Computer Vision 2 – Lecture 6

Beyond Kalman Filters (09.05.2016)

Prof. Dr. Bastian Leibe, Dr. Jörg Stückler leibe@vision.rwth-aachen.de, stueckler@vision.rwth-aachen.de

RWTH Aachen University, Computer Vision Group http://www.vision.rwth-aachen.de

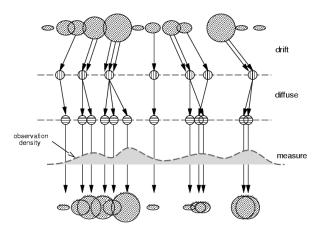
Visual Computing Institute Computer Vision Prof. Dr. Bastian Leibe

Content of the Lecture

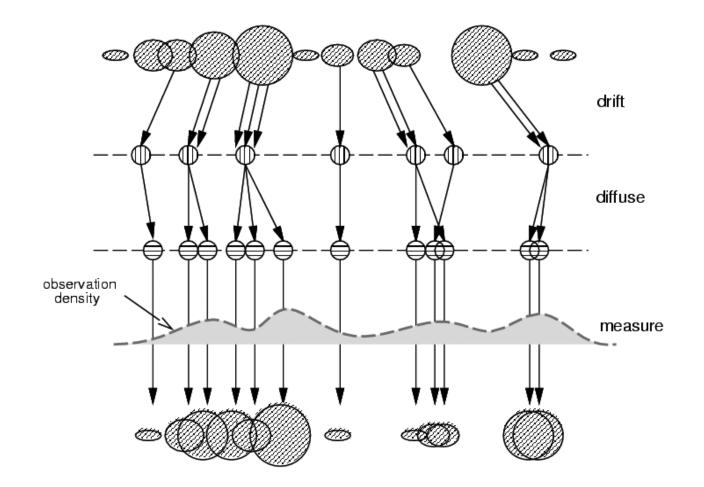
- Single-Object Tracking
- Bayesian Filtering
 - Kalman Filters, EKF
 - Particle Filters
- Multi-Object Tracking
- Visual Odometry

2

Visual SLAM & 3D Reconstruction



Today: Beyond Gaussian Error Models



Lecture: Computer Vision 2 (SS 2016) – Beyond Kalman Filters Prof. Dr. Bastian Leibe, Dr. Jörg Stückler

3

Figure from Isard & Blake

Topics of This Lecture

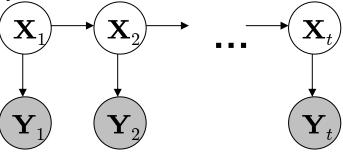
• Recap: Kalman Filter

- Basic ideas
- Limitations
- Extensions
- Particle Filters
 - Basic ideas
 - Propagation of general densities
 - Factored sampling
- Case study

- Detector Confidence Particle Filter
- Role of the different elements

Recap: Tracking as Inference

- Inference problem
 - The hidden state consists of the true parameters we care about, denoted \mathbf{X} .
 - The measurement is our noisy observation that results from the underlying state, denoted \mathbf{Y} .
 - At each time step, state changes (from \mathbf{X}_{t-1} to \mathbf{X}_{t}) and we get a new observation \mathbf{Y}_{t} .
- Our goal: recover most likely state \mathbf{X}_t given
 - All observations seen so far.
 - Knowledge about dynamics of state transitions.



Lecture: Computer Vision 2 (SS 2016) – Beyond Kalman Filters Prof. Dr. Bastian Leibe, Dr. Jörg Stückler

Slide credit: Kristen Grauman

Recap: Tracking as Induction

- Base case:
 - Assume we have initial prior that predicts state in absence of any evidence: $P(\mathbf{X}_0)$
 - At the first frame, correct this given the value of $\mathbf{Y}_0 = \mathbf{y}_0$
- Given corrected estimate for frame t:
 - Predict for frame t+1
 Correct for frame t+1
 predict correct

Recap: Prediction and Correction

• Prediction:

$$P(X_{t} | y_{0}, ..., y_{t-1}) = \int P(X_{t} | X_{t-1}) P(X_{t-1} | y_{0}, ..., y_{t-1}) dX_{t-1}$$
Dynamics Corrected estimate from previous step
• Correction:
$$P(X_{t} | y_{0}, ..., y_{t}) = \frac{P(y_{t} | X_{t}) P(X_{t} | y_{0}, ..., y_{t-1})}{\int P(y_{t} | X_{t}) P(X_{t} | y_{0}, ..., y_{t-1}) dX_{t}}$$

Lecture: Computer Vision 2 (SS 2016) – Beyond Kalman Filters Prof. Dr. Bastian Leibe, Dr. Jörg Stückler

Slide credit: Svetlana Lazebnik

Recap: Linear Dynamic Models

- Dynamics model
 - State undergoes linear transformation D_t plus Gaussian noise

$$\boldsymbol{x}_{t} \sim N(\boldsymbol{D}_{t}\boldsymbol{x}_{t-1},\boldsymbol{\Sigma}_{d_{t}})$$

- Observation model
 - Measurement is linearly transformed state plus Gaussian noise

$$\boldsymbol{y}_t \sim N(\boldsymbol{M}_t \boldsymbol{x}_t, \boldsymbol{\Sigma}_{m_t})$$

Lecture: Computer Vision 2 (SS 2016) – Beyond Kalman Filters Prof. Dr. Bastian Leibe, Dr. Jörg Stückler

Slide credit: Svetlana Lazebnik, Kristen Grauman

Recap: Constant Velocity (1D Points)

