Machine Learning - Lecture 18

Exact Inference \& Belief Propagation

25.06.2015

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de
leibe@vision.rwth-aachen.de
Many slides adapted from C. Bishop, Z. Gharahmani

Course Outline

- Fundamentals (2 weeks)
, Bayes Decision Theory
, Probability Density Estimation

- Discriminative Approaches (5 weeks)
, Linear Discriminant Functions
, Statistical Learning Theory \& SVMs
, Ensemble Methods \& Boosting
, Decision Trees \& Randomized Trees
- Generative Models (4 weeks)
, Bayesian Networks
, Markov Random Fields
, Exact Inference

Recap: Undirected Graphical Models

- Undirected graphical models ("Markov Random Fields")
, Given by undirected graph

- Conditional independence for undirected graphs
, If every path from any node in set A to set B passes through at least one node in set C, then $A \Perp B \mid C$.
, Simple Markov blanket:

Recap: Factorization in MRFs

- Joint distribution
, Written as product of potential functions over maximal cliques in the graph:

$$
p(\mathbf{x})=\frac{1}{Z} \prod_{C} \psi_{C}\left(\mathbf{x}_{C}\right)
$$

, The normalization constant Z is called the partition function.

$$
Z=\sum_{\mathbf{x}} \prod_{C} \psi_{C}\left(\mathbf{x}_{C}\right)
$$

- Remarks
, BNs are automatically normalized. But for MRFs, we have to explicitly perform the normalization.
, Presence of normalization constant is major limitation!
- Evaluation of Z involves summing over $\mathcal{O}\left(K^{M}\right)$ terms for M nodes!

Recap: Factorization in MRFs

- Role of the potential functions
, General interpretation
- No restriction to potential functions that have a specific probabilistic interpretation as marginals or conditional distributions.
, Convenient to express them as exponential functions ("Boltzmann distribution")

$$
\psi_{C}\left(\mathbf{x}_{C}\right)=\exp \left\{-E\left(\mathbf{x}_{C}\right)\right\}
$$

- with an energy function E.
, Why is this convenient?
- Joint distribution is the product of potentials \Rightarrow sum of energies.
- We can take the log and simply work with the sums...

Recap: Converting Directed to Undirected Graphs

- Problematic case: multiple parents

, Need to introduce additional links ("marry the parents").
\Rightarrow This process is called moralization. It results in the moral graph.

Recap: Conversion Algorithm

- General procedure to convert directed \rightarrow undirected

1. Add undirected links to marry the parents of each node.
2. Drop the arrows on the original links \Rightarrow moral graph.
3. Find maximal cliques for each node and initialize all clique potentials to 1.
4. Take each conditional distribution factor of the original directed graph and multiply it into one clique potential.

- Restriction
, Conditional independence properties are often lost!
> Moralization results in additional connections and larger cliques.

Computing Marginals

- How do we apply graphical models?
, Given some observed variables, we want to compute distributions of the unobserved variables.
, In particular, we want to compute
 marginal distributions, for example $p\left(x_{4}\right)$.
- How can we compute marginals?
, Classical technique: sum-product algorithm by Judea Pearl.
, In the context of (loopy) undirected models, this is also called (loopy) belief propagation [Weiss, 1997].
, Basic idea: message-passing.

Inference on a Chain

- Chain graph

, Joint probability

$$
p(\mathbf{x})=\frac{1}{Z} \psi_{1,2}\left(x_{1}, x_{2}\right) \psi_{2,3}\left(x_{2}, x_{3}\right) \cdots \psi_{N-1, N}\left(x_{N-1}, x_{N}\right)
$$

, Marginalization

$$
p\left(x_{n}\right)=\sum_{x_{1}} \cdots \sum_{x_{n-1}} \sum_{x_{n+1}} \cdots \sum_{x_{N}} p(\mathbf{x})
$$

Inference on a Chain

, Idea: Split the computation into two parts ("messages").

