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Recap: Particle Filtering Recap: Sequential Importance Sampling

L . i N i i AN
+ Many variations, one general concept: function [{x,. w; };ZIJ = 5IS [{x,._l. wisi}i, .y,J
— Represent the posterior pdf by a set of randomly chosen weighted

g =0 Initialize
samples (particles;
ples P ) for i = I:N
Posterior i i
X~ g%y \X,,l‘ ¥i) Sample from proposal pdf
; ! p(xd |
wy = wy_; P—(yd ')!F( (Xe1) Update weights
qxx_y,y0)
Sample space =1+ Update norm. factor
end
- Randomly Chosen = Monte Carlo (MC) for i = 1N
— As the number of samples become very large — the characterization wy — wifn Normalize weights
becomes an equivalent representation of the true pdf. end )
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Recap: Sequential Importance Samplin Recap: SIS Algorithm with Transitional Prior

. £ £ N i i N . i i N i i N

function [{x,.u',}A:lJ = 815 Hxnl-“'pl},:l ,y,J function [{x,.u',}A:lJ = SIS l{xn‘—lfu'!—l},:l .y,J
n==0 Initialize n==0 Initialize
for i = 1:N for i = I:N

Xy~ q(x|x; 1, ¥) Sample from proposal pdf ) p(xelxi_y) Sample from proposal pdf

wi = Wiy Update weights wy = wi_ plyx}) Update weights

n— 1+ Update norm. factor 0=+ Update norm. factor
end For a concrete algorithm, end Transitional prior
for i = 1:N we need to define the for i = LN | alxlx; . ye) = plxfx; )

) importance density ¢(.|.)! _ ) . ) _ ,

wy — wy /1y Normalize weights wy — wifn Normalize weights

end end
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Recap: Resampling

» Degeneracy problem with SIS
— After a few iterations, most particles have negligible weights.
— Large computational effort for updating particles with very small
contribution to p(x, | y1.,)-

* Idea: Resampling
— Eliminate particles with low importance weights and increase the
number of particles with high importance weight.

N L 1Y
i, = {p |

— The new set is generated by sampling with replacement from the
discrete representation of p(x, | y,.,) such that

Pr {x;* = x{} =w]
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Recap: Efficient Resampling Approach

» From Arulampalam paper:
Algorithm 2: Resampling Algorithm
[ wi, ¥)jk] = RESAMPLE. [{x, wi}ia]
# Initialize the CDF: ¢ =0
# FOR @ =2: Ng

— Construct CDF: ¢ = ¢i] +w;:

END FOR

Start at the bottom of the CDF:

Draw a starting point: i ~WU[0, N7

FOR j =1: N,

— Move along the CDF: wu;=uy + N7 (j—1}

— WHILE u; > ¢

#i=4+t1 Basic idea: choose one initial

— END WHILE . small random number; deter-

— Assign sample: x,; ministically sample the rest

- izzigl; wsigi& 5 - by “crawling” up the cdf.

Jne e This is O(N)!
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Recap: Generic Particle Filter

function {{xﬁw;}:\:l] =PF {{x}_l,uwz_l}il,ym]
Apply SIS filtering [{x}u;}:\;l] = SIS [{xf_l.urt‘_l};il.yf}
Calculate N,y
if N, < Ny,
N N
[{xi, witiL,| = RESAMPLE [{xi, «i} |
end

» We can also apply resampling selectively
— Only resample when it is needed, i.e., Neff is too low.
= Avoids drift when the tracked state is stationary.
® ™~
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Sampling-Importance-Resampling (SIR)

function [X;] = SIR [X;_,,y]
:*_( =X =0 Initialize
for i = I:N

Sample x; ~ p(x]x} ) Generate new samples

wy — plyx;) Update weights
end
for i = I:N
Draw i with probability x ul}
: Resample

Add %} to X,
end
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Sampling-Importance-Resampling (SIR)

function [X;] = SIR (X, 1,y

X=X =0
for i = 1:N

Sample x; ~ p(x|x}_,)

Important property:

Particles are distributed
according to pdf from
wy — plyelx;) previous time step.
end

for i = 1:N

Particles are distributed
according to posterior
from this time step.

