (controlling the "capacity" of the classifier).


## Topics of This Lecture

- Linear Support Vector Machines
, Lagrangian (primal) formulation
, Dual formulation
, Discussion
- Linearly non-separable case
, Soft-margin classification
, Updated formulation
- Nonlinear Support Vector Machines
, Nonlinear basis functions
, The Kernel trick
, Mercer's condition
, Popular kernels
- Applications


## Revisiting Our Previous Example...

- How to select the classifier with the best generalization performance? ${ }^{\circ}$
, Intuitively, we would like to select the classifier which leaves maximal "safety room" for future data points.
, This can be obtained by maximizing the margin between positive and negative
 data points.
, It can be shown that the larger the margin, the lower the corresponding classifier's VC dimension.
- The SVM takes up this idea
, It searches for the classifier with maximum margin.
, Formulation as a convex optimization problem $\Rightarrow$ Possible to find the globally optimal solution!


## Support Vector Machine (SVM)

- Let's first consider linearly separable data
, $N$ training data points $\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}_{i=1}^{N} \quad \mathbf{x}_{i} \in \mathbb{R}^{d}$
, Target values $\quad t_{i} \in\{-1,1\}$
, Hyperplane separating the data

$$
\mathbf{w}^{\mathrm{T}} \mathbf{x}+b=0
$$


B. Leibe

## Support Vector Machine (SVM)

- Margin of the hyperplane: $d_{-}+d_{+}$
> $d_{+}$: distance to nearest pos. training example
> $d_{-}$: distance to nearest neg. training example $\circ \circ$
$\circ_{1}$ Margin
, We can always choose $\mathbf{w}, b$ such that $d_{-}=d_{+}=\frac{1}{\|\mathbf{w}\|}$.


## Support Vector Machine (SVM)

- Since the data is linearly separable, there exists a hyperplane with

$$
\begin{array}{lll}
\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b \geq+1 & \text { for } & t_{n}=+1 \\
\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b \cdot-1 & \text { for } & t_{n}=-1
\end{array}
$$

- Combined in one equation, this can be written as

$$
t_{n}\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b\right) \geq 1 \quad \forall n
$$

$\Rightarrow$ Canonical representation of the decision hyperplane.
, The equation will hold exactly for the points on the margin

$$
t_{n}\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b\right)=1
$$

. By definition, there will always be at least one such point.


## Support Vector Machine (SVM)

- We can choose $w$ such that

$$
\begin{array}{lll}
\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b=+1 & \text { for one } & t_{n}=+1 \\
\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b=-1 & \text { for one } & t_{n}=-1
\end{array}
$$

- The distance between those two hyperplanes is then the margin

$$
\begin{aligned}
d_{-}=d_{+} & =\frac{1}{\|\mathbf{w}\|} \\
d_{-}+d_{+} & =\frac{2}{\|\mathbf{w}\|}
\end{aligned}
$$

$\Rightarrow$ We can find the hyperplane with maximal margin by minimizing $\|\mathbf{w}\|^{2}$,

## Support Vector Machine (SVM)

- Optimization problem
, Find the hyperplane satisfying

$$
\underset{\mathbf{w}, b}{\arg \min } \frac{1}{2}\|\mathbf{w}\|^{2}
$$

under the constraints

$$
t_{n}\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b\right) \geq 1 \quad \forall n
$$

, Quadratic programming problem with linear constraints.

- Can be formulated using Lagrange multipliers.
- Who is already familiar with Lagrange multipliers?
- Let's look at a real-life example...


## Recap: Lagrange Multipliers

- Problem
, We want to maximize $K(\mathbf{x})$ subject to constraints $f(\mathbf{x})=0$.
, Example: we want to get as close as possible, but there is a fence.
> How should we move?

$$
f(\mathbf{x})=0
$$

$$
f(\mathbf{x})>0
$$

, We want to maximize $\nabla K$.
, But we can only move parallel to the fence, i.e. along

$$
\nabla_{\|} K=\nabla K+\lambda \nabla f
$$

with $\lambda \neq 0$.

