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Probability Density Estimation Il

26.04.2016

Bastian Leibe

RWTH Aachen
http://www.vision.rwth-aachen.de

©
M
S
)
€
=
S
7]
o7
=
c
1
®
@
i
)
IE
<
o
®
=

leibe®@vision.rwth-aachen.de
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Course Outline

e Fundamentals (2 weeks)
~ Bayes Decision Theory
~ Probability Density Estimation

e Discriminative Approaches (5 weeks)
> Linear Discriminant Functions
~ Support Vector Machines
- Ensemble Methods & Boosting
> Randomized Trees, Forests & Ferns

e Generative Models (4 weeks)
> Bayesian Networks
> Markov Random Fields
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Topics of This Lecture

e Recap: Parametric Methods
> Maximum Likelihood approach
> Bayesian Learning

e Non-Parametric Methods
> Histograms
~ Kernel density estimation
» K-Nearest Neighbors
> Kk-NN for Classification
» Bias-Variance tradeoff

e Mixture distributions
> Mixture of Gaussians (MoG)
> Maximum Likelihood estimation attempt
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RWNTH
Recap: Gaussian (or Normal) Distribution

e One-dimensional case t
> Mean p
> Variance o2

Nalp.o?) = —=—exp {_ (2 —p)’ }

N(z|p,a?)

&
>

e Multi-dimensional case
> Mean p
> Covariance X
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Image source: C.M. Bishop, 2006



RWTH
Recap: Maximum Likelihood Approach

e Computation of the likelihood
. Single data point: P(Zr|0)

~ Assumption: all data points X = {:cl, ..,xn} are independent
L(0) = p(X|0) = H p(x,|0)

» Log-likelihood
E@)=—InL(0) = — Zlnp(mn|9)

e Estimation of the parameters 6 (Learning)

> Maximize the likelihood (=minimize the negative log-likelihood)
— Take the derivative and set it to Zero.

-y B
p(x,|0)

Slide credit: Bernt Schiele B. Leibe
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RWNTH
Recap: Bayesian Learning Approach

e Bayesian view:

» Consider the parameter vector 6 as a random variable.
> When estimating the parameters, what we compute is

p(x|X) = /p(aj, 0| X)do Assumption: given 0, this

doesn’t depend on X anymore

p(x,6|X) = p(x6, X)p(6]X)

p(2]X) = / p(]0)p(6]X)do
——

This is entirely determined by the parameter 6
(i.e. by the parametric form of the pdf).
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Slide adapted from Bernt Schiele B. Leibe



Bayesian Learning Approach

* Discussion Likelihood of the parametric

form 0 given the data set X.

Estimate for x based on Prior for the
parametric form 0 parameters 0

v

P(]0)L(O)p(0)
TL@w0)d

I

Normalization: integrate
over all possible values of ¢

p(z|X) = do

. If we now plug in a (suitable) prior p(f), we can estimate p(x|X)
from the data set X.

©©
M
S
)
€
€
S
/9]
o]
=
c
S
®
@
i
)
IE
<
o
®
=

7
B. Leibe



Topics of This Lecture

e Non-Parametric Methods
> Histograms
~ Kernel density estimation
» K-Nearest Neighbors
> Kk-NN for Classification
» Bias-Variance tradeoff
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Non-Parametric Methods

e Non-parametric representations
> Often the functional form of the distribution is unknown

X

e Estimate probability density from data
> Histograms
> Kernel density estimation (Parzen window / Gaussian kernels)
» k-Nearest-Neighbor
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Slide credit: Bernt Schiele B. Leibe



Histograms

e Basic idea:

~ Partition the data space into distinct
bins with widths A, and count the

. . 27
number of observations, n,, in each
bin.
147 1
Pi =
0 0.5 1

» Often, the same width is used for all bins, A, = A.

> This can be done, in principle, for any dimensionality D...

Toh

...but the required
number of bins
grows exponen-
o tially with D!

