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Announcements 

• Today, I’ll summarize the most important points from 

the lecture. 

 It is an opportunity for you to ask questions… 

 …or get additional explanations about certain topics. 

 So, please do ask. 
 

• Today’s slides are intended as an index for the lecture. 

 But they are not complete, won’t be sufficient as only tool. 

 Also look at the exercises – they often explain algorithms in 

detail. 
 

2 
B. Leibe 
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Announcements (2) 

• Test exam on Thursday 

 During the regular lecture slot 

 Duration: 1h (instead of 2h as for the real exam) 

 Purpose: prepare you for the questions you can expect 

 

 All bonus points! 

3 
B. Leibe 
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Course Outline 

• Fundamentals 

 Bayes Decision Theory 

 Probability Density Estimation 

 Mixture Models and EM 
 

• Discriminative Approaches 

 Linear Discriminant Functions 

 Statistical Learning Theory & SVMs 

 Ensemble Methods & Boosting 

 Decision Trees & Randomized Trees 
 

• Generative Models 

 Bayesian Networks 

 Markov Random Fields 

 Exact Inference 
 B. Leibe 

4 
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Recap: Bayes Decision Theory 

5 
B. Leibe 

x

x

x

 |p x a  |p x b

 | ( )p x a p a

 | ( )p x b p b

 |p a x  |p b x

Decision boundary 

Likelihood

Posterior =
Likelihood £ Prior

NormalizationFactor

Likelihood £Prior

Slide credit: Bernt Schiele Image source: C.M. Bishop, 2006 
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Recap: Bayes Decision Theory 

• Optimal decision rule 

 Decide for C1 if 

 

 

 This is equivalent to  

 

 

 

 Which is again equivalent to (Likelihood-Ratio test) 

 

6 
B. Leibe 

p(C1jx) > p(C2jx)

p(xjC1)p(C1) > p(xjC2)p(C2)

p(xjC1)
p(xjC2)

>
p(C2)
p(C1)

Decision threshold  

Slide credit: Bernt Schiele 
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Recap: Bayes Decision Theory 

• Decision regions: R1, R2, R3, … 

 

7 
B. Leibe Slide credit: Bernt Schiele 
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Recap: Classifying with Loss Functions 

• In general, we can formalize this by introducing a  
loss matrix Lkj 

 

 

 

 

• Example: cancer diagnosis 

8 
B. Leibe 

Decision 
T
ru

th
 

Lcancer diagnosis =

Lkj = loss for decision Cj if truth is Ck:
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Recap: Minimizing the Expected Loss 

• Optimal solution minimizes the loss. 

 But: loss function depends on the true class,  

which is unknown. 
 

• Solution: Minimize the expected loss 

 

 

 

• This can be done by choosing the regions      such that 

 

 

 which is easy to do once we know the posterior class 

probabilities            . 

9 
B. Leibe 

Rj

p(Ckjx)



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

M
a
c
h

in
e
 L

e
a
rn

in
g

, 
S

u
m

m
e
r 

‘1
5

 

Recap: The Reject Option 

 

 

 

 

 

 

 

• Classification errors arise from regions where the largest 

posterior probability            is significantly less than 1. 

 These are the regions where we are relatively uncertain about 

class membership. 

 For some applications, it may be better to reject the automatic 

decision entirely in such a case and e.g. consult a human expert. 
10 

B. Leibe 

p(Ckjx)

Image source: C.M. Bishop, 2006 
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Course Outline 

• Fundamentals 

 Bayes Decision Theory 

 Probability Density Estimation 

 Mixture Models and EM 
 

• Discriminative Approaches 

 Linear Discriminant Functions 

 Statistical Learning Theory & SVMs 

 Ensemble Methods & Boosting 

 Decision Trees & Randomized Trees 
 

• Generative Models 

 Bayesian Networks 

 Markov Random Fields 

 Exact Inference 
 B. Leibe 

11 
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• One-dimensional case 

 Mean ¹ 

 Variance ¾2 

 

 

 

 

• Multi-dimensional case 

 Mean ¹ 

 Covariance § 

 

Recap: Gaussian (or Normal) Distribution 

12 
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N (xj¹; ¾2) =
1p
2¼¾

exp

½
¡(x¡ ¹)2

2¾2

¾

N(xj¹;§) =
1

(2¼)D=2j§j1=2 exp

½
¡1

2
(x¡¹)T§¡1(x¡¹)

¾

Image source: C.M. Bishop, 2006 
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E(µ) = ¡ lnL(µ) = ¡
NX

n=1

ln p(xnjµ)

• Computation of the likelihood 

 Single data point: 
 

 Assumption: all data points                            are independent 

 

 
 

 Log-likelihood 

 
 
 

• Estimation of the parameters µ (Learning) 

 Maximize the likelihood (= minimize the negative log-likelihood) 

 Take the derivative and set it to zero. 

 

Recap: Maximum Likelihood Approach 

13 
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L(µ) = p(Xjµ) =

NY

n=1

p(xnjµ)

p(xnjµ)

Slide credit: Bernt Schiele 

@

@µ
E(µ) = ¡

NX

n=1

@
@µ

p(xnjµ)
p(xnjµ)

!
= 0

X = fx1; : : : ; xng
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Recap: Bayesian Learning Approach 

• Bayesian view:  

 Consider the parameter vector µ as a random variable. 

 When estimating the parameters, what we compute is 

14 
B. Leibe 

p(xjX) =

Z
p(x; µjX)dµ

p(x; µjX) = p(xjµ;X)p(µjX)

p(xjX) =

Z
p(xjµ)p(µjX)dµ

This is entirely determined by the parameter µ 
(i.e. by the parametric form of the pdf). 

Slide adapted from Bernt Schiele 

Assumption: given µ, this 

doesn’t depend on X anymore 
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Recap: Bayesian Learning Approach 

• Discussion 

 

 

 

 

 

 

 

 

 
 

 The more uncertain we are about µ, the more we average over 

all possible parameter values. 
15 

B. Leibe 

p(xjX) =

Z
p(xjµ)L(µ)p(µ)R

L(µ)p(µ)dµ
dµ

Normalization: integrate  

over all possible values of µ 

Likelihood of the parametric  

form µ given the data set X. 

Prior for the  

parameters µ 

Estimate for x based on 

parametric form µ 
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Recap: Histograms 

• Basic idea: 

 Partition the data space into distinct  
bins with widths ¢i and count the  

number of observations, ni, in each  

bin. 

 

 
 

 Often, the same width is used for all bins, ¢i = ¢. 
 

 This can be done, in principle, for any dimensionality D…  

16 
B. Leibe 

N = 1 0

0 0.5 1
0

1

2

3

…but the required 

number of bins 

grows exponen- 
tially with D! 