## Recap: Lagrange Multipliers

- Problem
, We want to maximize $K(\mathbf{x})$ subject to constraints $f(\mathbf{x})=0$.
, Example: we want to get as close as possible, but there is a fence.
, How should we move?

$$
\begin{aligned}
& f(\mathrm{x})=0 \\
\Rightarrow & \text { Optimize }
\end{aligned}
$$

$$
f(\mathbf{x})<0
$$

$$
\max _{\mathbf{x}, \lambda} L(\mathbf{x}, \lambda)=K(\mathbf{x})+\lambda f(\mathbf{x})
$$

$$
\begin{aligned}
& \frac{\partial L}{\partial \mathbf{x}}=\nabla_{\|} K \stackrel{!}{=} 0 \\
& \frac{\partial L}{\partial \lambda}=f(x) \stackrel{!}{=} 0
\end{aligned}
$$

## Recap: Lagrange Multipliers

- Problem
, Now let's look at constraints of the form $f(\mathbf{x}) \geq 0$.
, Example: There might be a hill from which we can see better...
, Optimize $\max L(\mathbf{x}, \lambda)=K(\mathbf{x})+\lambda f(\mathbf{x})$ $f(\mathbf{x})=0$
, Solution lies on boundary
$\Rightarrow f(\mathbf{x})=0$ for some $\lambda>0$
> Solution lies inside $f(\mathbf{x})>0$
$\Rightarrow$ Constraint inactive: $\lambda=0$
, In both cases
$\Rightarrow \lambda f(\mathbf{x})=0$
- Two cases


## Recap: Lagrange Multipliers

- Problem
, Now let's look at constraints of the form $f(\mathbf{x}) \geq 0$.
, Example: There might be a hill from which we can see better...
, Optimize $\max L(\mathbf{x}, \lambda)=K(\mathbf{x})+\lambda f(\mathbf{x})$
$f(\mathbf{x})=0{ }_{\mathbf{x}, \lambda} L(\mathbf{x}, \lambda)=K(\mathbf{x})+\lambda f(\mathbf{x})$
- Two cases
, Solution lies on boundary
$\Rightarrow f(\mathbf{x})=0$ for some $\lambda>0$
, Solution lies inside $f(\mathbf{x})>0$
$\Rightarrow$ Constraint inactive: $\lambda=0$
, In both cases
$\Rightarrow \lambda f(\mathbf{x})=0$


## SVM - Lagrangian Formulation

- Find hyperplane minimizing $\|\mathbf{w}\|^{2}$ under the constraints

$$
t_{n}\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b\right)-1 \geq 0 \quad \forall n
$$

- Lagrangian formulation
, Introduce positive Lagrange multipliers: $\quad a_{n} \geq 0 \quad \forall n$
, Minimize Lagrangian ("primal form")

$$
L(\mathbf{w}, b, \mathbf{a})=\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{n=1}^{N} a_{n}\left\{t_{n}\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b\right)-1\right\}
$$

> l.e., find $\mathbf{w}, b$, and a such that

$$
\frac{\partial L}{\partial b}=0 \Rightarrow \sum_{n=1}^{N} a_{n} t_{n}=0 \quad \frac{\partial L}{\partial \mathbf{w}}=0 \Rightarrow \mathbf{w}=\sum_{n=1}^{N} a_{n} t_{n} \mathbf{x}_{n}
$$

## SVM - Lagrangian Formulation

- Lagrangian primal form

$$
\begin{aligned}
L_{p} & =\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{n=1}^{N} a_{n}\left\{t_{n}\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b\right)-1\right\} \\
& =\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{n=1}^{N} a_{n}\left\{t_{n} y\left(\mathbf{x}_{n}\right)-1\right\}
\end{aligned}
$$

- The solution of $L_{p}$ needs to fulfill the KKT conditions
, Necessary and sufficient conditions

$$
\begin{aligned}
a_{n} & \geq 0 \\
t_{n} y\left(\mathbf{x}_{n}\right)-1 & \geq 0 \\
a_{n}\left\{t_{n} y\left(\mathbf{x}_{n}\right)-1\right\} & =0
\end{aligned}
$$

| KKT: |  |
| ---: | :--- |
| $\lambda$ | $\geq 0$ |
| $f(\mathbf{x})$ | $\geq 0$ |
| $\lambda f(\mathbf{x})$ | $=0$ |