• State vector: position p and velocity v

$$\begin{aligned} x_{t} &= \begin{bmatrix} p_{t} \\ v_{t} \end{bmatrix} & p_{t} = p_{t-1} + (\Delta t)v_{t-1} + \mathcal{E} & \text{(greek letters denote noise} \\ v_{t} &= v_{t-1} + \xi & \text{terms} \end{aligned}$$

$$x_{t} &= D_{t}x_{t-1} + noise = \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} p_{t-1} \\ v_{t-1} \end{bmatrix} + noise$$

 Measurement is position only $y_t = Mx_t + noise = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} p_t \\ v_t \end{bmatrix} + noise$

Lecture: Computer Vision 2 (SS 2016) - Beyond Kalman Filters Prof. Dr. Bastian Leibe, Dr. Jörg Stückler

9

letters

Recap: Constant Acceleration (1D Points)

• State vector: position p, velocity v, and acceleration a.

$$x_{t} = \begin{bmatrix} p_{t} \\ v_{t} \\ a_{t} \end{bmatrix} \qquad \begin{array}{l} p_{t} = p_{t-1} + (\Delta t)v_{t-1} + \frac{1}{2}(\Delta t)^{2}a_{t-1} + \mathcal{E} & \text{(greek letters denote noise terms)} \\ v_{t} = v_{t-1} + (\Delta t)a_{t-1} + \mathcal{E} & \text{terms)} \\ a_{t} = a_{t-1} + \mathcal{E} & \text{terms)} \\ a_{t} = a_{t-1} + \mathcal{E} & \text{terms)} \\ x_{t} = D_{t}x_{t-1} + noise = \begin{bmatrix} 1 & \Delta t & \frac{1}{2}(\Delta t)^{2} \\ 0 & 1 & \Delta t \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_{t-1} \\ v_{t-1} \\ a_{t-1} \end{bmatrix} + noise \\ \begin{array}{l} \text{Aeasurement is position only} \end{array}$$

 a_t

Measurement is position only

$$y_t = Mx_t + noise = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{vmatrix} p_t \\ v_t \end{vmatrix} + noise$$

10

Lecture: Computer Vision 2 (SS 2016) – Beyond Kalman Filters Prof. Dr. Bastian Leibe, Dr. Jörg Stückler

Slide credit: Svetlana Lazebnik, Kristen Grauman

Recap: General Motion Models

- Assuming we have differential equations for the motion
 - E.g. for (undampened) periodic motion of a linear spring

$$\frac{d^2 p}{dt^2} = -p$$

Substitute variables to transform this into linear system

$$p_1 = p$$
 $p_2 = \frac{dp}{dt}$ $p_3 = \frac{d^2p}{dt^2}$

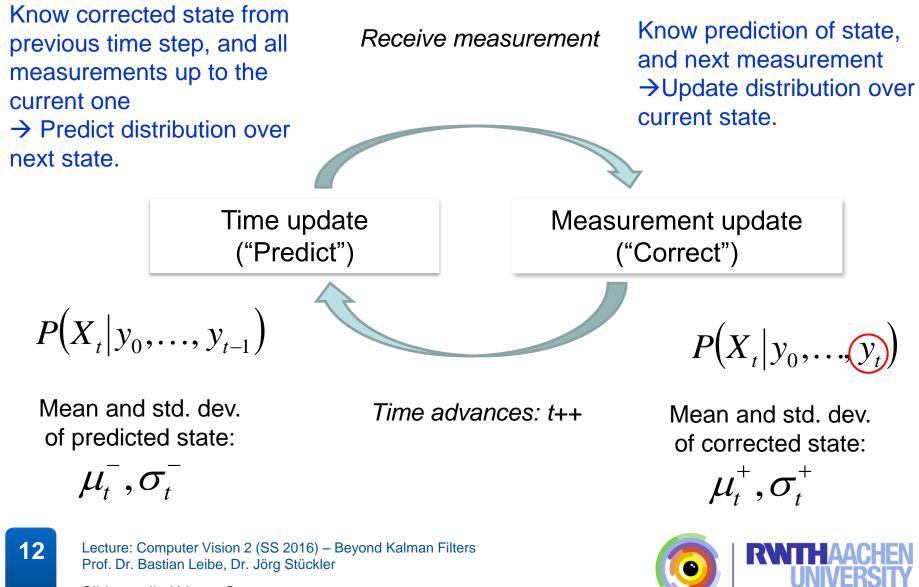
Then we have

11

$$x_{t} = \begin{bmatrix} p_{1,t} \\ p_{2,t} \\ p_{3,t} \end{bmatrix} \qquad \begin{array}{l} p_{1,t} = p_{1,t-1} + (\Delta t) p_{2,t-1} + \frac{1}{2} (\Delta t)^{2} p_{3,t-1} + \mathcal{E} \\ p_{2,t} = p_{2,t-1} + (\Delta t) p_{3,t-1} + \mathcal{E} \\ p_{3,t} \end{bmatrix} \qquad \begin{array}{l} D_{t} = \begin{bmatrix} 1 & \Delta t & \frac{1}{2} (\Delta t)^{2} \\ 0 & 1 & \Delta t \\ -1 & 0 & 0 \end{bmatrix}$$

Lecture: Computer Vision 2 (SS 2016) – Beyond Kalman Filters Prof. Dr. Bastian Leibe, Dr. Jörg Stückler

Recap: The Kalman Filter



Slide credit: Kristen Grauman

Recap: General Kalman Filter (>1dim)

PREDICT

$$x_t^- = D_t x_{t-1}^+$$
$$\Sigma_t^- = D_t \Sigma_{t-1}^+ D_t^T + \Sigma_{d_t}$$

More weight on residual when measurement error covariance approaches 0.