1 D=2 D=3 10
B. Leibe

Toh
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Image source: C.M. Bishop, 2006
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Histograms

RWTHAACHEN
UNIVERSITY

e The bin width A acts as a smoothing factor.

not smooth enough

about OK

too smooth

5 :
A = 0.04 |
0

0 0.5 1

5 :
A = 0.08 |
0

0 0.5 |

5 ;
| A =0.25 |
0

0 0.5 1
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Summary: Histograms

e Properties
» Very general. In the limit (N—o0), every probability density can
be represented.
> No need to store the data points once histogram is computed.
> Rather brute-force

e Problems

~ High-dimensional feature spaces
— D-dimensional space with M bins/dimension will require M?” bins!
= Requires an exponentially growing number of data points
=“Curse of dimensionality”

~ Discontinuities at bin edges

> Bin size?
- too large: too much smoothing
- too small: too much noise

. 12
Slide credit: Bernt Schiele B. Leibe
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RWTH
Statistically Better-Founded Approach

e Data point x comes from pdf p(x)
~ Probability that = falls into small region R

P = /R p(y)dy

e If R is sufficiently small, p(x) is roughly constant
» Let V be the volume of R

. /R p(y)dy ~ p(x)V

e If the number N of samples is sufficiently large, we can
estimate P as

K K
P=_— = ~ ——
N Px) ~ 57

Slide credit: Bernt Schiele B. Leibe

13



RWNTH
Statistically Better-Founded Approach

K

p(x) ~ NV

fixed V fixed K
determine K determine V

Kernel Methods  K-Nearest Neighbor

'y
e Kernel methods .
- Example: Determine _ -
the number K of data -° .,
points inside a fixed .|
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window... -

. 14
Slide credit: Bernt Schiele B. Leibe



Kernel Methods

e Parzen Window
~ Hypercube of dimension D with edge length h:

o 1, |’UJ7J %, Z:L,D -
k(u)—{ 0, else _- .

“Kernel function”

N
X — X
n§:1ﬁ (——) / (u)du
~ Probability density estimate:
N
K 1 X — X
~ — k i
PX)~ Ny = Npp nzzl (——)

Slide credit: Bernt Schiele B. Leibe
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RWNTH
Kernel Methods: Parzen Window

e Interpretations

1. We place a kernel window £ at N
location x and count how many o oo ®
data points fall inside it. o °

2. We place a kernel window k around

each data point x, and sum up
their influences at location x.

= Direct visualization of the density.

o Still, we have artificial discontinuities at the cube
boundaries...

> We can obtain a smoother density model if we choose a
smoother kernel function, e.g. a Gaussian

B. Leibe
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RWNTH
Kernel Methods: Gaussian Kernel

e Gaussian kernel
> Kernel function

K0 = G 3
K:ﬁ:k(x—xn) V:/k(u)duzl

> Probability density estimate

N
K 1 1 |x — x,||?
)~ 5 = v 2 2m)D72h { oh?

n=1
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Slide credit: Bernt Schiele B. Leibe
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Gauss Kernel: Examples

not smooth enough

about OK

too smooth

h = 0.005

0 0.5 1
h acts as a smoother.

18

B. Leibe Image source: C.M. Bishop, 2006
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Kernel Methods

e |In general
> Any kernel such that

k(u) > 0, /k(u)du —

can be used. Then
N
K = Z k(x —xy,)
n=1

> And we get the probability density estimate

N
K 1

Slide adapted from Bernt Schiele B. Leibe
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RWNTH
Statistically Better-Founded Approach

K

p(x) ~ NV

fixed V fixed K
determine K determine V

Kernel Methods  K-Nearest Neighbor

r'y
- o K-Nearest Neighbor
_' . . > Increase the volume V
-® . until the K next data
.| points are found.
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Slide credit: Bernt Schiele B. Leibe



K-Nearest Neighbor

e Nearest-Neighbor density estimation

> Fix K, estimate VVfrom the data. K=3
~ Consider a hypersphere centred @ °
on x and let it grow to a volume V* o© {@
that includes K of the given N data °
points.
> Then
K
X) o~ .
p(x) = <
e Side note

» Strictly speaking, the model produced by K-NN is not a true
density model, because the integral over all space diverges.

- E.g. consider K =1 and a sample exactly on a data point x =z .
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k-Nearest Neighbor: Examples

not smooth enough

© about OK
o
=
=
=
(7))
g too smooth
% 0 0.5 1
'E K acts as a smoother.
:
. 22
B. Leibe

Image source: C.M. Bishop, 2006



RWTH
Summary: Kernel and k-NN Density Estimation

e Properties

» Very general. In the limit (N—o0), every probability density can
be represented.

> No computation involved in the training phase
= Simply storage of the training set

e Problems

~ Requires storing and computing with the entire dataset.
= Computational cost linear in the nhumber of data points.

= This can be improved, at the expense of some computation
during training, by constructing efficient tree-based search
structures.