Image source: C.M. Bishop, 2006 
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p(x) ¼ K

NV

Recap: Kernel Density Estimation 

• Approximation formula: 

 

 

 

 

 

 

 

• Kernel methods 

 Place a kernel window k  

at location x and count  

how many data points  

fall inside it. 
17 

B. Leibe 

fixed V 

determine K 

fixed K 

determine V 

Kernel Methods K-Nearest Neighbor 

Slide adapted from Bernt Schiele 

• K-Nearest Neighbor 

 Increase the volume V 

until the K next data 

points are found. 
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Course Outline 

• Fundamentals 

 Bayes Decision Theory 

 Probability Density Estimation 

 Mixture Models and EM 
 

• Discriminative Approaches 

 Linear Discriminant Functions 

 Statistical Learning Theory & SVMs 

 Ensemble Methods & Boosting 

 Decision Trees & Randomized Trees 
 

• Generative Models 

 Bayesian Networks 

 Markov Random Fields 

 Exact Inference 
 B. Leibe 

18 
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Recap: Mixture of Gaussians (MoG) 

• “Generative model” 

19 
B. Leibe 

x

x

j

p(x)

p(x)

1 
2 3 

p(j) = ¼j

p(xjµj)

p(xjµ) =

MX

j=1

p(xjµj)p(j)

“Weight” of mixture 

component 

Mixture 

component 

Mixture density 

Slide credit: Bernt Schiele 
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Recap: MoG – Iterative Strategy 

• Assuming we knew the values of the hidden variable… 

 

 

 

 

20 
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h(j = 1jxn) = 1  111            00    0        0 

h(j = 2jxn) = 0  000            11    1        1 

1  111            22    2        2          j 

ML for Gaussian #1 ML for Gaussian #2 

¹1 =

PN

n=1 h(j = 1jxn)xnPN

i=1 h(j = 1jxn)
¹2 =

PN

n=1 h(j = 2jxn)xnPN

i=1 h(j = 2jxn)

assumed known 

Slide credit: Bernt Schiele 
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Recap: MoG – Iterative Strategy 

• Assuming we knew the mixture components… 

 

 

 

 

 

 

 

• Bayes decision rule: Decide j = 1 if 

 

21 
B. Leibe 

p(j = 1jxn) > p(j = 2jxn)

assumed known 

1  111            22    2        2          j 

p(j = 1jx) p(j = 2jx)

Slide credit: Bernt Schiele 
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• Iterative procedure 

1. Initialization: pick K arbitrary 

centroids (cluster means) 
 

2. Assign each sample to the closest 

centroid. 
 

3. Adjust the centroids to be the 

means of the samples assigned 

to them. 
 

4. Go to step 2 (until no change) 
 

• Algorithm is guaranteed to 

converge after finite #iterations. 

 Local optimum 

 Final result depends on initialization. 

Recap: K-Means Clustering 

22 
B. Leibe Slide credit: Bernt Schiele 
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Recap: EM Algorithm 

• Expectation-Maximization (EM) Algorithm 

 E-Step: softly assign samples to mixture components 
 

 

 

 M-Step: re-estimate the parameters (separately for each mixture 

component) based on the soft assignments 

23 
B. Leibe 

8j = 1; : : : ;K; n = 1; : : : ;N

¼̂newj Ã N̂j

N

¹̂
new
j Ã 1

N̂j

NX

n=1

°j(xn)xn

§̂new
j Ã 1

N̂j

NX

n=1

°j(xn)(xn ¡ ¹̂newj )(xn ¡ ¹̂newj )T

N̂j Ã
NX

n=1

°j(xn) = soft number of samples labeled j 

°j(xn) Ã
¼jN (xnj¹j ;§j)PN

k=1 ¼kN (xnj¹k;§k)

Slide adapted from Bernt Schiele 
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Course Outline 

• Fundamentals 

 Bayes Decision Theory 

 Probability Density Estimation 

 Mixture Models and EM 
 

• Discriminative Approaches 

 Linear Discriminant Functions 

 Statistical Learning Theory & SVMs 

 Ensemble Methods & Boosting 

 Decision Trees & Randomized Trees 
 

• Generative Models 

 Bayesian Networks 

 Markov Random Fields 

 Exact Inference 
 B. Leibe 

24 
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Recap: Linear Discriminant Functions 

• Basic idea 

 Directly encode decision boundary 

 Minimize misclassification probability directly. 

 

• Linear discriminant functions 

 

 

 

 
 

 w, w0 define a hyperplane in RD. 
 

 If a data set can be perfectly classified by a linear discriminant, 

then we call it linearly separable. 

 
25 

B. Leibe 

y(x) =wTx+ w0

weight vector “bias” 

(= threshold) 

Slide adapted from Bernt Schiele 
25 

y = 0
y > 0

y < 0
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Recap: Least-Squares Classification 

• Simplest approach 

 Directly try to minimize the sum-of-squares error 

 

 
 

 

 

 Setting the derivative to zero yields 

 
 

 We then obtain the discriminant function as 

 

 

  Exact, closed-form solution for the discriminant function 

parameters.  

 

 

 

 

26 
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ED(fW) =
1

2
Tr
n
(eXfW¡T)T(eXfW¡T)

o

fW = (eXT eX)¡1 eXTT= eXyT

y(x) = fWTex = TT
³
eXy

T́

ex

E(w) =

NX

n=1

(y(xn;w)¡ tn)
2
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Recap: Problems with Least Squares 

 

 

 

 

 

 

 

 

 

 

• Least-squares is very sensitive to outliers!  

 The error function penalizes predictions that are “too correct”. 
27 

B. Leibe Image source: C.M. Bishop, 2006 
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Recap: Generalized Linear Models 

28 
B. Leibe 

• Generalized linear model 

 
 

 g( ¢ ) is called an activation function and may be nonlinear. 

 The decision surfaces correspond to 

 
 

 If g is monotonous (which is typically the case), the resulting 

decision boundaries are still linear functions of x. 
 

• Advantages of the non-linearity 

 Can be used to bound the influence of outliers  

and “too correct” data points. 

 When using a sigmoid for g(¢), we can interpret 

the y(x) as posterior probabilities. 

y(x) = g(wTx+ w0)

y(x) = const: , wTx+ w0 = const:

g(a) ´ 1

1 + exp(¡a)
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Recap: Linear Separability 

• Up to now: restrictive assumption 

 Only consider linear decision boundaries 

 

 

• Classical counterexample: XOR 

29 
B. Leibe Slide credit: Bernt Schiele 

1x

2x
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• Generalization 

 Transform vector x with M nonlinear basis functions Áj(x): 

 

 

 
 

• Advantages 

 Transformation allows non-linear decision boundaries. 

 By choosing the right Áj, every continuous function can (in 

principle) be approximated with arbitrary accuracy. 
 

• Disadvatage 

 The error function can in general no longer be minimized in 

closed form. 

 Minimization with Gradient Descent 

Recap: Extension to Nonlinear Basis Fcts.  

30 
B. Leibe 

yk(x) =

MX

j=1

wkiÁj(x) + wk0
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Recap: Classification as Dim. Reduction 

 

 

 

 

 

 

 

 

• Classification as dimensionality reduction 

 Interpret linear classification as a projection onto a lower-dim. 

space. 
 

 Learning problem: Try to find the projection vector w that 

maximizes class separation. 31 

bad separation good separation 

Image source: C.M. Bishop, 2006 

y =wTx
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Recap: Fisher’s Linear Discriminant Analysis  

• Maximize distance between classes 

• Minimize distance within a class 

 

• Criterion: 

 
 

 SB … between-class scatter matrix 

 SW … within-class scatter matrix 

 

• The optimal solution for w can be 
obtained as: 

 

 

• Classification function: 
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Class 1 

Class 2 

w 

x 

x 

Slide adapted from Ales Leonardis 

y

J(w) =
wTSBw

wTSWw

w / S¡1W (m2 ¡m1)

w0 =¡wTmwhere 
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Recap: Probabilistic Discriminative Models 

• Consider models of the form 

 
 

with 
 

• This model is called logistic regression. 