CORRECT

$$\begin{split} K_t &= \Sigma_t^- M_t^T \left(M_t \Sigma_t^- M_t^T + \Sigma_{m_t} \right)^{-1} \\ x_t^+ &= x_t^- + K_t \left(y_t - M_t x_t^- \right) \text{``residual''} \\ \Sigma_t^+ &= \left(I - K_t M_t \right) \Sigma_t^- \end{split}$$

Less weight on residual as a priori estimate error covariance approaches 0.

for derivations, see F&P Chapter 17.3

13

Lecture: Computer Vision 2 (SS 2016) – Beyond Kalman Filters Prof. Dr. Bastian Leibe, Dr. Jörg Stückler

Slide credit: Kristen Grauman

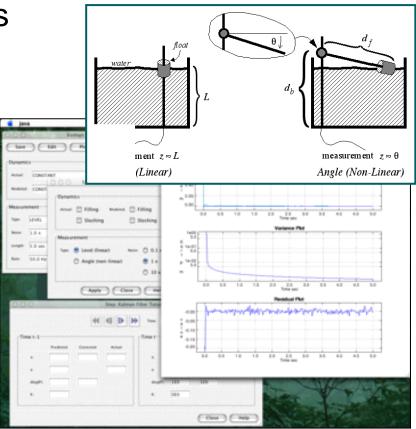
Resources: Kalman Filter Web Site

http://www.cs.unc.edu/~welch/kalman

- Electronic and printed references
 - Book lists and recommendations
 - Research papers
 - Links to other sites
 - Some software
- News

14

- Java-Based KF Learning Tool
 - On-line 1D simulation
 - Linear and non-linear
 - Variable dynamics



Slide adapted from Greg Welch

Remarks

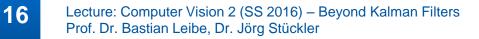
• Try it!

- Not too hard to understand or program
- Start simple
 - Experiment in 1D
 - Make your own filter in Matlab, etc.
- Note: the Kalman filter "wants to work"
 - Debugging can be difficult
 - Errors can go un-noticed

Topics of This Lecture

• Recap: Kalman Filter

- Basic ideas
- Limitations
- Extensions
- Particle Filters
 - Basic ideas
 - Propagation of general densities
 - Factored sampling
- Case study
 - Detector Confidence Particle Filter
 - Role of the different elements



Extension: Extended Kalman Filter (EKF)

- Basic idea
 - State transition and observation model don't need to be linear functions of the state, but just need to be differentiable.

$$x_t = g(x_{t-1}, u_t) + \varepsilon$$

 $y_t = h(x_t) + \delta$

- The EKF essentially linearizes the nonlinearity around the current estimate by a Taylor expansion.
- Properties

- Unlike the linear KF, the EKF is in general *not* an optimal estimator.
 - If the initial estimate is wrong, the filter may quickly diverge.
- Still, it's the de-facto standard in many applications
 - Including navigation systems and GPS

Recap: Kalman Filter – Detailed Algorithm

- Algorithm summary
 - Assumption: linear model

$$\mathbf{x}_t = \mathbf{D}_t \mathbf{x}_{t-1} + \varepsilon_t$$

$$\mathbf{y}_t = \mathbf{M}_t \mathbf{x}_t + \delta_t$$

- Prediction step

$$\mathbf{x}_t^- = \mathbf{D}_t \mathbf{x}_{t-1}^+$$

 $\mathbf{\Sigma}_t^- = \mathbf{D}_t \mathbf{\Sigma}_{t-1}^+ \mathbf{D}_t^T + \mathbf{\Sigma}_{d_t}$

- Correction step

$$egin{array}{rcl} \mathbf{K}_t &=& \mathbf{\Sigma}_t^- \mathbf{M}_t^T \left(\mathbf{M}_t \mathbf{\Sigma}_t^- \mathbf{M}_t^T + \mathbf{\Sigma}_{m_t}
ight)^{-1} \ \mathbf{x}_t^+ &=& \mathbf{x}_t^- + \mathbf{K}_t \left(\mathbf{y}_t - \mathbf{M}_t \mathbf{x}_t^-
ight) \ \mathbf{\Sigma}_t^+ &=& \left(\mathbf{I} - \mathbf{K}_t \mathbf{M}_t
ight) \mathbf{\Sigma}_t^- \end{array}$$

Lecture: Computer Vision 2 (SS 2016) – Beyond Kalman Filters Prof. Dr. Bastian Leibe, Dr. Jörg Stückler

Extended Kalman Filter (EKF)

- Algorithm summary
 - Nonlinear model

$$\mathbf{x}_t = \mathbf{g}(\mathbf{x}_{t-1}) + \varepsilon_t$$

$$\mathbf{y}_t = \mathbf{h}(\mathbf{x}_t) + \delta_t$$

- Prediction step

$$\mathbf{x}_{t}^{-} = \mathbf{g} \left(\mathbf{x}_{t-1}^{+} \right)$$
$$\mathbf{\Sigma}_{t}^{-} = \mathbf{G}_{t} \mathbf{\Sigma}_{t-1}^{+} \mathbf{G}_{t}^{T} + \mathbf{\Sigma}_{d_{t}}$$