$$
\begin{aligned}
p\left(x_{n}\right)= & \frac{1}{Z} \underbrace{\left[\sum_{x_{n-1}} \psi_{n-1, n}\left(x_{n-1}, x_{n}\right) \cdots\left[\sum_{x_{1}} \psi_{1,2}\left(x_{1}, x_{2}\right)\right] \cdots\right]}_{\mu_{\alpha}\left(x_{n}\right)} \\
& \underbrace{\left[\sum_{x_{n+1}} \psi_{n, n+1}\left(x_{n}, x_{n+1}\right) \cdots\left[\sum_{x_{N}} \psi_{N-1, N}\left(x_{N-1}, x_{N}\right)\right] \cdots\right]}_{\mu_{\beta}\left(x_{n}\right)}
\end{aligned}
$$

Inference on a Chain

, We can define the messages recursively...

$$
\begin{aligned}
\mu_{\alpha}\left(x_{n}\right) & =\sum_{x_{n-1}} \psi_{n-1, n}\left(x_{n-1}, x_{n}\right)\left[\sum_{x_{n-2}} \cdots\right] \\
& =\sum_{x_{n-1}} \psi_{n-1, n}\left(x_{n-1}, x_{n}\right) \mu_{\alpha}\left(x_{n-1}\right) \\
\mu_{\beta}\left(x_{n}\right) & =\sum_{x_{n+1}} \psi_{n, n+1}\left(x_{n}, x_{n+1}\right)\left[\sum_{x_{n+2}} \cdots\right] \\
& =\sum_{x_{n+1}} \psi_{n, n+1}\left(x_{n}, x_{n+1}\right) \mu_{\beta}\left(x_{n+1}\right)
\end{aligned}
$$

Inference on a Chain

, Until we reach the leaf nodes...

$$
\mu_{\alpha}\left(x_{2}\right)=\sum_{x_{1}} \psi_{1,2}\left(x_{1}, x_{2}\right) \quad \mu_{\beta}\left(x_{N-1}\right)=\sum_{x_{N}} \psi_{N-1, N}\left(x_{N-1}, x_{N}\right)
$$

- Interpretation
- We pass messages from the two ends towards the query node x_{n}.
, We still need the normalization constant Z.
- This can be easily obtained from the marginals:

$$
Z=\sum_{x_{n}} \mu_{\alpha}\left(x_{n}\right) \mu_{\beta}\left(x_{n}\right)
$$

Summary: Inference on a Chain

- To compute local marginals:
, Compute and store all forward messages $\mu_{\alpha}\left(x_{n}\right)$.
, Compute and store all backward messages $\mu_{\beta}\left(x_{n}\right)$.
, Compute Z at any node x_{m}.
- Compute

$$
p\left(x_{n}\right)=\frac{1}{Z} \mu_{\alpha}\left(x_{n}\right) \mu_{\beta}\left(x_{n}\right)
$$

for all variables required.

- Inference through message passing
, We have thus seen a first message passing algorithm.
, How can we generalize this?

Inference on Trees

- Let's next assume a tree graph.
, Example:

, We are given the following joint distribution:

$$
p(A, B, C, D, E)=\frac{1}{Z} f_{1}(A, B) \cdot f_{2}(B, D) \cdot f_{3}(C, D) \cdot f_{4}(D, E)
$$

, Assume we want to know the marginal $p(E)$...

Inference on Trees

- Strategy
, Marginalize out all other variables by summing over them.
, Then rearrange terms:

$$
p(E)=\sum_{A} \sum_{B} \sum_{C} \sum_{D} p(A, B, C, D, E)
$$

$$
=\sum_{A} \sum_{B} \sum_{C} \sum_{D} \frac{1}{Z} f_{1}(A, B) \cdot f_{2}(B, D) \cdot f_{3}(C, D) \cdot f_{4}(D, E)
$$

$$
=\frac{1}{Z}\left(\sum_{D} f_{4}(D, E) \cdot\left(\sum_{C} f_{3}(C, D)\right) \cdot\left(\sum_{B} f_{2}(B, D) \cdot\left(\sum_{A} f_{1}(A, B)\right)\right)\right)
$$