 

• Properties 

 Probabilistic interpretation 

 But discriminative method: only focus on decision hyperplane 

 Advantageous for high-dimensional spaces, requires less 

parameters than explicitly modeling p(Á|Ck) and p(Ck). 
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p(C1jÁ) = y(Á) = ¾(wTÁ)

p(C2jÁ) = 1¡ p(C1jÁ)
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Recap: Logistic Regression 

• Let’s consider a data set {Án,tn} with n = 1,…,N, 

where                     and                 ,                            . 
 

• With yn = p(C1|Án), we can write the likelihood as 

 

 
 

• Define the error function as the negative log-likelihood 

 

 

 
 

 This is the so-called cross-entropy error function. 
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Án = Á(xn) tn 2 f0;1g

p(tjw) =

NY

n=1

ytnn f1¡ yng1¡tn

E(w) = ¡ ln p(tjw)

= ¡
NX

n=1

ftn ln yn + (1¡ tn) ln(1¡ yn)g

t = (t1; : : : ; tN)T
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• Gradient Descent (1st order) 

 
 

 Simple and general  

 Relatively slow to converge, has problems with some functions 

 

• Newton-Raphson (2nd order) 

 
 

    where                         is the Hessian matrix, i.e. the 

matrix of second derivatives. 

 Local quadratic approximation to the target function 

 Faster convergence 

H=rrE(w)

Recap: Iterative Methods for Estimation 
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w(¿+1) =w(¿) ¡ ´ H¡1rE(w)
¯̄
w(¿)

w(¿+1) =w(¿) ¡ ´ rE(w)jw(¿)
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Recap: Iteratively Reweighted Least Squares 

• Update equations 

 

 

 

 

 

 

 
 

• Very similar form to pseudo-inverse (normal equations) 

 But now with non-constant weighing matrix R (depends on w). 

 Need to apply normal equations iteratively. 

 Iteratively Reweighted Least-Squares (IRLS) 
36 

w(¿+1) =w(¿) ¡ (©TR©)¡1©T (y¡ t)

= (©TR©)¡1
n
©TR©w(¿) ¡©T (y¡ t)

o

= (©TR©)¡1©TRz

z =©w(¿) ¡R¡1(y¡ t)with 
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Course Outline 

• Fundamentals 

 Bayes Decision Theory 

 Probability Density Estimation 

 Mixture Models and EM 
 

• Discriminative Approaches 

 Linear Discriminant Functions 

 Statistical Learning Theory & SVMs 

 Ensemble Methods & Boosting 

 Decision Trees & Randomized Trees 
 

• Generative Models 

 Bayesian Networks 

 Markov Random Fields 

 Exact Inference 
 B. Leibe 
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Recap: Generalization and Overfitting 

 

 

 

 

 

 

 

• Goal: predict class labels of new observations 

 Train classification model on limited training set. 

 The further we optimize the model parameters, the more the 

training error will decrease. 

 However, at some point the test error will go up again. 

 Overfitting to the training set! 
38 

B. Leibe 

test error 

training error 

Image source: B. Schiele 
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Recap: Risk 

• Empirical risk  

 Measured on the training/validation set 

 

 

 
 

• Actual risk (= Expected risk) 

 Expectation of the error on all data. 

 

 

 

                    is the probability distribution of (x,y).  

It is fixed, but typically unknown. 

 In general, we can’t compute the actual risk directly! 
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Remp(®) =
1

N

NX

i=1

L(yi; f(xi; ®))

Slide adapted from Bernt Schiele 

R(®) =

Z
L(yi; f(x;®))dPX;Y (x; y)

PX;Y (x; y)
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Recap: Statistical Learning Theory 

• Idea 

 Compute an upper bound on the actual risk based on the 

empirical risk 

 
 

 where 
 

 N: number of training examples 
 

 p*: probability that the bound is correct 
 

 h: capacity of the learning machine (“VC-dimension”) 
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R(®) · Remp(®) + ²(N;p¤; h)

Slide adapted from Bernt Schiele 
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Recap: VC Dimension 

• Vapnik-Chervonenkis dimension 

 Measure for the capacity of a learning machine. 

 

• Formal definition: 

 If a given set of    points can be labeled in all possible     ways, 

and for each labeling, a member of the set {f(®)} can be found 

which correctly assigns those labels, we say that the set of 

points is shattered by the set of functions. 
 

 The VC dimension for the set of functions {f(®)} is defined as 

the maximum number of training points that can be shattered 

by {f(®)}. 
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` 2`
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Recap: Upper Bound on the Risk 

• Important result (Vapnik 1979, 1995) 

 With probability (1-´), the following bound holds 

 

 

 
 

 

 

 This bound is independent of                   ! 

 If we know h (the VC dimension),  

we can easily compute the risk  

bound 
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R(®) · Remp(®) +

r
h(log(2N=h) + 1)¡ log(´=4)

N

R(®) · Remp(®) + ²(N;p¤; h)

“VC confidence” 

Slide adapted from Bernt Schiele 

PX;Y (x; y)
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Recap: Structural Risk Minimization 

• How can we implement Structural Risk Minimization? 

 

 

• Classic approach 

 Keep                   constant and minimize                . 

                   can be kept constant by controlling the model 

parameters. 

 

• Support Vector Machines (SVMs) 

 Keep                constant and minimize                   . 

 In fact:                       for separable data. 

 Control                   by adapting the VC dimension 

(controlling the “capacity” of the classifier). 
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R(®) · Remp(®) + ²(N;p¤; h)

Remp(®)²(N;p¤; h)

²(N;p¤; h)

Remp(®) ²(N;p¤; h)

²(N;p¤; h)

Remp(®) = 0

Slide credit: Bernt Schiele 
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Course Outline 

• Fundamentals 

 Bayes Decision Theory 

 Probability Density Estimation 

 Mixture Models and EM 
 

• Discriminative Approaches 

 Linear Discriminant Functions 

 Statistical Learning Theory & SVMs 

 Ensemble Methods & Boosting 

 Decision Trees & Randomized Trees 
 

• Generative Models 

 Bayesian Networks 

 Markov Random Fields 

 Exact Inference 
 B. Leibe 
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Recap: Support Vector Machine (SVM) 

• Basic idea 

 The SVM tries to find a classifier which   

maximizes the margin between pos. and 

neg. data points. 

 Up to now: consider linear classifiers 

 

 

• Formulation as a convex optimization problem 

 Find the hyperplane satisfying 

 

 

 under the constraints 

 
 

 based on training data points xn and target values                     . 

 

 

 

 

 

 

 

 Formulation as a convex optimization problem  

 Possible to find the globally optimal solution! 
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Margin 

wTx+ b = 0

argmin
w;b

1

2
kwk2

tn(w
Txn + b) ¸ 1 8n

tn 2 f¡1;1g
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Recap: SVM – Primal Formulation 

• Lagrangian primal form 

 

 

 

 

 

• The solution of Lp needs to fulfill the KKT conditions 

 Necessary and sufficient conditions  
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Lp =
1

2
kwk2 ¡

NX

n=1

an
©
tn(w

Txn + b)¡ 1
ª

=
1

2
kwk2 ¡

NX

n=1

an ftny(xn)¡ 1g

¸ ¸ 0

f(x) ¸ 0

¸f(x) = 0

KKT: 
an ¸ 0

tny(xn)¡ 1 ¸ 0

an ftny(xn)¡ 1g = 0
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Recap: SVM – Solution 

• Solution for the hyperplane 

 Computed as a linear combination of the training examples 

 

 

 
 

 Sparse solution: an  0 only for some points, the support vectors 

 Only the SVs actually influence the decision boundary! 
 