Draw i with probability x u‘é

Add x{ to X,
end
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Topics of This Lecture

» Multi-Object Tracking
— Motivation
— Ambiguities

« Simple Approaches
— Gating
— Mahalanobis distance
— Nearest-Neighbor Filter

« Track-Splitting Filter
— Derivation
— Properties

* Outlook
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Elements of Tracking
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Detection Data association Prediction
« Detection
— Where are candidate objects? Lecture 4
+ Data association
— Which detection corresponds to which object? Today’s topic

* Prediction
— Where will the tracked object be in the next time step? Lectures 5-7
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Motion Correspondence

 Motion correspondence problem
— Do two measurements at different times
originate from the same object?

* Why is it hard?

— First make predictions for the expected l, .. .\l
locations of the current set of objects ‘g Rt

— Match predictions to actual measurements [

— This is where ambiguities may arise... ®
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Motion Correspondence Ambiguities
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1. Predictions may not be supported by measurements
— Have the objects ceased to exist, or are they simply occluded?

2. There may be unexpected measurements
— Newly visible objects, or just noise?

3. More than one measurement may match a prediction
— Which measurement is the correct one (what about the others)?

4. A measurement may match to multiple predictions
— Which object shall the measurement be assigned to?
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Topics of This Lecture

« Simple Approaches
— Gating
— Mahalanobis distance
— Nearest-Neighbor Filter
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Let’s Formalize This

» Multi-Object Tracking problem
— We represent a track by a state vector x, e.9.,
X =[x, ¥, vz, :'_,,]J

— As the track evolves, we denote its state by the time index k:
T
x'*) = [,a:m,u“"]‘ NE“J{,‘”}

— At each time step, we get a set of observations (measurements)
(k) _ [tk (k)
Y {y 1 s ¥in }
— We now need to make the data association between tracks
(k) G . * &
{Xi L x_:\.:}and observations {yﬁ ).--.‘yffi}:
(i

) seep AR . . (i
=it Y, is associated with X,{)
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Gating with Mahalanobis Distance

Reducing Ambiguities: Simple Approaches

* Gating =

— Only consider measurements within a certain
area around the predicted location.

= Large gain in efficiency, since only a small P4

region needs to be searched

* Nearest-Neighbor Filter
— Among the candidates in the gating region,
only take the one closest to the prediction x,

z;“ = arg 111illJ(X}::',J - yj“'))j (XE,A_.,) - y};”) X -*
— Better: the one most likely under a Gaussian prediction model
z;“ = argmax; _N"('y;”; x;"f, Ei})]
which is equivalent to taking the Mahalanobis distance
z = argming(x,; — yu..)"f'E;,l(x,,‘p -¥;)
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* Recall: Kalman filter
— Provides exactly the quantities necessary to perform this
- Predicted mean location x,,
- Prediction covariance ¥,

— The Kalman filter prediction covariance also defines a useful
gating area.

= E.g., choose the gating area size such that 95% of the
probability mass is covered.

* Side note
— The Mahalanobis distance is x?2 distributed with the number of
degrees of freedom n, equal to the dimension of x.
— For a given probability bound, the corresponding threshold on the
Mahalanobis distance can be got from x? distribution tables.
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Mahalanobis Distance

Problems with NN Assignment

« Additional notation
— Our KF state of track x; is given by P z.’ ‘.\‘
the prediction x;*' and covariance %51/ )/ ° //
[
— We define the innovation that measure- "4 [N
ment y; brings to track x; at time kas -7

(k) _ k) (k)
Vil = (Yj _XP;)

— With this, we can write the observation likelihood shortly as

(k)" Z(a‘r‘vcm }

k)| (K 1
ply; ") "‘{'x]){fiv.jj pi o Vil

— We define the ellipsoidal gating or validation volume as
Ak k)T (k)1 k
V() = {ylty - TEN T v —x) <0}
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* Limitations
— For NN assignments, there is always a finite chance that the
association is incorrect, which can lead to serious effects.
= If a Kalman filter is used, a misassigned measurement may lead the
filter to lose track of its target.

— The NN filter makes assignment decisions only based on the
current frame.

— More information is available by examining subsequent images.