Marginalization with Messages

- Use messages to express the marginalization: Θ_{A}

$$
\begin{aligned}
& m_{A \rightarrow B}=\sum_{A} f_{1}(A, B) \quad m_{C \rightarrow D}=\sum_{C} f_{3}(C, D) \\
& m_{B \rightarrow D}=\sum_{B}^{B} f_{2}(B, D) m_{A \rightarrow B}(B) \\
& m_{D \rightarrow E}=\sum_{D}^{B} f_{4}(D, E) m_{B \rightarrow D}(D) m_{C \rightarrow D}(D)
\end{aligned}
$$

$$
\begin{aligned}
p(E) & =\frac{1}{Z}\left(\sum_{D} f_{4}(D, E) \cdot\left(\sum_{C} f_{3}(C, D)\right) \cdot\left(\sum_{B} f_{2}(B, D) \cdot\left(\sum_{A} f_{1}(A, B)\right)\right)\right) \\
& =\frac{1}{Z}\left(\sum_{D} f_{4}(D, E) \cdot\left(\sum_{C} f_{3}(C, D)\right) \cdot\left(\sum_{B} f_{2}(B, D) \cdot m_{A \rightarrow B}(B)\right)\right)
\end{aligned}
$$

Marginalization with Messages

- Use messages to express the marginalization: \bigcirc_{A}

$$
\begin{aligned}
& m_{A \rightarrow B}=\sum_{A} f_{1}(A, B) \quad m_{C \rightarrow D}=\sum_{C} f_{3}(C, D) \\
& m_{B \rightarrow D}=\sum_{B}^{B} f_{2}(B, D) m_{A \rightarrow B}(B) \\
& m_{D \rightarrow E}=\sum_{D}^{B} f_{4}(D, E) m_{B \rightarrow D}(D) m_{C \rightarrow D}(D)
\end{aligned}
$$

$$
p(E)=\frac{1}{Z}\left(\sum_{D} f_{4}(D, E) \cdot\left(\sum_{C} f_{3}(C, D)\right) \cdot\left(\sum_{B} f_{2}(B, D) \cdot\left(\sum_{A} f_{1}(A, B)\right)\right)\right)
$$

$$
=\frac{1}{Z}\left(\sum_{D} f_{4}(D, E) \cdot\left(\sum_{C} f_{3}(C, D)\right) \cdot m_{B \rightarrow D}(D)\right)
$$

Marginalization with Messages

- Use messages to express the marginalization: \bigcirc_{A}

$$
\begin{aligned}
& m_{A \rightarrow B}=\sum_{A} f_{1}(A, B) \quad m_{C \rightarrow D}=\sum_{C} f_{3}(C, D) \\
& m_{B \rightarrow D}=\sum_{B}^{B} f_{2}(B, D) m_{A \rightarrow B}(B) \\
& m_{D \rightarrow E}=\sum_{D}^{B} f_{4}(D, E) m_{B \rightarrow D}(D) m_{C \rightarrow D}(D)
\end{aligned}
$$

$$
p(E)=\frac{1}{Z}\left(\sum_{D} f_{4}(D, E) \cdot\left(\sum_{C} f_{3}(C, D)\right) \cdot\left(\sum_{B} f_{2}(B, D) \cdot\left(\sum_{A} f_{1}(A, B)\right)\right)\right)
$$

$$
=\frac{1}{Z}\left(\sum_{D} f_{4}(D, E) \cdot m_{C \rightarrow D}(D) \cdot m_{B \rightarrow D}(D)\right)
$$

Marginalization with Messages

- Use messages to express the marginalization: Θ_{A}

$$
\begin{aligned}
& m_{A \rightarrow B}=\sum_{A} f_{1}(A, B) \quad m_{C \rightarrow D}=\sum_{C} f_{3}(C, D) \\
& m_{B \rightarrow D}=\sum_{B}^{B} f_{2}(B, D) m_{A \rightarrow B}(B) \\
& m_{D \rightarrow E}=\sum_{D}^{B} f_{4}(D, E) m_{B \rightarrow D}(D) m_{C \rightarrow D}(D)
\end{aligned}
$$

$$
\begin{aligned}
p(E) & =\frac{1}{Z}\left(\sum_{D} f_{4}(D, E) \cdot\left(\sum_{C} f_{3}(C, D)\right) \cdot\left(\sum_{B} f_{2}(B, D) \cdot\left(\sum_{A} f_{1}(A, B)\right)\right)\right) \\
& =\frac{1}{Z} m_{D \rightarrow E}(E)
\end{aligned}
$$