 Compute b by averaging over all support vectors: 
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w =

NX

n=1

antnxn

b =
1

NS

X

n2S

Ã
tn ¡

X

m2S
amtmx

T
mxn

!
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Recap: SVM – Support Vectors 

• The training points for which an > 0 are called  

“support vectors”. 
 

• Graphical interpretation: 

 The support vectors are the 

points on the margin. 

 They define the margin 

and thus the hyperplane. 

 

 All other data points can 

 be discarded! 

48 
B. Leibe Slide adapted from Bernt Schiele Image source: C. Burges, 1998 
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Recap: SVM – Dual Formulation 

• Maximize 

 

 

 

 under the conditions 

 

 

 

 

• Comparison 

 Ld is equivalent to the primal form Lp, but only depends on an. 

 Lp scales with O(D3). 

 Ld scales with O(N3) – in practice between O(N) and O(N2). 
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Ld(a) =

NX

n=1

an ¡
1

2

NX

n=1

NX

m=1

anamtntm(xTmxn)

NX

n=1

antn = 0

an ¸ 0 8n

Slide adapted from Bernt Schiele 
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»1

»2

»3

»4

Recap: SVM for Non-Separable Data 

• Slack variables 

 One slack variable »n ¸ 0 for each training data point. 
 

• Interpretation 

 »n = 0 for points that are on the correct side of the margin. 

 »n = |tn – y(xn)| for all other points. 

 

 

 

 

 

 
 

 We do not have to set the slack variables ourselves! 

 They are jointly optimized together with w. 
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w
Point on decision  

boundary: »n = 1 

Misclassified point: 

 »n > 1 
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Recap: SVM – New Dual Formulation 

• New SVM Dual: Maximize 

 

 

 

 under the conditions 

 

 

 

 
 

• This is again a quadratic programming problem 

 Solve as before… 
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Ld(a) =

NX

n=1

an ¡
1

2

NX

n=1

NX

m=1

anamtntm(xTmxn)

NX

n=1

antn = 0

0 · an · C

Slide adapted from Bernt Schiele 

This is all  

that changed! 
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Recap: Nonlinear SVMs 

• General idea: The original input space can be mapped to 

some higher-dimensional feature space where the 

training set is separable: 

 

52 

©:  x → Á(x) 

Slide credit: Raymond Mooney 
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Recap: The Kernel Trick 

• Important observation 

 Á(x) only appears in the form of dot products Á(x)TÁ(y): 

 

 

 

 
 

 Define a so-called kernel function k(x,y) = Á(x)TÁ(y). 
 

 Now, in place of the dot product, use the kernel instead: 

 

 

 

 The kernel function implicitly maps the data to the higher-

dimensional space (without having to compute Á(x) explicitly)! 
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y(x) = wTÁ(x) + b

=

NX

n=1

antnÁ(xn)TÁ(x) + b

y(x) =

NX

n=1

antnk(xn;x) + b
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Recap: Kernels Fulfilling Mercer’s Condition 

• Polynomial kernel 

 

 

• Radial Basis Function kernel 

 

 
 

• Hyperbolic tangent kernel 

 

 
 

 And many, many more, including kernels on graphs, strings, and 

symbolic data… 
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k(x;y) = (xTy+ 1)p

k(x;y) = exp

½
¡(x¡ y)2

2¾2

¾

k(x;y) = tanh(·xTy+ ±)

Slide credit: Bernt Schiele 

e.g. Sigmoid 

e.g. Gaussian 
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Recap: Kernels Fulfilling Mercer’s Condition 

• Polynomial kernel 

 

 

• Radial Basis Function kernel 

 

 
 

• Hyperbolic tangent kernel 

 

 

 

 And many, many more, including kernels on graphs, strings, and 

symbolic data… 
55 

B. Leibe 

k(x;y) = (xTy+ 1)p

k(x;y) = exp

½
¡(x¡ y)2

2¾2

¾

k(x;y) = tanh(·xTy+ ±)

Slide credit: Bernt Schiele 

e.g. Sigmoid 

e.g. Gaussian 

Actually, that was wrong in 

the original SVM paper... 
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Recap: Nonlinear SVM – Dual Formulation 

• SVM Dual: Maximize 

 

 
 

 under the conditions 

 

 

 

 
 

• Classify new data points using  
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Ld(a) =

NX

n=1

an ¡
1

2

NX

n=1

NX

m=1

anamtntmk(xm;xn)

NX

n=1

antn = 0

0 · an · C

y(x) =

NX

n=1

antnk(xn;x) + b
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Course Outline 

• Fundamentals 

 Bayes Decision Theory 

 Probability Density Estimation 

 Mixture Models and EM 
 

• Discriminative Approaches 

 Linear Discriminant Functions 

 Statistical Learning Theory & SVMs 

 Ensemble Methods & Boosting 

 Decision Trees & Randomized Trees 
 

• Generative Models 

 Bayesian Networks 

 Markov Random Fields 

 Exact Inference 
 B. Leibe 
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Recap: Classifier Combination 

• We’ve seen already a variety of different classifiers 

 k-NN 

 
 

 Bayes classifiers 

 
 

 Fisher’s Linear Discriminant 

 
 

 SVMs 

 
 

• Each of them has their strengths and weaknesses… 

 Can we improve performance by combining them? 
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Recap: Stacking 

• Idea 

 Learn L classifiers (based on the training data) 

 Find a meta-classifier that takes as input the output of the L 

first-level classifiers. 

 

 

 

• Example 

 Learn L classifiers with  

leave-one-out. 

 Interpret the prediction of the L classifiers as L-dimensional 

feature vector. 

 Learn “level-2” classifier based on the examples generated this 

way. 
59 

B. Leibe Slide credit: Bernt Schiele 

Combination 

Classifier 

Classifier 1 

Classifier L 

Classifier 2 

… 

Data 
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Recap: Stacking 

• Why can this be useful? 

 Simplicity 

– We may already have several existing classifiers available. 

 No need to retrain those, they can just be combined with the rest. 
 

 Correlation between classifiers 

– The combination classifier can learn the correlation. 

 Better results than simple Naïve Bayes combination. 
 

 Feature combination 

– E.g. combine information from different sensors or sources 

(vision, audio, acceleration, temperature, radar, etc.). 

– We can get good training data for each sensor individually, 

but data from all sensors together is rare. 

 Train each of the L classifiers on its own input data. 

Only combination classifier needs to be trained on combined input. 

 
60 

B. Leibe 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

M
a
c
h

in
e
 L

e
a
rn

in
g

, 
S

u
m

m
e
r 

‘1
5

 

Recap: Bayesian Model Averaging 

• Model Averaging 

 Suppose we have H different models h = 1,…,H with prior 

probabilities p(h). 

 Construct the marginal distribution over the data set 

 

 

 
 

• Average error of committee 

 
 

 This suggests that the average error of a model can be reduced 

by a factor of M simply by averaging M versions of the model! 

 Unfortunately, this assumes that the errors are all uncorrelated. 

In practice, they will typically be highly correlated. 
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p(X) =

HX

h=1

p(Xjh)p(h)

ECOM =
1

M
EAV
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Recap: AdaBoost – “Adaptive Boosting”  

• Main idea             [Freund & Schapire, 1996] 

 Instead of resampling, reweight misclassified training examples. 

– Increase the chance of being selected in a sampled training set. 

– Or increase the misclassification cost when training on the full set. 
 