> Kernel size / K in K-NN?

- Too large: too much smoothing
- Too small: too much noise
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RWNTH
K-Nearest Neighbor Classification

e Bayesian Classification

0. 1x) — PXIC)p(C;))
e Here we have PER) p(x)
p(x) & ]\If{—v
pe) = i

Slide credit: Bernt Schiele B. Leibe
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K-Nearest Neighbors for Classification | !
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. 25
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Image source: C.M. Bishop, 2006
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K-Nearest Neighbors for Classification

e Results on an example data set

L7

* K acts as a smoothing parameter.

K=1
®
®
2 :..
s gee g f ). g @
L
1 L= ®
=
: e L.
L = . & .
o [
S, o o,
ey ®
® “‘l i
©w % e
adoog o

K =3

Y
®
[ ] ® °
g §oe g !..o 8 °
1 ] ®
LN 4
= Y L4 L [ ]
®
S, . e o
@ e @
| %0 o
@ ° (f} . &
g 7 NS
w % e
0 s i ;. I. N
1 Te

e Theoretical guarantee

L7

> For N—oo, the error rate of the 1-NN classifier is never more

than twice the optimal error (obtained from the true conditional

class distributions).

B. Leibe
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Bias-Variance Tradeoff

e Probability density estimation

» Histograms: bin size?
- A too large: too smooth Too much bias
- A too small: not smooth enough Too much variance

> Kernel methods: kernel size?
— h too large: too smooth
— h too small: not smooth enough

» K-Nearest Neighbor: K?
— K too large: too smooth
— K too small: not smooth enough

e This is a general problem of many probability density
estimation methods
> Including parametric methods and mixture models

Slide credit: Bernt Schiele B. Leibe
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Discussion

e The methods discussed so far are all simple and easy to
apply. They are used in many practical applications.

e However...
~ Histograms scale poorly with increasing dimensionality.
= Only suitable for relatively low-dimensional data.

- Both k-NN and kernel density estimation require the entire data
set to be stored.

= Too expensive if the data set is large.

~ Simple parametric models are very restricted in what forms of
distributions they can represent.

= Only suitable if the data has the same general form.

e We need density models that are efficient and flexible!

28
B. Leibe
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Topics of This Lecture

e Mixture distributions
> Mixture of Gaussians (MoG)
> Maximum Likelihood estimation attempt

B. Leibe
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RWTHAACHEN
. . . . UNIVERSITY
Mixture Distributions

e A single parametric distribution is often not sufficient
> E.g. for multimodal data

100 - - - - 100
80 | 80 |
-
e 60 | 60 |
S
=)
7 :
£ 40 — 40
% 1 2 3 4 5 6 1 2 3 4 5 6
Q
o Single Gaussian Mixture of two
c .
= Gaussians
o
=
. 30
B. Leibe

Image source: C.M. Bishop, 2006
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Mixture of Gaussians (MoG)

e Sum of M individual Normal distributions

f(z)]

-

XL

> In the limit, every smooth distribution can be approximated this
way (if M is large enough)

M

p(zl0) = > p(«l6;)p(5)

g=1

: 31
Slide credit: Bernt Schiele B. Leibe



Mixture of Gaussians

M
p(x|0) = S:p(ij )10(]) Likelihood of measurement x
—1 given mixture component
J
1 (z — py)°
p(x|0;) = ./\/'(:U|uj,032-) = ——  exp{ — >
\/27T0'j 207

M
) — T : | L — Prior of
p(j) =m; with O j and Z?T] 1. component ;
j=1
* Notes
- The mixture density integrates to 1: /p(x)dx =1

» The mixture parameters are

0 = (W17M17017°"777TM7MM70M)
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Slide adapted from Bernt Schiele B. Leibe



ACHEN
UNIVERSITY
Mixture of Gaussians (MoG) |

e “Generative model”

. “Weight” of mixture
@ p(j) = m; component

1
2 3\

= T Mixture
E ) ‘ M p(x(0;) component
S >
5; X
(@]
£ \ Mixture density
S p(o)] S -
: /% p(el6) = > plxl6;)p()
: : =
< X
33

Slide credit: Bernt Schiele B. Leibe
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Mixture of Multivariate Gaussians

057
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RWNTH
Mixture of Multivariate Gaussians

o Multivariate Gaussians
p(x|0) = Zp x|0;)p

1 1 _
J

> Mixture weights / mixture coeff1c1ents

p(j) =m; with 0« m; - 1andZ7Tj—1 1

0.5
> Parameters:

0 = (m1, 10y, X1, TLs Bpgs 20M) o
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Slide credit: Bernt Schiele B. Leibe Image source: C.M. Bishop, 2006
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Mixture of Multivariate Gaussians

e “Generative model”

©
M
S
@
€
=
S
/9]
o)
=
c
|
©
)
1
)
IE
=
o
©
=

. 36
Slide credit: Bernt Schiele B. Leibe Image source: C.M. Bishop, 2006



RWTH
Mixture of Gaussians - 15t Estimation Attempt

e Maximum Likelihood

N
- Minimize £ = —In L(0) = — Zlnp(xn|6’)
n=1

- Let’s first look at 1 N
OF . \/
o)
H
: >

M

> We can already see that this will be difficult, since

N
Inp(X|7m, p, ) = Zln < TN (X | Ek)}
n=1
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This will cause problems!

37

Slide adapted from Bernt Schiele B. Leibe



RWTH
Mixture of Gaussians - 15t Estimation Attempt

e Minimization: 0

—N(Xn“j’kv Zk) —
N 0 X 9 8Hj
8_E — _Z 8ll'<l'jp( n‘ J) Z_l(xn—uj)./\/(xnmk,ﬁk)
al"’] n=1 Zk:l p(Xn‘ek)

- —i(zwxn—u-) penlf) )

Z?:l p(Xn|0k)

_ _1ZXn—H' T3 n|fjs < Lo

e We thus obtain = (%)
ij_l Y (Xn)xn “responsibility” of
— B = N component j for x_

J N
anl ,73 (Xn)

B. Leibe
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RWTH
Mixture of Gaussians - 15t Estimation Attempt

e But...
. zﬁ;m TN (1) )
9 n

WXTL) ’ TN (Xl ) i)

e |.e. there is no direct analytical solution!

OF
— = ... )y
8“3 (7717,1’17 1, s TTM 5 Fbpv g s M)

> Complex gradient function (non-linear mutual dependencies)
> Optimization of one Gaussian depends on all other Gaussians!

~ It is possible to apply iterative numerical optimization here,
but in the following, we will see a simpler method.

B. Leibe
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RWNTH
Mixture of Gaussians - Other Strategy

sy S

1

e Other strategy:

S (x)

> Observed data: o ooe oo o °
> Unobserved data: 1 111 22
- Unobserved = “hidden variable”: j|x
h(j =1lz,) = 1 111 00 0 0
h(j =2|zy,) = 0 000 11 1 1

Slide credit: Bernt Schiele B. Leibe
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RWNTH
Mixture of Gaussians - Other Strategy

e Assuming we knew the values of the hidden variable...

JS(x)
X
ML for Gaussian #1 T T ML for Gaussian #2
assumed known —> 1 111 22 2 2 7
h(j=1lz,) = 1 111 00 0 O
h(j =2[z») = 0 000 11 1 1
N : N
1y = anl h(] — 1|$n)xn Ly = anl h(] — 2|33n)33n
— ~ . —
Zizl h(j = 1|z,) Zizl h(j = 2|zy)

Slide credit: Bernt Schiele B. Leibe
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RWNTH
Mixture of Gaussians - Other Strategy

e Assuming we knew the mixture components...

f ( x) assumed known
X
p(i=1la) | | pUj = 2o)
1 111 22 2 2 ]

e Bayes decision rule: Decide j =1 if

p(j = 1|zpn) > p(J = 2|z,)

Slide credit: Bernt Schiele B. Leibe
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RWNTH
Mixture of Gaussians - Other Strategy

e Chicken and egg problem - what comes first?

J(x)

We don’t know
any of those!
1 111 22 2 2

e In order to break the loop, we need an estimate for ;.

» E.g. by clustering...
= Next lecture...

J

Slide credit: Bernt Schiele B. Leibe
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References and Further Reading

 More information in Bishop’s book
> Gaussian distribution and ML: Ch. 1.2.4 and 2.3.1-2.3.4.

~ Bayesian Learning: Ch. 1.2.3 and 2.3.6.
> Nonparametric methods: Ch. 2.5.
e Additional information can be found in Duda & Hart
> ML estimation: Ch. 3.2
> Bayesian Learning: Ch. 3.3-3.5

> Nonparametrlc methods: Ch. 4.1-4.5
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