Correction step

$$\begin{split} \mathbf{K}_t &= \mathbf{\Sigma}_t^{-} \mathbf{H}_t^T \left(\mathbf{H}_t \mathbf{\Sigma}_t^{-} \mathbf{H}_t^T + \mathbf{\Sigma}_{m_t} \right)^{-1} \\ \mathbf{x}_t^+ &= \mathbf{x}_t^- + \mathbf{K}_t \left(\mathbf{y}_t - \mathbf{h} \left(\mathbf{x}_t^- \right) \right) \\ \mathbf{\Sigma}_t^+ &= \left(\mathbf{I} - \mathbf{K}_t \mathbf{H}_t \right) \mathbf{\Sigma}_t^- \end{split}$$

with the Jacobians

$$\mathbf{G}_{t} = \left. \frac{\partial \mathbf{g}(\mathbf{x})}{\partial \mathbf{x}} \right|_{\mathbf{x} = \mathbf{x}_{t-1}^{+}}$$
$$\mathbf{H}_{t} = \left. \frac{\partial \mathbf{h}(\mathbf{x})}{\partial \mathbf{x}} \right|_{\mathbf{x} = \mathbf{x}_{t}^{-}}$$

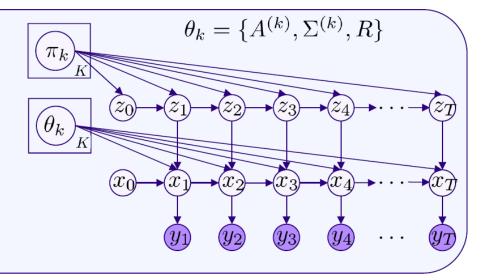
Kalman Filter – Other Extensions

- Unscented Kalman Filter (UKF)
 - Used for models with highly nonlinear predict and update functions.
 - Here, the EKF can give very poor performance, since the covariance is propagated through linearization of the non-linear model.
 - Idea (UKF): Propagate just a few sample points ("sigma points") around the mean exactly, then recover the covariance from them.
 - More accurate results than the EKF's Taylor expansion approximation.
- Ensemble Kalman Filter (EnKF)
 - Represents the distribution of the system state using a collection (an ensemble) of state vectors.
 - Replace covariance matrix by sample covariance from ensemble.
 - Still basic assumption that all prob. distributions involved are Gaussian.
 - EnKFs are especially suitable for problems with a large number of variables.

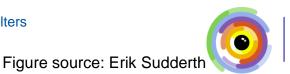
Even More Extensions

Switching linear dynamical system (SLDS):

$$\begin{aligned} z_t &\sim \pi_{z_{t-1}} \\ x_t &= A^{(z_t)} x_{t-1} + e_t(z_t) \\ y_t &= C x_t + w_t \end{aligned}$$
$$e_t &\sim \mathcal{N}(0, \Sigma^{(z_t)}) \quad w_t \sim \mathcal{N}(0, R) \end{aligned}$$



- Switching Linear Dynamic System (SLDS)
 - Use a set of k dynamic models $A^{(1)},...,A^{(k)}$, each of which describes a different dynamic behavior.
 - Hidden variable z_t determines which model is active at time t.
 - A switching process can change z_t according to distribution $\pi_{z_{t-1}}$.



Topics of This Lecture

- Recap: Kalman Filter
 - Basic ideas
 - Limitations
 - Extensions
- Particle Filters
 - Basic ideas
 - Propagation of general densities
 - Factored sampling
- Case study

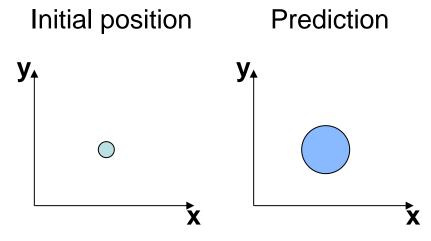
22

- Detector Confidence Particle Filter
- Role of the different elements

Today: only main ideas

Formal introduction next lecture

When Is A Single Hypothesis Too Limiting?



 Consider this example: say we are tracking the face on the right using a skin color blob to get our measurement.

X

Video from Jojic & Frey

Update

X

Y₄

Lecture: Computer Vision 2 (SS 2016) – Beyond Kalman Filters Prof. Dr. Bastian Leibe, Dr. Jörg Stückler

Slide credit: Kristen Grauman

Figure from Thrun & Kosecka

Measurement

Y₄

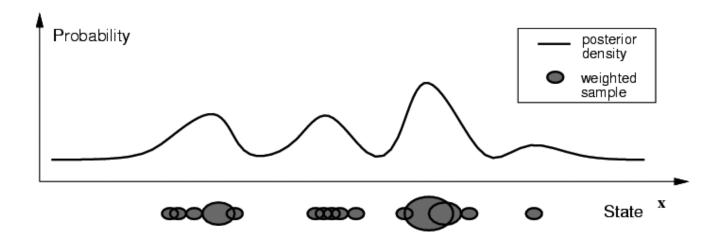
Propagation of General Densities

24



Figure from Isard & Blake

Factored Sampling



- Idea: Represent state distribution non-parametrically
 - Prediction: Sample points from prior density for the state, P(X)
 - Correction: Weight the samples according to P(Y|X)

$$P(X_{t} | y_{0},..., y_{t}) = \frac{P(y_{t} | X_{t})P(X_{t} | y_{0},..., y_{t-1})}{\int P(y_{t} | X_{t})P(X_{t} | y_{0},..., y_{t-1})dX_{t}}$$

Lecture: Computer Vision 2 (SS 2016) – Beyond Kalman Filters Prof. Dr. Bastian Leibe, Dr. Jörg Stückler

Slide credit: Svetlana Lazebnik

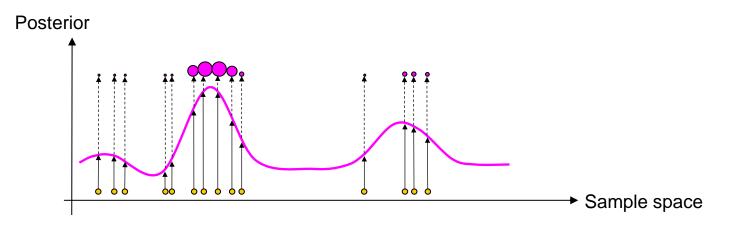
Particle Filtering

- (Also known as Sequential Monte Carlo Methods)
- Idea

- We want to use sampling to propagate densities over time (i.e., across frames in a video sequence).
- At each time step, represent posterior $P(X_t|Y_t)$ with weighted sample set.
- Previous time step's sample set $P(X_{t-1}|Y_{t-1})$ is passed to next time step as the effective prior.