• Components 

 hm(x): “weak” or base classifier 

– Condition: <50% training error over any distribution 

 H(x): “strong” or final classifier 
 

• AdaBoost:  

 Construct a strong classifier as a thresholded linear combination 

of the weighted weak classifiers: 

 

62 
B. Leibe 

H(x) = sign

Ã
MX

m=1

®mhm(x)

!
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Recap: AdaBoost – Intuition 
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Consider a 2D feature 

space with positive and 

negative examples. 

 

Each weak classifier splits 

the training examples with 

at least 50% accuracy. 

 

Examples misclassified by 

a previous weak learner 

are given more emphasis 

at future rounds. 

Slide credit: Kristen Grauman Figure adapted from Freund & Schapire 
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Recap: AdaBoost – Intuition 

64 
B. Leibe Slide credit: Kristen Grauman Figure adapted from Freund & Schapire 
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Recap: AdaBoost – Intuition 
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Final classifier is 

combination of the 

weak classifiers 

Slide credit: Kristen Grauman Figure adapted from Freund & Schapire 
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1. Initialization: Set                 for n = 1,…,N. 
 

2. For m = 1,…,M iterations 

a) Train a new weak classifier hm(x) using the current weighting 

coefficients W(m) by minimizing the weighted error function  

 

 

b) Estimate the weighted error of this classifier on X: 

 

 

c) Calculate a weighting coefficient for hm(x): 

 
 

d) Update the weighting coefficients: 

 
 

®m = ln

½
1¡ ²m

²m

¾

Jm =

NX

n=1

w(m)
n I(hm(x) 6= tn)

Recap: AdaBoost – Algorithm 
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w(1)
n =

1

N

²m =

PN

n=1 w
(m)
n I(hm(x) 6= tn)PN

n=1 w
(m)
n

w(m+1)
n = w(m)

n expf®mI(hm(xn) 6= tn)g
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Recap: Comparing Error Functions 

 

 

 

 

 

 
 

 

 Ideal misclassification error function 

 “Hinge error” used in SVMs 

 Exponential error function 

– Continuous approximation to ideal misclassification function. 

– Sequential minimization leads to simple AdaBoost scheme. 

– Disadvantage: exponential penalty for large negative values! 

 Less robust to outliers or misclassified data points! 67 
B. Leibe Image source: Bishop, 2006 
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E =¡
X

ftn lnyn + (1¡ tn) ln(1¡ yn)g

 

 

 

 

 

 
 

 

 Ideal misclassification error function 

 “Hinge error” used in SVMs 

 Exponential error function 

 “Cross-entropy error” 

– Similar to exponential error for z>0. 

– Only grows linearly with large negative values of z. 

 Make AdaBoost more robust by switching  “GentleBoost” 

Recap: Comparing Error Functions 

68 
B. Leibe Image source: Bishop, 2006 
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Course Outline 

• Fundamentals 

 Bayes Decision Theory 

 Probability Density Estimation 

 Mixture Models and EM 
 

• Discriminative Approaches 

 Linear Discriminant Functions 

 Statistical Learning Theory & SVMs 

 Ensemble Methods & Boosting 

 Decision Trees & Randomized Trees 
 

• Generative Models 

 Bayesian Networks 

 Markov Random Fields 

 Exact Inference 
 B. Leibe 
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Recap: Decision Trees 

 

 

 

 

 

 

 

 

 

• Example: 

 “Classify Saturday mornings according to whether they’re   

  suitable for playing tennis.” 

70 
B. Leibe Image source: T. Mitchell, 1997 
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Recap: CART Framework 

• Six general questions 

1. Binary or multi-valued problem? 

– I.e. how many splits should there be at each node? 
 

2. Which property should be tested at a node? 

– I.e. how to select the query attribute? 
 

3. When should a node be declared a leaf? 

– I.e. when to stop growing the tree? 
 

4. How can a grown tree be simplified or pruned? 

– Goal: reduce overfitting. 
 

5. How to deal with impure nodes? 

– I.e. when the data itself is ambiguous. 
 

6. How should missing attributes be handled? 
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i(N) =
X

i6=j
p(CijN)p(Cj jN) =

1

2

2
41¡

X

j

p2(Cj jN)

3
5

Recap: Picking a Good Splitting Feature  

• Goal 

 Select the query (=split) that decreases impurity the most 

 

 
 

 

• Impurity measures 

 Entropy impurity (information gain):  

 

 
 

 Gini impurity: 
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4i(N) = i(N)¡PLi(NL)¡ (1¡PL)i(NR)

i(N) = ¡
X

j

p(CjjN) log2 p(CjjN)

i(P )

P

Image source: R.O. Duda, P.E. Hart, D.G. Stork, 2001 
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Recap: Computational Complexity  

• Given 

 Data points {x1,…,xN}  

 Dimensionality D  
 

• Complexity 
 

 Storage: 
 

 Test runtime: 
 

 Training runtime: 

– Most expensive part. 

– Critical step: selecting the optimal splitting point. 

– Need to check D dimensions, for each need to sort N data points. 
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O(DN2 logN)

O(logN)

O(N)

O(DN logN)
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Recap: Decision Trees – Summary 

• Properties 

 Simple learning procedure, fast evaluation. 

 Can be applied to metric, nominal, or mixed data. 

 Often yield interpretable results. 
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Recap: Decision Trees – Summary 

• Limitations 

 Often produce noisy (bushy) or weak (stunted) classifiers. 

 Do not generalize too well. 

 Training data fragmentation:  

– As tree progresses, splits are selected based on less and less data. 

 Overtraining and undertraining: 

– Deep trees: fit the training data well, will not generalize well to 

new test data. 

– Shallow trees: not sufficiently refined. 

 Stability 

– Trees can be very sensitive to details of the training points. 

– If a single data point is only slightly shifted, a radically different 

tree may come out! 

 Result of discrete and greedy learning procedure.  

 Expensive learning step 

– Mostly due to costly selection of optimal split. 75 
B. Leibe 
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Course Outline 

• Fundamentals 

 Bayes Decision Theory 

 Probability Density Estimation 

 Mixture Models and EM 
 

• Discriminative Approaches 

 Linear Discriminant Functions 

 Statistical Learning Theory & SVMs 

 Ensemble Methods & Boosting 

 Decision Trees & Randomized Trees 
 

• Generative Models 

 Bayesian Networks 

 Markov Random Fields 

 Exact Inference 
 B. Leibe 
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Recap: Randomized Decision Trees 

• Decision trees: main effort on finding good split 

 Training runtime:  

 This is what takes most effort in practice. 

 Especially cumbersome with many attributes (large D). 
 

• Idea: randomize attribute selection 

 No longer look for globally optimal split. 

 Instead randomly use subset of K attributes on which to base 

the split. 

 Choose best splitting attribute e.g. by maximizing the 

information gain (= reducing entropy): 

77 
B. Leibe 

O(DN2 logN)

4E =

KX

k=1

jSkj
jSj

NX

j=1

pj log2(pj)
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Recap: Ensemble Combination 

 

 

 

 

 
 

• Ensemble combination 

 Tree leaves (l,´) store posterior probabilities of the target 

classes. 
 

 Combine the output of several trees by averaging their 

posteriors (Bayesian model combination) 
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pl;´(Cjx)

p(Cjx) =
1

L

LX

l=1

pl;´(Cjx)

a 

a 

a 

a 

a a   

 

  

T1  T2  T3  
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Recap: Random Forests (Breiman 2001) 

• General ensemble method 

 Idea: Create ensemble of many (50 - 1,000) trees. 
 

