

Machine Learning - Lecture 3

Probability Density Estimation II

26.04.2016

Bastian Leibe

RWTH Aachen

http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de

Many slides adapted from B. Schiele

RWTHAACHEN UNIVERSITY

Course Outline

- Fundamentals (2 weeks)
 - Bayes Decision Theory
 - Probability Density Estimation

- Discriminative Approaches (5 weeks)
 - Linear Discriminant Functions
 - Support Vector Machines
 - Ensemble Methods & Boosting
 - Randomized Trees, Forests & Ferns

- Generative Models (4 weeks)
 - Bayesian Networks
 - Markov Random Fields

Topics of This Lecture

- Recap: Parametric Methods
 - Maximum Likelihood approach
 - Bayesian Learning
- Non-Parametric Methods
 - Histograms
 - Kernel density estimation
 - K-Nearest Neighbors
 - k-NN for Classification
 - Bias-Variance tradeoff
- Mixture distributions
 - Mixture of Gaussians (MoG)
 - Maximum Likelihood estimation attempt

RWTHAACHEN UNIVERSITY

Recap: Gaussian (or Normal) Distribution

One-dimensional case

- ightharpoonup Mean μ
- > Variance σ^2

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$$

Multi-dimensional case

- \triangleright Mean μ
- \triangleright Covariance Σ

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right\}$$

B. Leibe

RWTHAACHEN UNIVERSITY

Recap: Maximum Likelihood Approach

- Computation of the likelihood
 - > Single data point: $p(x_n|\theta)$
 - Assumption: all data points $X = \{x_1, \dots, x_n\}$ are independent

$$L(\theta) = p(X|\theta) = \prod_{n=1}^{N} p(x_n|\theta)$$

Log-likelihood

$$E(\theta) = -\ln L(\theta) = -\sum_{n=1}^{N} \ln p(x_n|\theta)$$

- Estimation of the parameters θ (Learning)
 - Maximize the likelihood (=minimize the negative log-likelihood)
 - \Rightarrow Take the derivative and set it to zero.

$$\frac{\partial}{\partial \theta} E(\theta) = -\sum_{n=1}^{N} \frac{\frac{\partial}{\partial \theta} p(x_n | \theta)}{p(x_n | \theta)} \stackrel{!}{=} 0$$

B. Leibe

Recap: Bayesian Learning Approach

- Bayesian view:
 - \succ Consider the parameter vector heta as a random variable.
 - > When estimating the parameters, what we compute is

$$p(x|X) = \int p(x,\theta|X)d\theta \qquad \text{Assumption: given θ, this doesn't depend on X anymore} \\ p(x,\theta|X) = p(x|\theta,X)p(\theta|X)$$

$$p(x|X) = \int p(x|\theta)p(\theta|X)d\theta$$

This is entirely determined by the parameter θ (i.e. by the parametric form of the pdf).

Bayesian Learning Approach

Discussion

Likelihood of the parametric form θ given the data set X.

Normalization: integrate over all possible values of θ

If we now plug in a (suitable) prior $p(\theta)$, we can estimate p(x|X) from the data set X.

Topics of This Lecture

- Recap: Bayes Decision Theory
- Parametric Methods
 - Recap: Maximum Likelihood approach
 - Bayesian Learning
- Non-Parametric Methods
 - Histograms
 - Kernel density estimation
 - K-Nearest Neighbors
 - k-NN for Classification
 - Bias-Variance tradeoff
- Mixture distributions
 - Mixture of Gaussians (MoG)
 - Maximum Likelihood estimation attempt

Non-Parametric Methods

- Non-parametric representations
 - Often the functional form of the distribution is unknown

- Estimate probability density from data
 - Histograms
 - Kernel density estimation (Parzen window / Gaussian kernels)
 - k-Nearest-Neighbor

Histograms

Basic idea:

Partition the data space into distinct bins with widths Δ_i and count the number of observations, n_i , in each bin.