Recap: Message Passing on Trees

- General procedure for all tree graphs.
, Root the tree at the variable that we want to compute the marginal of.
, Start computing messages at the leaves.
, Compute the messages for all nodes for which all incoming messages have already been computed.
- Repeat until we reach the root.
- If we want to compute the marginals for all possible nodes (roots), we can reuse some of the messages.
, Computational expense linear in the number of nodes.
- We already motivated message passing for inference.
, How can we formalize this into a general algorithm?

How Can We Generalize This?

Undirected Tree

Directed Tree

Polytree

- Message passing algorithm motivated for trees.
, Now: generalize this to directed polytrees.
, We do this by introducing a common representation
\Rightarrow Factor graphs

Topics of This Lecture

- Factor graphs
, Construction
, Properties
- Sum-Product Algorithm for computing marginals
, Key ideas
, Derivation
. Example
- Max-Sum Algorithm for finding most probable value
, Key ideas
, Derivation
, Example
- Algorithms for loopy graphs
, Junction Tree algorithm
, Loopy Belief Propagation

Factor Graphs

- Motivation
, Joint probabilities on both directed and undirected graphs can be expressed as a product of factors over subsets of variables.
, Factor graphs make this decomposition explicit by introducing separate nodes for the factors.

Regular nodes

Factor nodes
, Joint probability

$$
\begin{aligned}
p(\mathbf{x}) & =\frac{1}{Z} f_{a}\left(x_{1}, x_{2}\right) f_{b}\left(x_{1}, x_{2}\right) f_{c}\left(x_{2}, x_{3}\right) f_{d}\left(x_{3}\right) \\
& =\frac{1}{Z} \prod f_{s}\left(\mathbf{x}_{s}\right)
\end{aligned}
$$

Factor Graphs from Directed Graphs

$p(\mathbf{x})=p\left(x_{1}\right) p\left(x_{2}\right) \quad f\left(x_{1}, x_{2}, x_{3}\right)=$
$p\left(x_{3} \mid x_{1}, x_{2}\right) \quad p\left(x_{1}\right) p\left(x_{2}\right) p\left({ }_{3} \mid x_{1}, x_{2}\right)$

- Conversion procedure

$$
f_{c}\left(x_{1}, x_{2}, x_{3}\right)=p\left(x_{3} \mid x_{1}, x_{2}\right)
$$

1. Take variable nodes from directed graph.
2. Create factor nodes corresponding to conditional distributions.
3. Add the appropriate links.
\Rightarrow Different factor graphs possible for same directed graph.

Factor Graphs from Undirected Graphs

- Some factor graphs for the same undirected graph:

$$
\begin{aligned}
& f\left(x_{1}, x_{2}, x_{3}\right) \\
& \quad=\psi\left(x_{1}, x_{2}, x_{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& f_{a}\left(x_{1}, x_{2}, x_{3}\right) f_{b}\left(x_{2}, x_{3}\right) \\
& \quad=\psi\left(x_{1}, x_{2}, x_{3}\right)
\end{aligned}
$$

\Rightarrow The factor graph keeps the factors explicit and can thus convey more detailed information about the underlying factorization!

Factor Graphs - Why Are They Needed?

- Converting a directed or undirected tree to factor graph
, The result will again be a tree.
- Converting a directed polytree
, Conversion to undirected tree creates loops due to moralization!
, Conversion to a factor graph again results in a tree.