• Empirically very good results 

 Often as good as SVMs (and sometimes better)! 

 Often as good as Boosting (and sometimes better)! 
 

• Injecting randomness 

 Bootstrap sampling process  

– On average only 63% of training examples used for building the tree 

– Remaining 37% out-of-bag samples used for validation. 

 Random attribute selection 

– Randomly choose subset of K attributes to select from at each node. 

– Faster training procedure. 
 

• Simple majority vote for tree combination 
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Recap: A Graphical Interpretation 

80 
B. Leibe Slide credit: Vincent Lepetit 

Different trees 

induce different 

partitions on the 

data. 

By combining  

them, we obtain 

a finer subdivision 

of the feature  

space… 
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Recap: A Graphical Interpretation 

81 
B. Leibe Slide credit: Vincent Lepetit 

Different trees 

induce different 

partitions on the 

data. 

By combining  

them, we obtain 

a finer subdivision 

of the feature  

space… 

…which at the 

same time also 

better reflects the 

uncertainty due to 

the bootstrapped 

sampling.  
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Recap: Extremely Randomized Decision Trees 

• Random queries at each node… 

 Tree gradually develops from a classifier to a  

flexible container structure. 

 Node queries define (randomly selected)  

structure. 

 Each leaf node stores posterior probabilities  

 

• Learning 

 Patches are “dropped down” the trees. 

– Only pairwise pixel comparisons at each node. 

– Directly update posterior distributions at leaves 

 Very fast procedure, only few pixel-wise comparisons. 

 No need to store the original patches! 

82 
B. Leibe Image source: Wikipedia 
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Recap: Ferns 

• Ferns 

 Ferns are semi-naïve Bayes classifiers. 

 They assume independence between sets of 

features (between the ferns)… 

 …and enumerate all possible outcomes  

inside each set. 

 

• Interpretation 

 Combine the tests fl,…,fl+S into a binary number. 

 Update the “fern leaf” corresponding to that number. 

83 
B. Leibe 

0 

0 

1 

Update leaf 1002 = 4 
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Recap: Ferns (Semi-Naïve Bayes Classifiers) 

• Ferns 

 A fern F is defined as a set of S binary features {fl,…,fl+S}. 

 M: number of ferns, Nf = S¢M. 

 This represents a compromise: 

 

 

 

 
 

 

 

 Model with              parameters (“Semi-Naïve”). 

 Flexible solution that allows complexity/performance tuning. 
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p(f1; : : : ; fNf jCk) ¼
MY

j=1

p(FjjCk)

M ¢ 2S

= p(f1; : : : ; fSjCk) ¢ p(fS+1; : : : ; f2SjCk) ¢ : : :

Full joint  

inside fern 

Naïve Bayes 

between ferns 
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Course Outline 

• Fundamentals 

 Bayes Decision Theory 

 Probability Density Estimation 

 Mixture Models and EM 
 

• Discriminative Approaches 

 Linear Discriminant Functions 

 Statistical Learning Theory & SVMs 

 Ensemble Methods & Boosting 

 Decision Trees & Randomized Trees 
 

• Generative Models 

 Bayesian Networks 

 Markov Random Fields 

 Exact Inference 
 B. Leibe 
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Recap: Graphical Models 

• Two basic kinds of graphical models 

 Directed graphical models or Bayesian Networks 

 Undirected graphical models or Markov Random Fields 

 

• Key components 
 

 Nodes 

– Random variables 
 

 Edges 

– Directed or undirected 

 

 

 The value of a random variable may be known or unknown. 

 

86 
B. Leibe Slide credit: Bernt Schiele 

Directed 

graphical model 

Undirected 

graphical model 

unknown known 
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Recap: Directed Graphical Models 

• Chains of nodes: 

 

 
 

 

 Knowledge about a is expressed by the prior probability: 

 
 

 Dependencies are expressed through conditional probabilities: 

 
 

 Joint distribution of all three variables: 
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B. Leibe Slide credit: Bernt Schiele, Stefan Roth 

p(a; b; c) = p(cja; b)p(a; b)

= p(cjb)p(bja)p(a)

p(cjb)p(bja)p(a)

p(bja);

p(a)

p(cjb)
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Recap: Directed Graphical Models 

• Convergent connections: 

 

 

 

 

 Here the value of c depends on both variables a and b. 

 This is modeled with the conditional probability: 

 

 

 Therefore, the joint probability of all three variables is given as: 
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p(a; b; c) = p(cja; b)p(a; b)

= p(cja; b)p(a)p(b)

p(cja; b)

Slide credit: Bernt Schiele, Stefan Roth 
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Recap: Factorization of the Joint Probability 

• Computing the joint probability 
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General factorization 

Image source: C. Bishop, 2006 

p(x1; : : : ; x7) = p(x1)p(x2)p(x3)p(x4jx1; x2; x3)
p(x5jx1; x3)p(x6jx4)p(x7jx4; x5)

We can directly read off the factorization 

of the joint from the network structure! 
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Recap: Factorized Representation 

• Reduction of complexity 

 Joint probability of n binary variables requires us to represent 

values by brute force 

 

 

 

 The factorized form obtained from the graphical model only 

requires 

 

 

– k: maximum number of parents of a node. 
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O(2n) terms 

O(n ¢ 2k) terms 

 It’s the edges that are missing in the graph that are important!  

    They encode the simplifying assumptions we make. 
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Recap: Conditional Independence 

• X is conditionally independent of Y given V  

 Definition: 

 

 Also: 

 

 Special case: Marginal Independence 

 

 

 Often, we are interested in conditional independence between 

sets of variables: 

91 
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Recap: Conditional Independence 

• Three cases 

 Divergent (“Tail-to-Tail”) 

– Conditional independence when c is observed. 

 
 

 Chain (“Head-to-Tail”) 

– Conditional independence when c is observed. 

 
 

 Convergent (“Head-to-Head”) 

– Conditional independence when neither c, 

nor any of its descendants are observed. 

 

92 
B. Leibe Image source: C. Bishop, 2006 
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Recap: D-Separation 

• Definition 

 Let A, B, and C be non-intersecting subsets of nodes  

in a directed graph. 

 A path from A to B is blocked if it contains a node such that 

either 

– The arrows on the path meet either head-to-tail or  

tail-to-tail at the node, and the node is in the set C, or 

– The arrows meet head-to-head at the node, and neither  

the node, nor any of its descendants, are in the set C. 

 If all paths from A to B are blocked, A is said to be d-separated 

from B by C.  
 

• If A is d-separated from B by C, the joint distribution 

over all variables in the graph satisfies                 . 

 Read: “A is conditionally independent of B given C.” 
93 
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Recap: “Bayes Ball” Algorithm 

• Graph algorithm to compute d-separation 

 Goal: Get a ball from X to Y without being blocked by V. 

 Depending on its direction and the previous node, the ball can 

– Pass through (from parent to all children, from child to all parents) 

– Bounce back (from any parent/child to all parents/children) 

– Be blocked 
 

• Game rules 

 An unobserved node (W  V) passes through balls from parents, 

but also bounces back balls from children. 

 
 

 An observed node (W 2 V) bounces back balls from parents, but 

blocks balls from children. 

 

94 
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Recap: The Markov Blanket 

 

 

 

 

 

 

 

• Markov blanket of a node xi  

 Minimal set of nodes that isolates xi from the rest of the graph. 

 This comprises the set of 

– Parents, 

– Children, and 

– Co-parents of xi. 
95 

B. Leibe 

This is what we have to watch out for! 