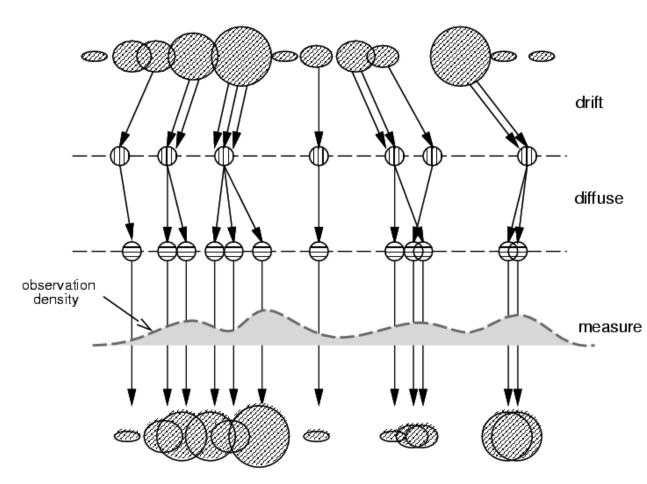
Particle Filtering

- Many variations, one general concept:
 - Represent the posterior pdf by a set of randomly chosen weighted samples (particles)



- Randomly Chosen = Monte Carlo (MC)
- As the number of samples become very large the characterization becomes an equivalent representation of the true pdf.

Particle Filtering



Start with weighted samples from previous time step

Sample and shift according to dynamics model

Spread due to randomness; this is predicted density $P(X_t|Y_{t-1})$

Weight the samples according to observation density

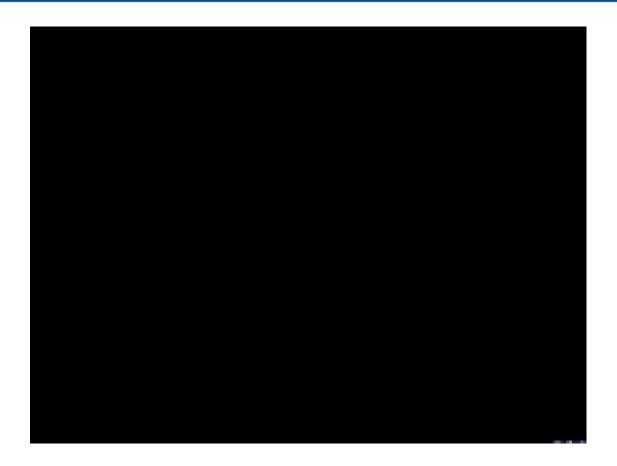
Arrive at corrected density estimate $P(X_t|Y_t)$

M. Isard and A. Blake, <u>CONDENSATION -- conditional density propagation for</u> <u>visual tracking</u>, IJCV 29(1):5-28, 1998

Lecture: Computer Vision 2 (SS 2016) – Beyond Kalman Filters Prof. Dr. Bastian Leibe, Dr. Jörg Stückler

Slide credit: Svetlana Lazebnik

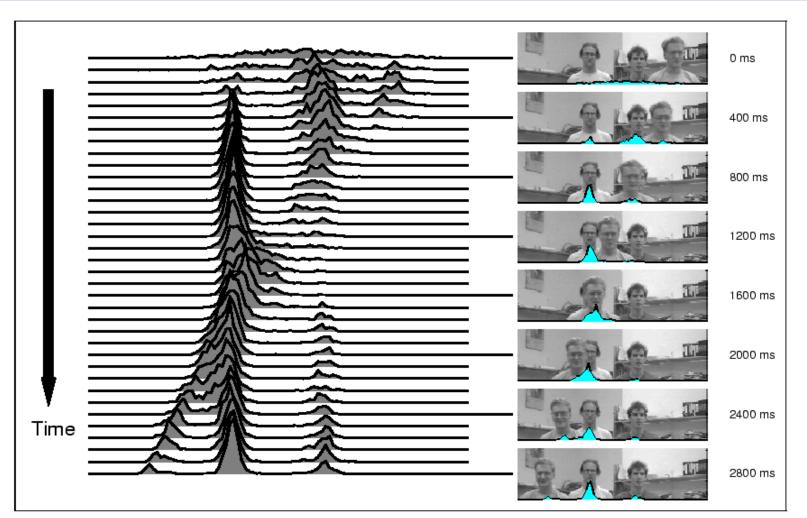
Particle Filtering – Visualization



Code and video available from http://www.robots.ox.ac.uk/~misard/condensation.html

Lecture: Computer Vision 2 (SS 2016) – Beyond Kalman Filters Prof. Dr. Bastian Leibe, Dr. Jörg Stückler

Particle Filtering Results



http://www.robots.ox.ac.uk/~misard/condensation.html

Lecture: Computer Vision 2 (SS 2016) – Beyond Kalman Filters Prof. Dr. Bastian Leibe, Dr. Jörg Stückler

