

Topics of This Lecture

- Recap: Exact inference
- Sum-Product algorithm

Max-Sum algorithm
Junction Tree algorithm

- Applications of Markov Random Fields
- Application examples from computer vision
- Interpretation of clique potentials
, Unary potentials
, Pairwise potentials
- Solving MRFs with Graph Cuts
, Graph cuts for image segmentation
, s-t mincut algorithm
, Extension to non-binary case
- Applications
B. Leibe

Recap: Max-Sum Algorithm

- Objective: an efficient algorithm for finding
, Value $\mathrm{x}^{\text {max }}$ that maximises $p(\mathrm{x})$;
, Value of $p\left(\mathbf{x}^{\max }\right)$.
\Rightarrow Application of dynamic programming in graphical models.
- Key ideas

We are interested in the maximum value of the joint distribution

$$
p\left(\mathbf{x}^{\max }\right)=\max _{\mathbf{x}} p(\mathbf{x})
$$

\Rightarrow Maximize the product $p(\mathbf{x})$.
, For numerical reasons, use the logarithm.

$$
\ln \left(\max _{\mathrm{x}} p(\mathbf{x})\right)=\max _{\mathrm{x}} \ln p(\mathbf{x})
$$

\Rightarrow Maximize the sum (of log-probabilities).

Slide adapted from Chris Bishoo

Junction Tree Algorithm
- Motivation
= Exact inference on general graphs.
= Works by turning the initial graph into a junction tree and then
running a sum-product-like algorithm.
= Intractable on graphs with large cliques.
- Main steps
1. If starting from directed graph, first convert it to an undirected graph by moralization.
2. Introduce additional links by triangulation in order to reduce the size of cycles.
3. Find cliques of the moralized, triangulated graph. 4. Construct a new graph from the maximal cliques. 5. Remove minimal links to break cycles and get a junction tree.
$\Rightarrow$$\Rightarrow$ Apply regular message passing to perform inference. B. Leibe

Junction Tree Algorithm

1. Convert to an undirected graph through moralization.
, Marry the parents of each node.
, Remove edge directions.
Slide adapted from Zoubin Gharahmani_ B. Leibe

Junction Tree Algorithm

3. Find cliques of the moralized, triangulated graph.

Junction Tree - Properties

- Running intersection property
"If a variable appears in more than one clique, it also appears in all intermediate cliques in the tree".
- This ensures that neighboring cliques have consistent probability distributions.
, Local consistency \rightarrow global consistency
Slide adanted from Zoubin Gharahmani_Imase source: Z. Gharahmand
20

RWITAACHE
Junction Tree: Example 1

(a) DAG

(b) Moral graph

- Algorithm

1. Moralization
2. Triangulation (not necessary here)

Junction Tree: Example 2

UNIVERSITY
Junction Tree: Example 2

- Without triangulation step
The final graph will contain cycles that we cannot break without losing the running intersection property!

- When applying the triangulation
, Only small cycles remain that are easy to break.
, Running intersection property is maintained.

Junction Tree Algorithm

- Good news
- The junction tree algorithm is efficient in the sense that for a given graph there does not exist a computationally cheaper approach.
- Bad news
- This may still be too costly.
- Effort determined by number of variables in the largest clique.
, Grows exponentially with this number (for discrete variables).
\Rightarrow Algorithm becomes impractical if the graph contains large cliques!
- Applications of Markov Random Fields
- Application examples from computer vision
, Interpretation of clique potentials
, Unary potentials
- Pairwise potentials

- Solving MRFs with Graph Cuts

Graph cuts for image segmentation
s-t mincut algorithm
Extension to non-binary case
Applications

Markov Random Fields (MRFs)

- What we've learned so far...
- We know they are undirected graphical models.
, Their joint probability factorizes into clique potentials,

$$
p(\mathbf{x})=\frac{1}{Z} \prod_{C} \psi_{C}\left(\mathbf{x}_{C}\right)
$$

$$
\psi_{C}\left(\mathbf{x}_{C}\right)=\exp \left\{-E\left(\mathbf{x}_{C}\right)\right\}
$$

, We know how to perform inference for them.
Sum/Max-Product BP for exact inference in tree-shaped MRFs.
Loopy BP for approximate inference in arbitrary MRFs.
Junction Tree algorithm for converting arbitrary MRFs into trees.

- But what are they actually good for?
- And how do we apply them in practice?

Markov Random Fields

- Allow rich probabilistic models.
- But built in a local, modular way.
- Learn local effects, get global effects out.
- Very powerful when applied to regular structures. . Such as images...

RNDHAACHE

Applications of MRFs

UNIVERSIT

- Many applications for low-level vision tasks , Image denoising

RWIHAACHE

Applications of MRFs

- Many applications for low-level vision tasks
, Image denoising
- Inpainting

B. Leibe

More general relationships expressed by potential functions Φ and Ψ.
B. Leibe

Energy Formulation

- Energy function

$$
E(x, y)=\sum_{i} \underbrace{\varphi\left(x_{i}, y_{i}\right)}_{\begin{array}{c}
\text { Single-node } \\
\text { potentials }
\end{array}}+\sum_{i, j} \underbrace{\psi\left(x_{i}, x_{j}\right)}_{\begin{array}{c}
\text { Pairwise } \\
\text { potentials }
\end{array}}
$$

- Single-node (unary) potentials φ
, Encode local information about the given pixel/patch.
- How likely is a pixel/patch to belong to a certain class (e.g. foreground/background)?
- Pairwise potentials ψ
, Encode neighborhood information.
, How different is a pixel/patch's label from that of its neighbor? (e.g. based on intensity/color/texture difference, edges)

- Energy formulation

$E(\mathbf{x})=\sum_{i<S}\left(\rho\left(\mathbf{D} \mid \mathbf{x}_{i}\right)+\sum_{j \in N_{i}}\left(\phi\left(\mathbf{D} \mid \mathbf{x}_{i}, \mathbf{x}_{j}\right)+\psi\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)\right)\right)+$ const		
Unary likelihood Contrast Term	Uniform Prior (Potts Model)	52
B. Leibe		

Energy Minimization
 - Goal:
 , Infer the optimal labeling of the MRF.

- Many inference algorithms are available, e.g.
, Simulated annealing \longleftarrow What you saw in the movie.
, Iterated conditional modes $(I C M) \leftarrow$ Too simple.
, Belief propagation \longleftarrow Last lecture
. Graph cuts
, Variational methods
, Monte Carlo sampling

- Recently, Graph Cuts have become a popular tool
, Only suitable for a certain class of energy functions.
- But the solution can be obtained very fast for typical vision problems (~ 1 MPixel/sec).

References and Further Reading

- A gentle introduction to Graph Cuts can be found in the following paper:
- Y. Boykov, O. Veksler, Graph Cuts in Vision and Graphics: Theories and Applications. In Handbook of Mathematical Models in Computer Vision, edited by N. Paragios, Y. Chen and O. Faugeras, Springer, 2006.
- Try the GraphCut implementation at http://www.cs.ucl.ac.uk/staff/V.Kolmogorov/software.html