## SVM - Solution (Part 1)

- Solution for the hyperplane
- Computed as a linear combination of the training examples

$$
\mathbf{w}=\sum_{n=1}^{N} a_{n} t_{n} \mathbf{x}_{n}
$$

, Because of the KKT conditions, the following must also hold

$$
a_{n}\left(t_{n}\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b\right)-1\right)=0
$$

, This implies that $a_{n}>0$ only for training data points for which

$$
\left(t_{n}\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b\right)-1\right)=0
$$

$\Rightarrow$ Only some of the data points actually influence the decision boundary!

## SVM - Support Vectors

- The training points for which $a_{n}>0$ are called "support vectors".
- Graphical interpretation:
, The support vectors are the points on the margin.
, They define the margin and thus the hyperplane.
$\Rightarrow$ Robustness to "too correct" points!



## SVM - Solution (Part 2)

- Solution for the hyperplane
, To define the decision boundary, we still need to know $b$.
, Observation: any support vector $\mathbf{x}_{n}$ satisfies

$t_{n} y\left(\mathbf{x}_{n}\right)=t_{n}\left(\sum_{m \in \mathcal{S}} a_{m} t_{m} \mathbf{x}_{m}^{\mathrm{T}} \mathbf{x}_{n}+b\right)=1$| $\mathrm{KKT}:$ |
| :---: |
| $f(\mathbf{x}) \geq 0$ |

, Using $t_{n}^{2}=1$, we can derive: $\quad b=t_{n}-\sum_{m \in \mathcal{S}} a_{m} t_{m} \mathbf{x}_{m}^{\mathrm{T}} \mathbf{x}_{n}$
, In practice, it is more robust to average over all support vectors:

$$
b=\frac{1}{N_{\mathcal{S}}} \sum_{n \in \mathcal{S}}\left(t_{n}-\sum_{m \in \mathcal{S}} a_{m} t_{m} \mathbf{x}_{m}^{\mathrm{T}} \mathbf{x}_{n}\right)
$$

## SVM - Discussion (Part 1)

- Linear SVM
, Linear classifier
, Approximative implementation of the SRM principle.
- In case of separable data, the SVM produces an empirical risk of zero with minimal value of the VC confidence (i.e. a classifier minimizing the upper bound on the actual risk).
, SVMs thus have a "guaranteed" generalization capability.
, Formulation as convex optimization problem.
$\Rightarrow$ Globally optimal solution!
- Primal form formulation
, Solution to quadratic prog. problem in $M$ variables is in $\mathcal{O}\left(M^{3}\right)$.
, Here: $D$ variables $\Rightarrow \mathcal{O}\left(D^{3}\right)$
> Problem: scaling with high-dim. data ("curse of dimensionality")


## SVM - Dual Formulation

- Improving the scaling behavior: rewrite $L_{p}$ in a dual form

$$
\begin{aligned}
& L_{p}=\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{n=1}^{N} a_{n}\left\{t_{n}\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b\right)-1\right\} \\
&=\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{n=1}^{N} a_{n} t_{n} \mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}-b \sum_{n=1}^{N} a_{n} t_{n}+\sum_{n=1}^{N} a_{n} \\
& \text {, Using the constraint } \sum_{n=1}^{N} a_{n} t_{n}=0, \text { we obtain } \quad \frac{\partial L_{p}}{\partial b}=0 \\
& L_{p}=\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{n=1}^{N} a_{n} t_{n} \mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+\sum_{n=1}^{N} a_{n}
\end{aligned}
$$

## SVM - Dual Formulation

$$
L_{p}=\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{n=1}^{N} a_{n} t_{n} \mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+\sum_{n=1}^{N} a_{n}
$$