Topics of This Lecture

- Factor graphs
, Construction
, Properties
- Sum-Product Algorithm for computing marginals
, Key ideas
, Derivation
, Example
- Max-Sum Algorithm for finding most probable value
, Key ideas
, Derivation
- Example
- Algorithms for loopy graphs

Junction Tree algorithm
, Loopy Belief Propagation

Sum-Product Algorithm

- Objectives
, Efficient, exact inference algorithm for finding marginals.
, In situations where several marginals are required, allow computations to be shared efficiently.
- General form of message-passing idea
, Applicable to tree-structured factor graphs.
\Rightarrow Original graph can be undirected tree or directed tree/polytree.
- Key idea: Distributive Law

$$
a b+a c=a(b+c)
$$

\Rightarrow Exchange summations and products exploiting the tree structure of the factor graph.
. Let's assume first that all nodes are hidden (no observations).

Sum-Product Algorithm

- Goal:
, Compute marginal for $x: \quad p(x)=\sum_{\mathbf{x} \backslash x} p(\mathbf{x})$
, Tree structure of graph allows us to partition the joint distrib. into groups associated with each neighboring factor node:

$$
p(\mathbf{x})=\prod_{\substack{s \in \operatorname{ne}(x) \\ \text { B. Leibe }}} F_{s}\left(x, X_{s}\right)
$$

Sum-Product Algorithm

- Marginal:

$$
p(x)=\sum_{X_{s}} \prod_{s \in \operatorname{ne}(x)} F_{s}\left(x, X_{s}\right)
$$

, Exchanging products and sums:

$$
p(x)=\prod_{s \in \operatorname{ne}(x)}\left[\sum_{X_{s}} F_{s}\left(x, X_{s}\right)\right]=\prod_{s \in \operatorname{ne}(x)} \mu_{f_{s} \rightarrow x}(x)
$$

Sum-Product Algorithm

- Marginal:

$$
p(x)=\sum_{X_{s}} \prod_{s \in \operatorname{ne}(x)} F_{s}\left(x, X_{s}\right)
$$

This defines a first type of message $\mu_{f_{s} \rightarrow x}(x)$:

$$
\mu_{f_{s} \rightarrow x}(x) \equiv \sum_{X_{s}} F_{s}\left(x, X_{s}\right)
$$

, Exchanging products and sums:

$$
p(x)=\prod_{s \in \operatorname{ne}(x)}\left[\sum_{X_{s}} F_{s}\left(x, X_{s}\right)\right]=\prod_{s \in \operatorname{ne}(x)} \mu_{f_{s} \rightarrow x}(x)
$$

Sum-Product Algorithm

$$
G_{m}\left(x_{m}, X_{s m}\right)
$$

First message type:

$$
\mu_{f_{s} \rightarrow x}(x) \equiv \sum_{X_{s}} F_{s}\left(x, X_{s}\right)
$$

- Evaluating the messages:
, Each factor $F_{s}\left(x, X_{s}\right)$ is again described by a factor (sub-)graph.
\Rightarrow Can itself be factorized:

$$
F_{s}\left(x, X_{s}\right)=f_{s}\left(x, x_{1}, \ldots, x_{M}\right) G_{1}\left(x_{1}, X_{s 1}\right) \ldots G_{M}\left(x_{M}, X_{s M}\right)
$$

Sum-Product Algorithm

$$
G_{m}\left(x_{m}, X_{s m}\right)
$$

First message type:

$$
\mu_{f_{s} \rightarrow x}(x) \equiv \sum_{X_{s}} F_{s}\left(x, X_{s}\right)
$$

- Evaluating the messages:
, Thus, we can write

$$
\begin{aligned}
\mu_{f_{s} \rightarrow x}(x) & =\sum_{x_{1}} \ldots \sum_{x_{M}} f_{s}\left(x, x_{1}, \ldots, x_{M}\right) \prod_{m \in \operatorname{ne}\left(f_{s}\right) \backslash x}\left[\sum_{X_{s m}} G_{m}\left(x_{m}, X_{s m}\right)\right] \\
& =\sum_{x_{1}} \ldots \sum_{x_{M}} f_{s}\left(x, x_{1}, \ldots, x_{M}\right) \prod_{m \in \operatorname{ne}\left(f_{s}\right) \backslash x} \mu_{x_{m} \rightarrow f_{s}}\left(x_{m}\right)
\end{aligned}
$$

