Machine Learning - Lecture 16

Inference & Applications of MRFs

30.06.2015

Bastian Leibe **RWTH Aachen** http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de

Course Outline

- Fundamentals (2 weeks)
 - **Bayes Decision Theory**
 - **Probability Density Estimation**

- Discriminative Approaches (5 weeks)
 - Linear Discriminant Functions
 - Statistical Learning Theory & SVMs
 - Ensemble Methods & Boosting
 - Decision Trees & Randomized Trees
- · Generative Models (4 weeks)
 - Bayesian Networks
 - Markov Random Fields

 - **Exact Inference**
 - **Applications**

Topics of This Lecture

· Recap: Exact inference

- Sum-Product algorithm
 - Max-Sum algorithm
 - Junction Tree algorithm
- Applications of Markov Random Fields
 - > Application examples from computer vision
 - > Interpretation of clique potentials
 - Unary potentials
 - Pairwise potentials

Solving MRFs with Graph Cuts

- > Graph cuts for image segmentation
- > s-t mincut algorithm
- Extension to non-binary case
- Applications

Recap: Factor Graphs · Joint probability Can be expressed as product of factors: $p(\mathbf{x}) = \frac{1}{Z} \prod f_s(\mathbf{x}_s)$ Factor graphs make this explicit through separate factor nodes. · Converting a directed polytree > Conversion to undirected tree creates loops due to moralization! Conversion to a factor graph again results in a tree!

B. Leibe

Recap: Sum-Product Algorithm

Objectives

Efficient, exact inference algorithm for finding marginals.

Procedure:

- > Pick an arbitrary node as root,
- Compute and propagate messages from the leaf nodes to the root, storing received messages at every node.
- Compute and propagate messages from the root to the leaf nodes, storing received messages at every node.
- Compute the product of received messages at each node for which the marginal is required, and normalize if necessary.

$$p(x) \propto \prod_{x \in p_0(x)} \mu_{f_s \to x}(x)$$

Computational effort

Total number of messages = 2 · number of graph edges.

Recap: Sum-Product Algorithm

· Two kinds of messages

Message from factor node to variable nodes:

Sum of factor contributions

$$\begin{aligned} t_{f_s \to x}(x) &\equiv \sum_{X_s} F_s(x, X_s) \\ &= \sum_{X_s} f_s(\mathbf{x}_s) \prod_{m \in \text{ne}(f_s) \setminus x} \mu_{x_m \to f_s}(x_m) \end{aligned}$$

Message from variable node to factor node:

Product of incoming messages $\mu_{x_m \to f_s}(x_m) \equiv \prod \mu_{f_l \to x_m}(x_m)$

 $l \in ne(x_m) \backslash f_s$

⇒ Simple propagation scheme.

Recap: Max-Sum Algorithm • Objective: an efficient algorithm for finding • Value \mathbf{x}^{\max} that maximises $p(\mathbf{x})$; • Value of $p(\mathbf{x}^{\max})$. \Rightarrow Application of dynamic programming in graphical models. • Key ideas • We are interested in the maximum value of the joint distribution $p(\mathbf{x}^{\max}) = \max_{\mathbf{x}} p(\mathbf{x})$ \Rightarrow Maximize the product $p(\mathbf{x})$. • For numerical reasons, use the logarithm. $\ln\left(\max_{\mathbf{x}} p(\mathbf{x})\right) = \max_{\mathbf{x}} \ln p(\mathbf{x})$. \Rightarrow Maximize the sum (of log-probabilities).

Junction Tree Algorithm • Good news • The junction tree algorithm is efficient in the sense that for a given graph there does not exist a computationally cheaper approach. • Bad news • This may still be too costly. • Effort determined by number of variables in the largest clique. • Grows exponentially with this number (for discrete variables). ⇒ Algorithm becomes impractical if the graph contains large cliques!

References and Further Reading

• A gentle introduction to Graph Cuts can be found in the following paper:

• Y. Boykov, O. Veksler, Graph Cuts in Vision and Graphics: Theories and Applications. In Handbook of Mathematical Models in Computer Vision, edited by N. Paragios, Y. Chen and O. Faugeras, Springer, 2006.

• Try the GraphCut implementation at http://www.cs.ucl.ac.uk/staff/V.Kolmogorov/software.html