 $p_i = \frac{n_i}{N\Delta_i}$

- ightharpoonup Often, the same width is used for all bins, Δ_i = Δ .
- \triangleright This can be done, in principle, for any dimensionality D...

...but the required number of bins grows exponentially with D!

Histograms

The bin width △ acts as a smoothing factor.

not smooth enough

about OK

too smooth

Summary: Histograms

Properties

- > Very general. In the limit $(N\to\infty)$, every probability density can be represented.
- No need to store the data points once histogram is computed.
- Rather brute-force

Problems

- High-dimensional feature spaces
 - D-dimensional space with M bins/dimension will require M^D bins!
 - ⇒ Requires an exponentially growing number of data points
 - ⇒"Curse of dimensionality"
- Discontinuities at bin edges
- Bin size?
 - too large: too much smoothing
 - too small: too much noise

Statistically Better-Founded Approach

- Data point x comes from pdf p(x)
 - Probability that x falls into small region \mathcal{R}

$$P = \int_{\mathcal{R}} p(y) dy$$

- If \mathcal{R} is sufficiently small, $p(\mathbf{x})$ is roughly constant
 - ightharpoonup Let V be the volume of $\mathcal R$

$$P = \int_{\mathcal{R}} p(y)dy \approx p(\mathbf{x})V$$

If the number N of samples is sufficiently large, we can estimate P as

$$P = \frac{K}{N} \qquad \Rightarrow p(\mathbf{x}) \approx \frac{K}{NV}$$

RWTHAACHEN UNIVERSITY

Statistically Better-Founded Approach

- Kernel methods
 - Example: Determine the number K of data points inside a fixed window...

14

Slide credit: Bernt Schiele

B. Leibe

Kernel Methods

Parzen Window

> Hypercube of dimension D with edge length h:

$$k(\mathbf{u}) = \begin{cases} 1, & |u_i \cdot \frac{1}{2}, & i = 1, \dots, D \\ 0, & else \end{cases}$$

"Kernel function"

$$K = \sum_{n=1}^{N} k(\frac{\mathbf{x} - \mathbf{x}_n}{h}) \qquad V = \int k(\mathbf{u}) d\mathbf{u} = h^d$$

Probability density estimate:

$$p(\mathbf{x}) \approx \frac{K}{NV} = \frac{1}{Nh^D} \sum_{n=1}^{N} k(\frac{\mathbf{x} - \mathbf{x}_n}{h})$$

15

Kernel Methods: Parzen Window

Interpretations

1. We place a kernel window k at location \mathbf{x} and count how many data points fall inside it.

2. We place a kernel window k around each data point \mathbf{x}_n and sum up their influences at location \mathbf{x} .

⇒ Direct visualization of the density.

We can obtain a smoother density model if we choose a smoother kernel function, e.g. a Gaussian

Kernel Methods: Gaussian Kernel

Gaussian kernel

Kernel function

$$k(\mathbf{u}) = \frac{1}{(2\pi h^2)^{1/2}} \exp\left\{-\frac{\mathbf{u}^2}{2h^2}\right\}$$

$$K = \sum_{n=1}^{N} k(\mathbf{x} - \mathbf{x}_n) \qquad V = \int k(\mathbf{u}) d\mathbf{u} = 1$$

Probability density estimate

$$p(\mathbf{x}) \approx \frac{K}{NV} = \frac{1}{N} \sum_{n=1}^{N} \frac{1}{(2\pi)^{D/2}h} \exp\left\{-\frac{||\mathbf{x} - \mathbf{x}_n||^2}{2h^2}\right\}$$

Gauss Kernel: Examples

not smooth enough

about OK

too smooth

h acts as a smoother.

Kernel Methods

- In general
 - Any kernel such that

$$k(\mathbf{u}) \geqslant 0, \qquad \int k(\mathbf{u}) \, \mathrm{d}\mathbf{u} = 1$$

can be used. Then

$$K = \sum_{n=1}^{N} k(\mathbf{x} - \mathbf{x}_n)$$

And we get the probability density estimate

$$p(\mathbf{x}) \approx \frac{K}{NV} = \frac{1}{N} \sum_{n=1}^{N} k(\mathbf{x} - \mathbf{x}_n)$$

RWTHAACHEN UNIVERSITY

Statistically Better-Founded Approach

K-Nearest Neighbor

Increase the volume V until the K next data points are found.