Sum-Product Algorithm

First message type:

$$
\mu_{f_{s} \rightarrow x}(x) \equiv \sum_{X_{s}} F_{s}\left(x, X_{s}\right)
$$

$$
G_{m}\left(x_{m}, X_{s m}\right)
$$

$$
\begin{gathered}
\text { Second message type: } \\
\mu_{x_{m} \rightarrow f_{s}}\left(x_{m}\right) \equiv \sum_{X_{s m}} G_{m}\left(x_{m}, X_{s m}\right)
\end{gathered}
$$

- Evaluating the messages:
, Thus, we can write

$$
\begin{aligned}
\mu_{f_{s} \rightarrow x}(x) & =\sum_{x_{1}} \ldots \sum_{x_{M}} f_{s}\left(x, x_{1}, \ldots, x_{M}\right) \prod_{m \in \operatorname{ne}\left(f_{s}\right) \backslash x}\left[\sum_{X_{s m}} G_{m}\left(x_{m}, X_{s m}\right)\right] \\
& =\sum_{x_{1}} \cdots \sum_{x_{M}} f_{s}\left(x, x_{1}, \ldots, x_{M}\right) \prod_{m \in \operatorname{ne}\left(f_{s}\right) \backslash x} \mu_{x_{m} \rightarrow f_{s}}\left(x_{m}\right)
\end{aligned}
$$

Sum-Product Algorithm

$$
\mu_{f_{l} \rightarrow x_{m}}\left(x_{m}\right) \equiv \sum_{X_{s m}} F_{l}\left(x_{m}, X_{s m}\right)
$$

f_{s}
Each term $G_{m}\left(x_{m}, X_{s m}\right)$ is again given by a product

$$
G_{m}\left(x_{m}, X_{s m}\right)=\prod_{l \in \operatorname{ne}\left(x_{m}\right) \backslash f_{s}} F_{l}\left(x_{m}, X_{m l}\right)
$$

- Recursive message evaluation:
, Exchanging sum and product, we again get

$$
\begin{aligned}
\mu_{x_{m} \rightarrow f_{s}}\left(x_{m}\right) \equiv \sum_{X_{s m}} G_{m}\left(x_{m}, X_{s m}\right) & \left.=\sum_{X_{s m} l \in \operatorname{ne}\left(x_{m}\right) \backslash f_{s}} \prod_{l} F_{m}, X_{m l}\right) \\
& =\prod_{l \in \operatorname{ne}\left(x_{m}\right) \backslash f_{s}} \mu_{f_{l} \rightarrow x_{m}}\left(x_{m}\right)
\end{aligned}
$$

R

Sum-Product Algorithm - Summary

- Two kinds of messages
, Message from factor node to variable nodes:
- Sum of factor contributions

$$
\begin{aligned}
\mu_{f_{s} \rightarrow x}(x) & \equiv \sum_{X_{s}} F_{s}\left(x, X_{s}\right) \\
& =\sum_{X_{s}} f_{s}\left(\mathbf{x}_{s}\right) \prod_{m \in \operatorname{ne}\left(f_{s}\right) \backslash x} \mu_{x_{m} \rightarrow f_{s}}\left(x_{m}\right)
\end{aligned}
$$

- Message from variable node to factor node:
- Product of incoming messages

$$
\mu_{x_{m} \rightarrow f_{s}}\left(x_{m}\right) \equiv \prod_{l \in \operatorname{ne}\left(x_{m}\right) \backslash f_{s}} \mu_{f_{l} \rightarrow x_{m}}\left(x_{m}\right)
$$

\Rightarrow Simple propagation scheme.