Image source: C. Bishop, 2006 
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Course Outline 

• Fundamentals 

 Bayes Decision Theory 

 Probability Density Estimation 

 Mixture Models and EM 
 

• Discriminative Approaches 

 Linear Discriminant Functions 

 Statistical Learning Theory & SVMs 

 Ensemble Methods & Boosting 

 Decision Trees & Randomized Trees 
 

• Generative Models 

 Bayesian Networks 

 Markov Random Fields 

 Exact Inference 
 B. Leibe 
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Recap: Undirected Graphical Models 

• Undirected graphical models (“Markov Random Fields”) 

 Given by undirected graph 

 

 

 

 
 

 

 

• Conditional independence for undirected graphs 

 If every path from any node in set A to set B passes through at 

least one node in set C, then              .  

 Simple Markov blanket: 

97 
B. Leibe Image source: C. Bishop, 2006 
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Recap: Factorization in MRFs 

• Joint distribution 

 Written as product of potential functions over maximal cliques 

in the graph: 

 

 
 

 The normalization constant Z is called the partition function. 

 

 
 

• Remarks 

 BNs are automatically normalized. But for MRFs, we have to 

explicitly perform the normalization. 

 Presence of normalization constant is major limitation! 

– Evaluation of Z involves summing over O(KM) terms for M nodes! 
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p(x) =
1

Z

Y

C

ÃC(xC)

Z =
X

x

Y

C

ÃC(xC)
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Factorization in MRFs 

• Role of the potential functions 

 General interpretation 

– No restriction to potential functions that have a specific 

probabilistic interpretation as marginals or conditional distributions. 
 

 Convenient to express them as exponential functions 

(“Boltzmann distribution”) 

 

 

– with an energy function E. 

 

 Why is this convenient? 

– Joint distribution is the product of potentials  sum of energies. 

– We can take the log and simply work with the sums… 
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ÃC(xC) = expf¡E(xC)g
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• Problematic case: multiple parents 

 

 

 

 

 

 

 

 

 

 

 

 Need to introduce additional links (“marry the parents”). 

 This process is called moralization. It results in the moral graph. 

Recap: Converting Directed to Undirected Graphs 

100 
B. Leibe Image source: C. Bishop, 2006 

Need a clique of x1,…,x4 to represent this factor! 

Fully connected, 

no cond. indep.! 

Slide adapted from Chris Bishop 
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Recap: Conversion Algorithm 

• General procedure to convert directed  undirected 

1. Add undirected links to marry the parents of each node. 

2. Drop the arrows on the original links  moral graph. 

3. Find maximal cliques for each node and initialize all clique 

potentials to 1. 

4. Take each conditional distribution factor of the original 

directed graph and multiply it into one clique potential. 

 

• Restriction 

 Conditional independence properties are often lost! 

 Moralization results in additional connections and larger cliques. 
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Recap: Computing Marginals 

• How do we apply graphical models? 

 Given some observed variables,  

we want to compute distributions 

of the unobserved variables. 

 In particular, we want to compute  

marginal distributions, for example p(x4). 

 

• How can we compute marginals? 

 Classical technique: sum-product algorithm by Judea Pearl. 

 In the context of (loopy) undirected models, this is also called 

(loopy) belief propagation [Weiss, 1997]. 

 Basic idea: message-passing. 
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Recap: Message Passing on a Chain 

 

 

 
 

 Idea 

– Pass messages from the two ends towards the query node xn. 
 

 Define the messages recursively: 

 

 

 

 

 Compute the normalization constant Z at any node xm. 
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¹®(xn) =
X

xn¡1

Ãn¡1;n(xn¡1; xn)¹®(xn¡1)

¹¯(xn) =
X

xn+1

Ãn;n+1(xn; xn+1)¹¯(xn+1)
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Recap: Message Passing on Trees 

• General procedure for all tree graphs. 

 Root the tree at the variable that we want  

to compute the marginal of. 

 Start computing messages at the leaves. 

 Compute the messages for all nodes for which all 

incoming messages have already been computed. 

 Repeat until we reach the root. 

 

• If we want to compute the marginals for all possible 

nodes (roots), we can reuse some of the messages. 

 Computational expense linear in the number of nodes. 
 

• We already motivated message passing for inference. 

 How can we formalize this into a general algorithm?  

104 
B. Leibe Slide credit: Bernt Schiele, Stefan Roth 
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Course Outline 

• Fundamentals 

 Bayes Decision Theory 

 Probability Density Estimation 

 Mixture Models and EM 
 

• Discriminative Approaches 

 Linear Discriminant Functions 

 Statistical Learning Theory & SVMs 

 Ensemble Methods & Boosting 

 Decision Trees & Randomized Trees 
 

• Generative Models 

 Bayesian Networks 

 Markov Random Fields 

 Exact Inference 
 B. Leibe 
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p(x) =
1

Z

Y

s

fs(xs)

Recap: Factor Graphs 

 

 

 

 

 

 
 

• Joint probability 

 Can be expressed as product of factors: 
 

 Factor graphs make this explicit through separate factor nodes. 
 

• Converting a directed polytree 

 Conversion to undirected tree creates loops due to moralization! 

 Conversion to a factor graph again results in a tree! 
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Recap: Sum-Product Algorithm 

• Objectives 

 Efficient, exact inference algorithm for finding marginals. 
 

• Procedure: 

 Pick an arbitrary node as root. 

 Compute and propagate messages from the leaf nodes to the 

root, storing received messages at every node. 

 Compute and propagate messages from the root to the leaf 

nodes, storing received messages at every node. 

 Compute the product of received messages at each node for 

which the marginal is required, and normalize if necessary. 

 
 

• Computational effort 

 Total number of messages = 2 ¢ number of graph edges. 
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p(x) /
Y

s2ne(x)

¹fs!x(x)
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Recap: Sum-Product Algorithm 

• Two kinds of messages 

 Message from factor node to variable nodes:  

– Sum of factor contributions 

 

 

 

 
 

 Message from variable node to factor node:  

– Product of incoming messages 

 

 
 

 

 Simple propagation scheme. 

108 
B. Leibe 

¹fs!x(x) ´
X

Xs

Fs(x; Xs)

¹xm!fs(xm) ´
Y

l2ne(xm)nfs

¹fl!xm(xm)

=
X

Xs

fs(xs)
Y

m2ne(fs)nx

¹xm!fs(xm)
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Recap: Sum-Product from Leaves to Root 
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¹fs!x(x) ´
X

Xs

fs(xs)
Y

m2ne(fs)nx

¹xm!fs(xm)

¹xm!fs(xm) ´
Y

l2ne(xm)nfs

¹fl!xm(xm)

Message definitions: 

fa fb

fc

Image source: C. Bishop, 2006 
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Recap: Sum-Product from Root to Leaves 

110 
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¹fs!x(x) ´
X

Xs

fs(xs)
Y

m2ne(fs)nx

¹xm!fs(xm)

¹xm!fs(xm) ´
Y

l2ne(xm)nfs

¹fl!xm(xm)

Message definitions: 

fa fb

fc

Image source: C. Bishop, 2006 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

M
a
c
h

in
e
 L

e
a
rn

in
g

, 
S

u
m

m
e
r 

‘1
5

 

Recap: Max-Sum Algorithm 

• Objective: an efficient algorithm for finding 

 Value xmax that maximises p(x); 

 Value of p(xmax). 

 Application of dynamic programming in graphical models. 