20

K-Nearest Neighbor

Nearest-Neighbor density estimation

- \triangleright Fix K, estimate V from the data.
- > Consider a hypersphere centred on ${\bf x}$ and let it grow to a volume V^* that includes K of the given N data points.

Then

$$p(\mathbf{x}) \simeq \frac{K}{NV^{\star}}.$$

Side note

- Strictly speaking, the model produced by K-NN is not a true density model, because the integral over all space diverges.
- ightharpoonup E.g. consider K=1 and a sample exactly on a data point $\mathbf{x}=x_j$.

k-Nearest Neighbor: Examples

not smooth enough

about OK

too smooth

K acts as a smoother.

RWTHAACHEN UNIVERSITY

Summary: Kernel and k-NN Density Estimation

Properties

- > Very general. In the limit $(N\to\infty)$, every probability density can be represented.
- No computation involved in the training phase
- ⇒ Simply storage of the training set

Problems

- Requires storing and computing with the entire dataset.
- ⇒ Computational cost linear in the number of data points.
- ⇒ This can be improved, at the expense of some computation during training, by constructing efficient tree-based search structures.
- Kernel size / K in K-NN?
 - Too large: too much smoothing
 - Too small: too much noise

K-Nearest Neighbor Classification

Bayesian Classification

$$p(C_j|\mathbf{x}) = \frac{p(\mathbf{x}|C_j)p(C_j)}{p(\mathbf{x})}$$

Here we have

$$p(\mathbf{x}) \approx \frac{K}{NV}$$

$$p(\mathbf{x}|\mathcal{C}_j) \approx \frac{K_j}{N_j V} \longrightarrow p(\mathcal{C}_j|\mathbf{x}) \approx \frac{K_j}{N_j V} \frac{N_j}{N} \frac{NV}{K} = \frac{K_j}{K}$$

$$p(\mathcal{C}_j) pprox rac{N_j}{N}$$

k-Nearest Neighbor classification

K-Nearest Neighbors for Classification

K-Nearest Neighbors for Classification

Results on an example data set

- K acts as a smoothing parameter.
- Theoretical guarantee
 - For $N\rightarrow\infty$, the error rate of the 1-NN classifier is never more than twice the optimal error (obtained from the true conditional class distributions).

26

Bias-Variance Tradeoff

- Probability density estimation
 - Histograms: bin size?
 - ∆ too large: too smooth
 - ∆ too small: not smooth enough
 - Kernel methods: kernel size?
 - h too large: too smooth
 - h too small: not smooth enough
 - K-Nearest Neighbor: K?
 - K too large: too smooth
 - K too small: not smooth enough

Too much bias
Too much variance

- This is a general problem of many probability density estimation methods
 - Including parametric methods and mixture models

Discussion

- The methods discussed so far are all simple and easy to apply. They are used in many practical applications.
- However...
 - Histograms scale poorly with increasing dimensionality.
 - ⇒ Only suitable for relatively low-dimensional data.
 - Both k-NN and kernel density estimation require the entire data set to be stored.
 - \Rightarrow Too expensive if the data set is large.
 - Simple parametric models are very restricted in what forms of distributions they can represent.
 - \Rightarrow Only suitable if the data has the same general form.
- We need density models that are efficient and flexible!