Particle Filtering Results

• Some more examples

http://www.robots.ox.ac.uk/~misard/condensation.html

Lecture: Computer Vision 2 (SS 2016) – Beyond Kalman Filters Prof. Dr. Bastian Leibe, Dr. Jörg Stückler

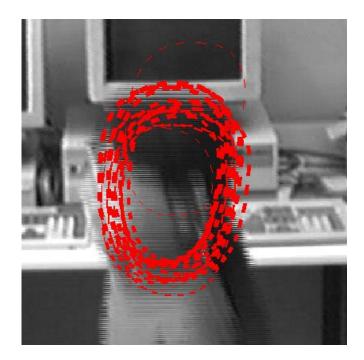
Videos from Isard & Blake

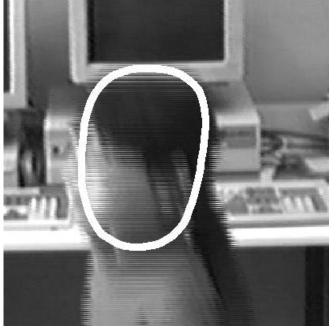
Obtaining a State Estimate

- Note that there's no explicit state estimate maintained, just a "cloud" of particles
- Can obtain an estimate at a particular time by querying the current particle set
- Some approaches
 - "Mean" particle

- Weighted sum of particles
- Confidence: inverse variance
- Really want a mode finder-mean of tallest peak

Condensation: Estimating Target State





From Isard & Blake, 1998

Mean of weighted state samples

State samples (thickness proportional to weight)

Lecture: Computer Vision 2 (SS 2016) – Beyond Kalman Filters Prof. Dr. Bastian Leibe, Dr. Jörg Stückler

Slide credit: Marc Pollefeys

33

Figures from Isard & Blake

Summary: Particle Filtering

• <u>Pros:</u>

- Able to represent arbitrary densities
- Converging to true posterior even for non-Gaussian and nonlinear system
- Efficient: particles tend to focus on regions with high probability
- Works with many different state spaces
 - E.g. articulated tracking in complicated joint angle spaces
- Many extensions available

Summary: Particle Filtering

Cons / Caveats:

- #Particles is important performance factor
 - Want as few particles as possible for efficiency.
 - But need to cover state space sufficiently well.
- Worst-case complexity grows exponentially in the dimensions
- Multimodal densities possible, but still single object
 - Interactions between multiple objects require special treatment.
 - Not handled well in the particle filtering framework (state space explosion).

Topics of This Lecture

- Recap: Kalman Filter
 - Basic ideas
 - Limitations
 - Extensions
- Particle Filters
 - Basic ideas
 - Propagation of general densities
 - Factored sampling
- Case study
 - Detector Confidence Particle Filter
 - Role of the different elements

Challenge: Unreliable Object Detectors

• Example:

- Low-res webcam footage (320×240), MPEG compressed

Detector input

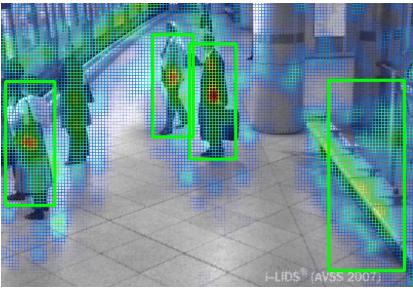
Tracker output

How to get from here...

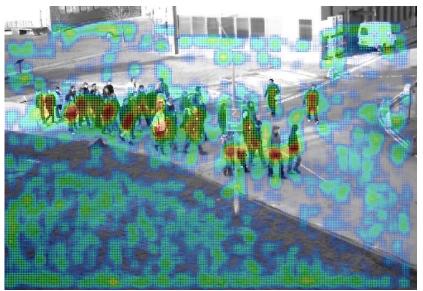
37

Lecture: Computer Vision 2 (SS 2016) – Beyond Kalman Filters Prof. Dr. Bastian Leibe, Dr. Jörg Stückler ...to here?

Tracking based on Detector Confidence



(using ISM detector)



(using HOG detector)

- Detector output is often not perfect
 - Missing detections and false positives
 - But continuous confidence still contains useful cues.
- Idea pursued here:

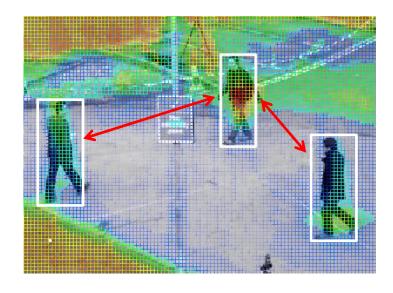
38

- Use continuous detector confidence to track persons over time.

Main Ideas

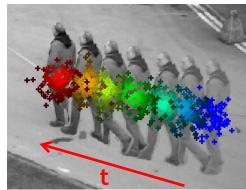
- Detector confidence particle filter
 - Initialize particle cloud on strong object detections.
 - Propagate particles using continuous detector confidence as observation model.
- Disambiguate between different persons
 - Train a person-specific classifier with online boosting.
 - Use classifier output to distinguish between nearby persons.