, Using the constraint $\mathbf{w}=\sum_{n=1}^{N} a_{n} t_{n} \mathbf{x}_{n}$, we obtain $\quad \frac{\partial L_{p}}{\partial \mathbf{w}}=0$

$$
\begin{aligned}
L_{p} & =\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{n=1}^{N} a_{n} t_{n} \sum_{m=1}^{N} a_{m} t_{m} \mathbf{x}_{m}^{\mathrm{T}} \mathbf{x}_{n}+\sum_{n=1}^{N} a_{n} \\
& =\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{n=1}^{N} \sum_{m=1}^{N} a_{n} a_{m} t_{n} t_{m}\left(\mathbf{x}_{m}^{\mathrm{T}} \mathbf{x}_{n}\right)+\sum_{n=1}^{N} a_{n}
\end{aligned}
$$

## SVM - Dual Formulation

$$
L=\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{n=1}^{N} \sum_{m=1}^{N} a_{n} a_{m} t_{n} t_{m}\left(\mathbf{x}_{m}^{\mathrm{T}} \mathbf{x}_{n}\right)+\sum_{n=1}^{N} a_{n}
$$

, Applying $\frac{1}{2}\|\mathbf{w}\|^{2}=\frac{1}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$ and again using $\mathbf{w}=\sum_{n=1}^{N} a_{n} t_{n} \mathbf{x}_{n}$

$$
\frac{1}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}=\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_{n} a_{m} t_{n} t_{m}\left(\mathbf{x}_{m}^{\mathrm{T}} \mathbf{x}_{n}\right)
$$

, Inserting this, we get the Wolfe dual

$$
L_{d}(\mathbf{a})=\sum_{n=1}^{N} a_{n}-\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_{n} a_{m} t_{n} t_{m}\left(\mathbf{x}_{m}^{\mathrm{T}} \mathbf{x}_{n}\right)
$$

## SVM - Dual Formulation

- Maximize

$$
L_{d}(\mathbf{a})=\sum_{n=1}^{N} a_{n}-\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_{n} a_{m} t_{n} t_{m}\left(\mathbf{x}_{m}^{\mathrm{T}} \mathbf{x}_{n}\right)
$$

under the conditions

$$
\begin{aligned}
a_{n} & \geq 0 \quad \forall n \\
\sum_{n=1}^{N} a_{n} t_{n} & =0
\end{aligned}
$$

, The hyperplane is given by the $N_{S}$ support vectors:

$$
\mathbf{W}=\sum_{n=1}^{N_{\mathcal{S}}} a_{n} t_{n} \mathbf{x}_{n}
$$

## SVM - Discussion (Part 2)

- Dual form formulation
, In going to the dual, we now have a problem in $N$ variables ( $a_{n}$ ).
, Isn't this worse??? We penalize large training sets!
- However...

1. SVMs have sparse solutions: $a_{n} \neq 0$ only for support vectors!
$\Rightarrow$ This makes it possible to construct efficient algorithms

- e.g. Sequential Minimal Optimization (SMO)
- Effective runtime between $\mathcal{O}(N)$ and $\mathcal{O}\left(N^{2}\right)$.

2. We have avoided the dependency on the dimensionality.
$\Rightarrow$ This makes it possible to work with infinite-dimensional feature spaces by using suitable basis functions $\phi(\mathbf{x})$.
$\Rightarrow$ We'll see that in a few minutes...

## So Far...

- Only looked at linearly separable case... ○ ○ Margin?
- Current problem formulation has no solution if the data are not linearly separable!
, Need to introduce some tolerance to outlier data points.



## SVM - Non-Separable Data

- Non-separable data
, I.e. the following inequalities cannot be satisfied for all data points

$$
\begin{array}{ll}
\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b \geq+1 & \text { for } \quad t_{n}=+1 \\
\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b \cdot-1 & \text { for } \quad t_{n}=-1
\end{array}
$$

, Instead use

$$
\begin{array}{lll}
\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b \geq+1-\xi_{n} & \text { for } & t_{n}=+1 \\
\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b \cdot-1+\xi_{n} & \text { for } & t_{n}=-1
\end{array}
$$

with "slack variables" $\xi_{n} \geq 0 \quad \forall n$

## SVM - Soft-Margin Classification

- Slack variables
, One slack variable $\xi_{n} \geq 0$ for each training data point.
- Interpretation
> $\xi_{n}=0$ for points that are on the correct side of the margin.
$>\xi_{n}=\left|t_{n}-y\left(\mathbf{x}_{n}\right)\right|$ for all other points (linear penalty).