 

• Key ideas 

 We are interested in the maximum value of the joint distribution 

 

 Maximize the product p(x). 
 

 For numerical reasons, use the logarithm. 

 
 

 Maximize the sum (of log-probabilities). 
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p(xmax) = max
x

p(x)
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Recap: Max-Sum Algorithm 

• Initialization (leaf nodes) 

 
 

• Recursion 

 Messages 

 

 

 

 

 For each node, keep a record of which values of the variables 

gave rise to the maximum state: 

112 
B. Leibe Slide adapted from Chris Bishop 
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Recap: Max-Sum Algorithm 

• Termination (root node) 

 Score of maximal configuration 

 

 

 

 Value of root node variable giving rise to that maximum 

 

 

 
 

 Back-track to get the remaining  

variable values 
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xmaxn¡1 = Á(xmaxn )

Slide adapted from Chris Bishop 
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Recap: Junction Tree Algorithm 

• Motivation 

 Exact inference on general graphs. 

 Works by turning the initial graph into a junction tree and then 

running a sum-product-like algorithm. 

 Intractable on graphs with large cliques. 
 

• Main steps 

1. If starting from directed graph, first convert it to an undirected 

graph by moralization. 

2. Introduce additional links by triangulation in order to reduce 

the size of cycles. 

3. Find cliques of the moralized, triangulated graph. 

4. Construct a new graph from the maximal cliques. 

5. Remove minimal links to break cycles and get a junction tree. 

 Apply regular message passing to perform inference. 
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Recap: Junction Tree Example 

 

 

 

 

 

 

 

 
 

• Without triangulation step 

 The final graph will contain cycles that we cannot break 

without losing the running intersection property! 

115 
B. Leibe Image source: J. Pearl, 1988 
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Recap: Junction Tree Example 

 

 

 

 

 

 

 

 
 

• When applying the triangulation 

 Only small cycles remain that are easy to break. 

 Running intersection property is maintained. 

116 
B. Leibe Image source: J. Pearl, 1988 
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Course Outline 

• Fundamentals 

 Bayes Decision Theory 

 Probability Density Estimation 

 Mixture Models and EM 
 

• Discriminative Approaches 

 Linear Discriminant Functions 

 Statistical Learning Theory & SVMs 

 Ensemble Methods & Boosting 

 Decision Trees & Randomized Trees 
 

• Generative Models 

 Bayesian Networks 

 Markov Random Fields & Applications 

 Exact Inference 
 B. Leibe 
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Recap: MRF Structure for Images 

• Basic structure 

 

 

 

• Two components 

 Observation model 

– How likely is it that node xi has label Li given observation yi? 

– This relationship is usually learned from training data. 
 

 Neighborhood relations 

– Simplest case: 4-neighborhood 

– Serve as smoothing terms. 

 Discourage neighboring pixels to have different labels. 

– This can either be learned or be set to fixed “penalties”. 

118 
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“True” image content 

Noisy observations 
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Recap: How to Set the Potentials?  

• Unary potentials 

 E.g. color model, modeled with a Mixture of Gaussians 

 

 

 
 

 

 Learn color distributions for each label 
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Á(xi; yi; µÁ) = log
X

k

µÁ(xi; k)p(kjxi)N(yi; ¹yk;§k)

Á(xp = 1; yp)

Á(xp = 0; yp)

yp y
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Recap: How to Set the Potentials? 

• Pairwise potentials 

 Potts Model 

 

– Simplest discontinuity preserving model. 

– Discontinuities between any pair of labels are penalized equally. 

– Useful when labels are unordered or number of labels is small. 

 

 Extension: “contrast sensitive Potts model” 

 

 

where 

 

 

– Discourages label changes except in places where there is also a 

large change in the observations. 
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 2

2 /  i javg y y
2

( ) i jy y

ijg y e
 



Ã(xi; xj; µÃ) = µÃ±(xi 6= xj)

Ã(xi; xj; gij(y);µÃ) = µÃgij(y)±(xi 6= xj)
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Recap: Graph Cuts for Binary Problems 
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B. Leibe 

pqw

n-links 

s 

t 
a cut 

)(tDp

)(sDp

 22 2/||||exp)( s

pp IIsD 

 22 2/||||exp)( t

pp IItD 

EM-style optimization 

“expected” intensities of 

object and background 

 

can be re-estimated 

ts II   and

[Boykov & Jolly, ICCV’01] Slide credit: Yuri Boykov 
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Recap: s-t-Mincut Equivalent to Maxflow 
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Source 

Sink 

v1 v2 

2 

5 

9 

4 
2 

1 

Slide credit: Pushmeet Kohli 

Augmenting Path Based 

Algorithms 

1. Find path from source to sink 

with positive capacity 
 

2. Push maximum possible flow 

through this path 
 

3. Repeat until no path can be 

found 

Algorithms assume non-negative capacity 

Flow = 0 
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Recap: When Can s-t Graph Cuts Be Applied? 

 

 

 

 

• s-t graph cuts can only globally minimize binary energies 

that are submodular.  

 

 
 
 

• Submodularity is the discrete equivalent to convexity. 

 Implies that every local energy minimum is a global minimum. 

 Solution will be globally optimal. 
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B. Leibe 





Npq

qp

p

pp LLELELE ),()()(

},{ tsLp t-links n-links 

Boundary term Regional term 

E(L)  can be minimized 

by s-t  graph cuts 
),(),(),(),( stEtsEttEssE 

Submodularity    (“convexity”) 

[Boros & Hummer, 2002, Kolmogorov & Zabih, 2004] 
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Recap: a-Expansion Move 

• Basic idea: 

 Break multi-way cut computation into a sequence of  

binary s-t cuts. 

 

 

 

 

 

 

 

 

 

 No longer globally optimal result, but guaranteed approximation 

quality and typically converges in few iterations. 
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other labels a 

Slide credit: Yuri Boykov 
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Graph *g; 
 

For all pixels p  
  

 /* Add a node to the graph */ 

 nodeID(p) = g->add_node(); 
 

 /* Set cost of terminal edges */ 

 set_weights(nodeID(p), fgCost(p), bgCost(p)); 
 

end 

 
for all adjacent pixels p,q 

 add_weights(nodeID(p), nodeID(q),  cost); 
end 

 
g->compute_maxflow(); 
 
label_p = g->is_connected_to_source(nodeID(p));

  
// is the label of pixel p (0 or 1) 

Recap: Converting an MRF to an s-t Graph 
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B. Leibe Slide credit: Pushmeet Kohli 

Sink (1) 

Source (0)  

fgCost(a1) fgCost(a2) 

bgCost(a1) bgCost(a2) 

a1 a2 

cost(p,q) 

a1 = bg  a2 = fg 
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Any Questions? 

 

 

 

 
 

So what can you do with all of this? 

126 
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127 

Mobile Object Detection & Tracking 

[Ess, Leibe, Schindler, Van Gool, CVPR’08] 
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Learning Person-Object Interactions 

128 
B. Leibe [T. Baumgartner, D. Mitzel, B. Leibe, CVPR’13] 
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Semantic Segmentation 
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          image           ground truth               Baseline        RF (HOG) 
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3D Labeling Results – Living Room 

130 

play video 

[Hermans, Floros, Leibe, submission to ICCV’13] 

../../projects/ROVINA/rovina_kickoff-videos/living_room_0020.m4v
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Semantic Scene Segmentation 

131 
B. Leibe [G. Floros, B. Leibe, CVPR’12] 
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Any More Questions? 

 

 

 

 
 

Good luck for the exam! 
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