Topics of This Lecture

- Recap: Bayes Decision Theory
- Parametric Methods
 - Recap: Maximum Likelihood approach
 - Bayesian Learning
- Non-Parametric Methods
 - > Histograms
 - Kernel density estimation
 - K-Nearest Neighbors
 - k-NN for Classification
 - Bias-Variance tradeoff
- Mixture distributions
 - Mixture of Gaussians (MoG)
 - Maximum Likelihood estimation attempt

Mixture Distributions

- A single parametric distribution is often not sufficient
 - > E.g. for multimodal data

Mixture of two Gaussians

Mixture of Gaussians (MoG)

Sum of M individual Normal distributions

In the limit, every smooth distribution can be approximated this way (if M is large enough)

$$p(x|\theta) = \sum_{j=1}^{M} p(x|\theta_j)p(j)$$

Mixture of Gaussians

$$p(x|\theta) = \sum_{j=1}^{M} p(x|\theta_j) p(j)$$

Likelihood of measurement
$$\boldsymbol{x}$$
 given mixture component j

$$p(x|\theta_j) = \mathcal{N}(x|\mu_j, \sigma_j^2) = \frac{1}{\sqrt{2\pi}\sigma_j} \exp\left\{-\frac{(x-\mu_j)^2}{2\sigma_j^2}\right\}$$

$$p(j)=\pi_j$$
 with 0 · π_j · 1 and $\sum_{j=1}\pi_j=1$. Prior of component j

- Notes
 - > The mixture density integrates to 1: $\int p(x)dx = 1$
 - The mixture parameters are

$$\theta = (\pi_1, \mu_1, \sigma_1, \dots, \pi_M, \mu_M, \sigma_M)$$

Mixture of Gaussians (MoG)

"Generative model"

$$p(j) = \pi_j \text{ ``Weight'' of mixture component''}$$

 $p(x|\theta_j)$ Mixture component

Mixture density

$$p(x|\theta) = \sum_{j=1}^{M} p(x|\theta_j)p(j)$$

33

Mixture of Multivariate Gaussians

Mixture of Multivariate Gaussians

Multivariate Gaussians

$$p(\mathbf{x}|\theta) = \sum_{j=1} p(\mathbf{x}|\theta_j) p(j)$$

$$p(\mathbf{x}|\theta_j) = \frac{1}{(2\pi)^{D/2} |\mathbf{\Sigma}_j|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_j)^{\mathrm{T}} \mathbf{\Sigma}_j^{-1} (\mathbf{x} - \boldsymbol{\mu}_j)\right\}$$

Mixture weights / mixture coefficients:

$$p(j) = \pi_j$$
 with $0 \cdot \pi_j \cdot 1$ and $\sum_{j=1}^n \pi_j = 1$

Parameters:

$$\theta = (\pi_1, \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1, \dots, \pi_M, \boldsymbol{\mu}_M, \boldsymbol{\Sigma}_M)$$

35

Mixture of Multivariate Gaussians

"Generative model"

B. Leibe

Mixture of Gaussians - 1st Estimation Attempt

Maximum Likelihood

- $\,\,$ Minimize $E=-\ln L(\theta)=-\sum_{n=1} \ln p(\mathbf{x}_n|\theta)$
- > Let's first look at μ_i :

$$\frac{\partial E}{\partial \boldsymbol{\mu}_i} = 0$$

We can already see that this will be difficult, since

$$\ln p(\mathbf{X}|m{\pi},m{\mu},m{\Sigma}) = \sum_{n=1}^N \ln \left\{ \sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}_n|m{\mu}_k,m{\Sigma}_k)
ight\}$$

This will cause problems!

Mixture of Gaussians - 1st Estimation Attempt

Minimization:

$$\frac{\partial E}{\partial \boldsymbol{\mu}_j} = -\sum_{n=1}^N \frac{\frac{\partial}{\partial \boldsymbol{\mu}_j} p(\mathbf{x}_n | \theta_j)}{\sum_{k=1}^K p(\mathbf{x}_n | \theta_k)}$$

$$egin{aligned} rac{\partial}{\partialoldsymbol{\mu}_j} \mathcal{N}(\mathbf{x}_n|oldsymbol{\mu}_k,oldsymbol{\Sigma}_k) = \ oldsymbol{\Sigma}^{-1}(\mathbf{x}_n-oldsymbol{\mu}_j) \mathcal{N}(\mathbf{x}_n|oldsymbol{\mu}_k,oldsymbol{\Sigma}_k) \end{aligned}$$