= Let’s make use of this information by postponing the decision
process until a future frame will resolve the ambiguity...
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Topics of This Lecture

* Track-Splitting Filter
— Derivation
— Properties
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Track-Splitting Filter

* ldea
— Problem with NN filter was hard assignment. /é :,
— Rather than arbitrarily assigning the closest s

measurement, form a tree.

— Branches denote alternate assignments. °
— No assignment decision is made at this stage!
= Decisions are postponed until additional
measurements have been gathered... 3
I Yhe
« Potential problems? e e Y

— Track trees can quickly become very large due
to combinatorial explosion.

= We need some measure of the likelihood of a track,
so that we can prune the tree!
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Track Likelihoods Track Likelihoods (2)
» Expressing track likelihoods « Starting from the likelihood
— Given a track [, denote by 6., the event that K 1 1< T -1
: . () ) )
the sequence of assignments L(h1) = H PR exp 3 Z Vil 3 Vi
Z { (1) w} o (2m)2 |2 i=1
bl = F g % ) ) ) o .
ut ol e e Y ~ Define the modified log-likelihood ), for track [ as
from time 1 to k originate from the same object. L(0y.)
N(k) = —2log | ——m—F——————
— The likelihood of 6, is the joint probability over all observations in the (k) ’,"—1 (2m)~*% |g;Jl‘_§
track k
k
Liths) = [] o2 Z iy O00) O @) )
E T = Z",,.ﬂ 0 ovia
. o ) =1
— If we assume Gaussian observation likelihoods, this becomes ! T (B (k)
" L& , L = ’\ﬂ(j"*l)ﬂLVu,z % Vipd
L(Br.t) = ]___[ —— I P |5 Z Vil sl = Recursive calculation, sum of Mahalanobis distances of all the
% 2 iy iy )
jo (@B j=1 measurements assigned to track [.
j s Sy e O T j b S e O Tt

Track-Splitting Filter Pruning Strategies
« Effect w « In order to keep this feasible, need to apply pruning
— Instead of assigning the measurement that is * Z} i — Deleting unlikely tracks
currently closest, as in the NN algorithm, oz = May be accomplished by comparing the modified log-likelihood A(k), which
we can select the sequence of measurements oz has a x? distribution with kn_ degrees of freedom, with a threshold « (set
that minimizes the total Mahalanobis distance 0 ! I according to x? distribution tables).
over some interval! z e ez

= Problem for long tracks: modified log-likelihood gets dominated by
old terms and responds very slowly to new ones.

— Modified log-likelihood provides the merit of a particular = Use sliding window or exponential decay term.

node in the track tree.
— Cost of calculating this is low, since most terms are needed - Merging track nodes
anyway for the Kalman filter. = If the state estimates of two track nodes are similar, merge them.
= E.g., if both tracks validate identical subsequent measurements.
 Problem
— The track tree grows exponentially, may generate a very large
number of possible tracks that need to be maintained.
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— Only keeping the most likely N tracks
= Rank tracks based on their modified log-likelihood.

Summary: Track-Splitting Filter Topics of This Lecture

* Properties
— Very old algorithm

= P. Smith, G. Buechler, A Branching Algorithm for Discriminating and Tracking
Multiple Objects, IEEE Trans. Automatic Control, Vol. 20, pp. 101-104, 1975.

— Improvement over NN assignment.
— Assignment decisions are delayed until more information is available.

* Many problems remain
— Exponential complexity, heuristic pruning needed.
— Merging of track nodes is necessary, because tracks may share
measurements, which is physically unrealistic.
= Would need to add exclusion constraints such that each :
measurement may only belong to a single track. * Qutlook
= Impossible in this framework...
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Outlook for the Next Lectures

» More powerful approaches
— Multi-Hypothesis Tracking (MHT)
= Well-suited for KF, EKF approaches [Reid, 1979]

— Joint Probabilistic Data Association Filters (JPDAF)

= Well-suited for PF approaches [Fortmann, 1983]

« Data association as convex optimization problem
— Bipartite Graph Matching (Hungarian algorithm)

— Network Flow Optimization
= Efficient, globally optimal solutions for subclass of problems.
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References and Further Readin

» A good tutorial on Data Association
- 1.J. Cox. A Review of Statistical Data Association Techniques for
Motion Correspondence. In International Journal of Computer Vision,
Vol. 10(1), pp. 53-66, 1993.
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