Detector Confidence Particle Filter

- State: $x = \{x, y, u, v\}$
- Motion model (constant velocity) $(x, y)_t = (x, y)_{t-1} + (u, v)_{t-1} \cdot \Delta t + \varepsilon_{(x,y)}$ $(u, v)_t = (u, v)_{t-1} + \varepsilon_{(u,v)}$

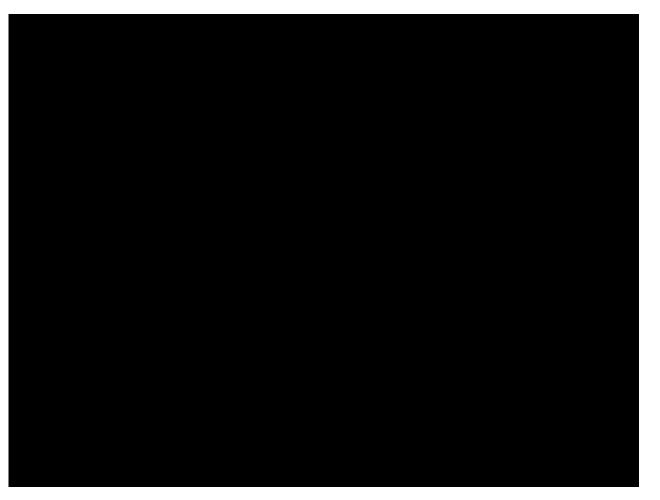


Observation model

40

 $w_{tr,p} = p(y_t | x_t^{(i)}) = \beta \cdot \mathcal{I}(tr) \cdot p_{\mathcal{N}}(p - d^*) + \gamma \cdot d_c(p) \cdot p_o(tr) + \eta \cdot c_{tr}(p)$ $\begin{array}{c} \text{Discrete} \\ \text{detections} \end{array} \qquad \begin{array}{c} \text{Detector} \\ \text{confidence} \end{array} \qquad \begin{array}{c} \text{Classifier} \\ \text{confidence} \end{array}$

When Is Which Term Useful?



Discrete detections

Detector confidence

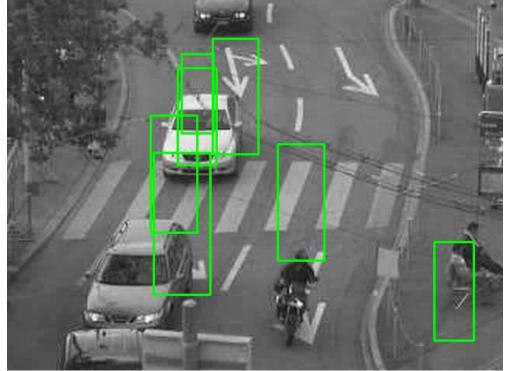
Lecture: Computer Vision 2 (SS 2016) – Beyond Kalman Filters Prof. Dr. Bastian Leibe, Dr. Jörg Stückler

Classifier confidence

41

Observation Model Terms	MOTP	MOTA	$_{\rm FN}$	FP	ID Sw.
1: Det+DetConf+Class	70.0%	72.9%	26.8%	0.3%	0
2: Det+DetConf	64.0%	54.5%	28.2%	17.2%	5
3: Det+Class	65.0%	55.3%	31.3%	13.4%	0
4: Det	67.0%	40.9%	30.7%	28.0%	10

Detector only



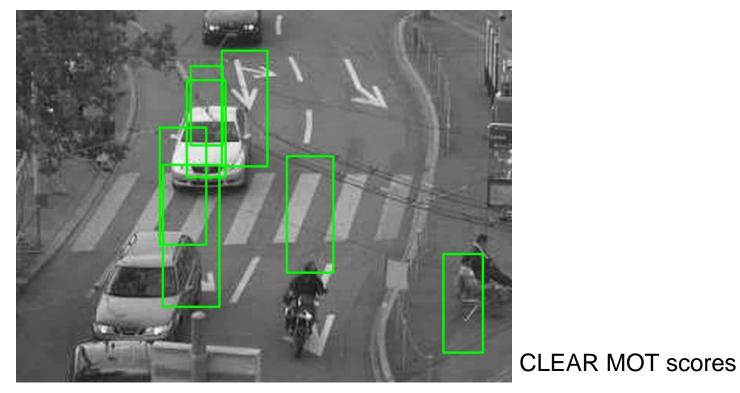
CLEAR MOT scores

Lecture: Computer Vision 2 (SS 2016) – Beyond Kalman Filters Prof. Dr. Bastian Leibe, Dr. Jörg Stückler

Observation Model Terms	MOTP	MOTA	$_{\rm FN}$	FP	ID Sw.
1: Det+DetConf+Class	70.0%	72.9%	26.8%	0.3%	0
2: Det+DetConf	64.0%	54.5%	28.2%	17.2%	5
3: Det+Class	65.0%	55.3%	31.3%	13.4%	0
4: Det	67.0%	40.9%	30.7%	28.0%	10

Detector + Confidence

43

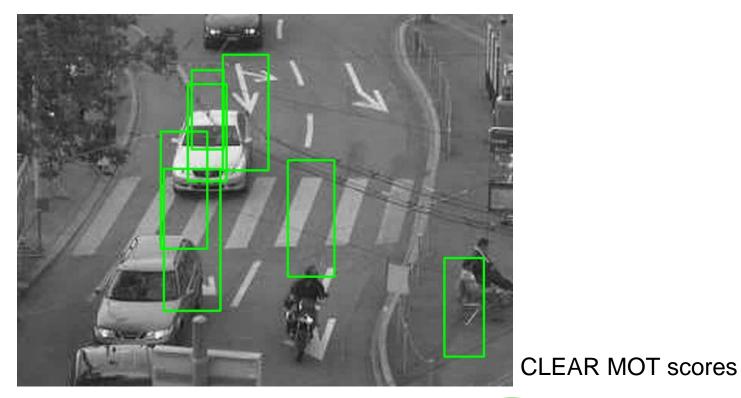


Lecture: Computer Vision 2 (SS 2016) – Beyond Kalman Filters Prof. Dr. Bastian Leibe, Dr. Jörg Stückler