$$= -\sum_{n=1}^{N} \left(\mathbf{\Sigma}^{-1} (\mathbf{x}_n - \boldsymbol{\mu}_j) \frac{p(\mathbf{x}_n | \theta_j)}{\sum_{k=1}^{K} p(\mathbf{x}_n | \theta_k)} \right)$$

$$= -\sum_{n=1}^{N} (\mathbf{x}_n - \boldsymbol{\mu}_j)$$

$$= -\sum_{n=1}^{N} (\mathbf{x}_n - \boldsymbol{\mu}_j) \underbrace{\frac{\pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}{\sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}}^{!} \stackrel{!}{=} 0$$

We thus obtain

$$\Rightarrow oldsymbol{\mu}_j = rac{\sum_{n=1}^N \gamma_j(\mathbf{x}_n) \mathbf{x}_n}{\sum_{n=1}^N \gamma_j(\mathbf{x}_n)}$$

$$=\gamma_j(\mathbf{x}_n)$$

"responsibility" of component j for \mathbf{x}_n

Mixture of Gaussians - 1st Estimation Attempt

But...

$$\boldsymbol{\mu}_{j} = \frac{\sum_{n=1}^{N} \gamma_{j}(\mathbf{x}_{n}) \mathbf{x}_{n}}{\sum_{n=1}^{N} \gamma_{j}(\mathbf{x}_{n})} \quad \gamma_{j}(\mathbf{x}_{n}) = \frac{\pi_{j} \mathcal{N}(\mathbf{x}_{n} (\boldsymbol{\mu}_{j}) \boldsymbol{\Sigma}_{j})}{\sum_{k=1}^{K} \pi_{k} \mathcal{N}(\mathbf{x}_{n} (\boldsymbol{\mu}_{k}), \boldsymbol{\Sigma}_{k})}$$

I.e. there is no direct analytical solution!

$$\frac{\partial E}{\partial \boldsymbol{\mu}_j} = f(\pi_1, \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1, \dots, \pi_M, \boldsymbol{\mu}_M, \boldsymbol{\Sigma}_M)$$

- Complex gradient function (non-linear mutual dependencies)
- Optimization of one Gaussian depends on all other Gaussians!
- It is possible to apply iterative numerical optimization here, but in the following, we will see a simpler method.

Other strategy:

- Observed data:
- Unobserved data:
 - Unobserved = "hidden variable": j|x

$$h(j=1|x_n) =$$

111

22

$$h(j=2|x_n) =$$

2

Assuming we knew the values of the hidden variable...

$$u_1 = \frac{\sum_{n=1}^{N} h(j=1|x_n)x_n}{\sum_{j=1}^{N} h(j=1|x_n)}$$

$$\mu_1 = \frac{\sum_{n=1}^{N} h(j=1|x_n)x_n}{\sum_{i=1}^{N} h(j=1|x_n)} \quad \mu_2 = \frac{\sum_{n=1}^{N} h(j=2|x_n)x_n}{\sum_{i=1}^{N} h(j=2|x_n)}$$

Assuming we knew the mixture components...

• Bayes decision rule: Decide j = 1 if

$$p(j=1|x_n) > p(j=2|x_n)$$

42

Chicken and egg problem - what comes first?

- In order to break the loop, we need an estimate for j.
 - E.g. by clustering...
 - ⇒ Next lecture...

43

Pattern Classification

45

References and Further Reading

More information in Bishop's book

Gaussian distribution and ML: Ch. 1.2.4 and 2.3.1-2.3.4.

Bayesian Learning: Ch. 1.2.3 and 2.3.6.

Nonparametric methods: Ch. 2.5.

Additional information can be found in Duda & Hart

ML estimation: Ch. 3.2

Bayesian Learning: Ch. 3.3-3.5

Ch. 4.1-4.5 Nonparametric methods:

Christopher M. Bishop Pattern Recognition and Machine Learning Springer, 2006

Pattern Classification 2nd Ed., Wiley-Interscience, 2000