Point on decision boundary: $\xi_{n}=1$

Misclassified point:

$$
\xi_{n}>1
$$

, We do not have to set the slack variables ourselves!
$\Rightarrow$ They are jointly optimized together with w .

## SVM - Non-Separable Data

- Separable data
, Minimize




## SVM - New Primal Formulation

- New SVM Primal: Optimize

$$
L_{p}=\frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{n=1}^{N} \xi_{n}-\underbrace{\sum_{n=1}^{N} a_{n}\left(t_{n} y\left(\mathbf{x}_{n}\right)-1+\xi_{n}\right)}_{\begin{array}{c}
\text { Constraint } \\
t_{n} y\left(\mathbf{x}_{n}\right) \geq 1-\xi_{n}
\end{array}}-\underbrace{\sum_{n=1}^{N} \mu_{n} \xi_{n}}_{\substack{\text { Constraint } \\
\xi_{n} \geq 0}}
$$

- KKT conditions

$$
\begin{array}{rlrl|}
a_{n} & \geq 0 & \mu_{n} & \geq 0 \\
t_{n} y\left(\mathbf{x}_{n}\right)-1+\xi_{n} & \geq 0 & \xi_{n} & \geq 0 \\
a_{n}\left(t_{n} y\left(\mathbf{x}_{n}\right)-1+\xi_{n}\right) & =0 & \mu_{n} \xi_{n} & =0
\end{array} \begin{aligned}
& \text { KKT: } \\
& \lambda \geq 0 \\
& f(\mathbf{x}) \geq 0 \\
& \lambda f(\mathbf{x})=0
\end{aligned}
$$

## SVM - New Dual Formulation

- New SVM Dual: Maximize

$$
L_{d}(\mathbf{a})=\sum_{n=1}^{N} a_{n}-\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_{n} a_{m} t_{n} t_{m}\left(\mathbf{x}_{m}^{\mathrm{T}} \mathbf{x}_{n}\right)
$$

under the conditions

$$
\begin{gathered}
0 \cdot a_{n} \cdot C \\
\sum_{n=1}^{N} a_{n} t_{n}=0
\end{gathered}
$$

This is all that changed!

- This is again a quadratic programming problem
$\Rightarrow$ Solve as before... (more on that later)


## SVM - New Solution

- Solution for the hyperplane
- Computed as a linear combination of the training examples

$$
\mathbf{w}=\sum_{n=1}^{N} a_{n} t_{n} \mathbf{x}_{n}
$$

, Again sparse solution: $a_{n}=0$ for points outside the margin.
$\Rightarrow$ The slack points with $\xi_{n}>0$ are now also support vectors!
, Compute $b$ by averaging over all $N_{\mathcal{M}}$ points with $0<a_{n}<C$ :

$$
b=\frac{1}{N_{\mathcal{M}}} \sum_{n \in \mathcal{M}}\left(t_{n}-\sum_{m \in \mathcal{M}} a_{m} t_{m} \mathbf{x}_{m}^{\mathrm{T}} \mathbf{x}_{n}\right)
$$

## Interpretation of Support Vectors

- Those are the hard examples!
, We can visualize them, e.g. for face detection



## References and Further Reading

- More information on SVMs can be found in Chapter 7.1 of Bishop's book. You can also look at Schölkopf \& Smola (some chapters available online).


Christopher M. Bishop Pattern Recognition and Machine Learning Springer, 2006

B. Schölkopf, A. Smola Learning with Kernels MIT Press, 2002<br>http://www.learning-with-kernels.org/



- A more in-depth introduction to SVMs is available in the following tutorial:
- C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, Vol. 2(2), pp. 121-167 1998.