Observation Model Terms	MOTP	MOTA	FN	FP	ID Sw.
1: Det+DetConf+Class	70.0%	72.9%	26.8%	0.3%	0
2: Det+DetConf	64.0%	54.5%	28.2%	17.2%	5
3: Det+Class	65.0%	55.3%	31.3%	13.4%	0
4: Det	67.0%	40.9%	30.7%	28.0%	10

Detector + Classifier

44

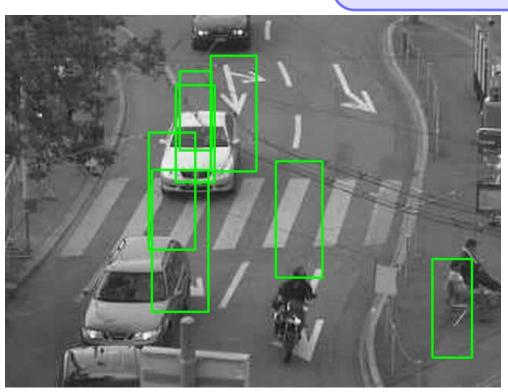


Lecture: Computer Vision 2 (SS 2016) – Beyond Kalman Filters Prof. Dr. Bastian Leibe, Dr. Jörg Stückler

Observation Model Terms	MOTP	MOTA	FN	FP	ID Sw.
1: Det+DetConf+Class	70.0%	72.9%	26.8%	0.3%	0
2: Det+DetConf	64.0%	54.5%	28.2%	17.2%	5
3: Det+Class	65.0%	55.3%	31.3%	13.4%	0
4: Det	67.0%	40.9%	30.7%	28.0%	10

Detector + Confidence + Classifier

45

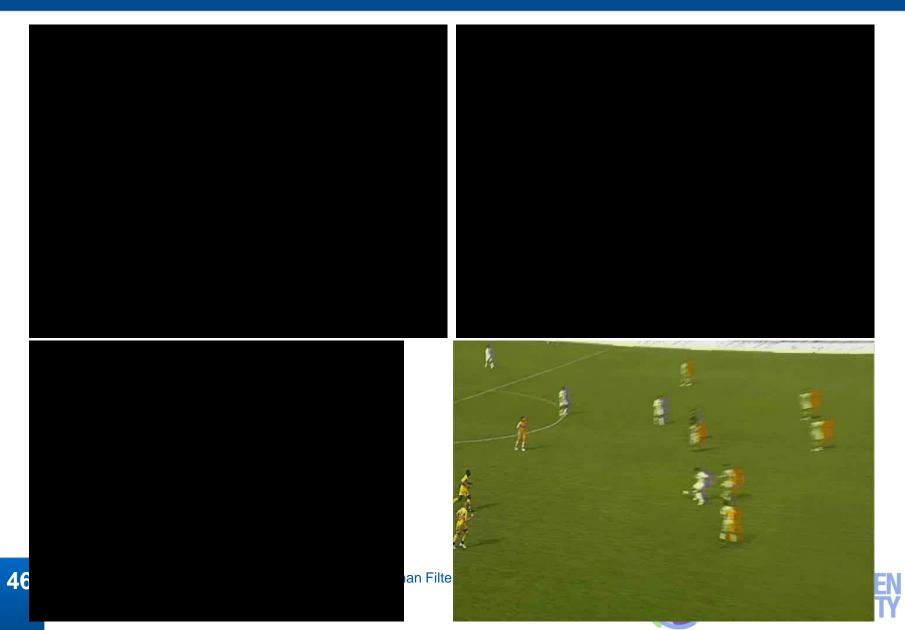


False negatives, false positives, and ID switches decrease!

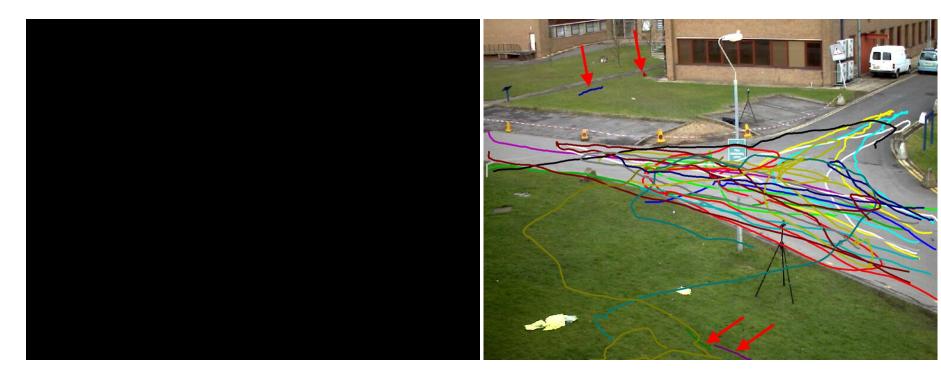
CLEAR MOT scores

RWITHAACHEN UNIVERSITY

Qualitative Results



Remaining Issues



- Some false positive initializations at wrong scales...
 - Due to limited scale range of the person detector.
 - Due to boundary effects of the person detector.

References and Further Reading

- A good tutorial on Particle Filters
 - M.S. Arulampalam, S. Maskell, N. Gordon, T. Clapp. <u>A Tutorial</u> on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian <u>Tracking</u>. In *IEEE Transactions on Signal Processing*, Vol. 50(2), pp. 174-188, 2002.
- The CONDENSATION paper
 - M. Isard and A. Blake, <u>CONDENSATION conditional density</u> propagation for visual tracking, IJCV 29(1):5-28, 1998

48