Sum-Product Algorithm

- Initialization
- Start the recursion by sending out messages from the leaf nodes

- Propagation procedure
- A node can send out a message once it has received incoming messages from all other neighboring nodes.
, Once a variable node has received all messages from its neighboring factor nodes, we can compute its marginal by multiplying all messages and renormalizing:

$$
p(x) \propto \prod_{s \in \operatorname{ne}(x)} \mu_{f_{s} \rightarrow x}(x)
$$

R

Sum-Product Algorithm - Summary

- To compute local marginals:
, Pick an arbitrary node as root.
, Compute and propagate messages from the leaf nodes to the root, storing received messages at every node.
- Compute and propagate messages from the root to the leaf nodes, storing received messages at every node.
- Compute the product of received messages at each node for which the marginal is required, and normalize if necessary.
- Computational effort
, Total number of messages graph.
, Maximal parallel runtime $=2$. tree height.

Sum-Product: Example

 Picking x_{3} as root...x_{1} and x_{4} are leaves. $\begin{aligned} & \text { Picking } x_{3} \text { as root... } \\ \Rightarrow & x_{1} \text { and } x_{4} \text { are leaves. }\end{aligned}$

Unnormalized joint distribution:
$\widetilde{p}(\mathbf{x})=f_{a}\left(x_{1}, x_{2}\right) f_{b}\left(x_{2}, x_{3}\right) f_{c}\left(x_{2}, x_{4}\right)$

- We want to compute the values of all marginals...

Sum-Product: Example

Message definitions:

$$
\begin{aligned}
& \mu_{x_{1} \rightarrow f_{a}}\left(x_{1}\right)=1 \\
& \mu_{f_{a} \rightarrow x_{2}}\left(x_{2}\right)=\sum_{x_{1}} f_{a}\left(x_{1}, x_{2}\right)
\end{aligned}
$$

$$
\mu_{x_{4} \rightarrow f_{c}}\left(x_{4}\right)=1
$$

$$
\mu_{f_{c} \rightarrow x_{2}}\left(x_{2}\right)=\sum_{x_{4}} f_{c}\left(x_{2}, x_{4}\right)
$$

$$
\mu_{x_{2} \rightarrow f_{b}}\left(x_{2}\right)=\mu_{f_{a} \rightarrow x_{2}}\left(x_{2}\right) \mu_{f_{c} \rightarrow x_{2}}\left(x_{2}\right)
$$

Sum-Product: Example

Message definitions:

$$
\mu_{f_{s} \rightarrow x}(x) \equiv \sum_{X_{s}} f_{s}\left(\mathbf{x}_{s}\right) \prod_{m \in \operatorname{ne}\left(f_{s}\right) \backslash x} \mu_{x_{m} \rightarrow f_{s}}\left(x_{m}\right)
$$

$$
\mu_{x_{m} \rightarrow f_{s}}\left(x_{m}\right) \equiv \prod_{l \in \operatorname{ne}\left(x_{m}\right) \backslash f_{s}} \mu_{f_{l} \rightarrow x_{m}}\left(x_{m}\right)
$$

$$
f_{c} \quad \mu_{x_{1} \rightarrow f_{a}}\left(x_{1}\right)=1
$$

$$
\underbrace{}_{x_{4}} \begin{aligned}
& \mu_{f_{a} \rightarrow x_{2}}\left(x_{2}\right)=\sum_{x_{1}} \\
& \mu_{x_{4} \rightarrow f_{c}}\left(x_{4}\right)=1
\end{aligned}
$$

$$
\mu_{f_{c} \rightarrow x_{2}}\left(x_{2}\right)=\sum_{x_{4}} f_{c}\left(x_{2}, x_{4}\right)
$$

$$
\mu_{x_{2} \rightarrow f_{b}}\left(x_{2}\right)=\mu_{f_{a} \rightarrow x_{2}}\left(x_{2}\right) \mu_{f_{c} \rightarrow x_{2}}\left(x_{2}\right)
$$

$$
\mu_{f_{b} \rightarrow x_{3}}\left(x_{3}\right)=\sum_{x_{2}} f_{b}\left(x_{2}, x_{3}\right) \mu_{x_{2} \rightarrow f_{b}}\left(x_{2}\right)
$$

Sum-Product: Example

Message definitions:

$$
\mu_{f_{s} \rightarrow x}(x) \equiv \sum_{X_{s}} f_{s}\left(\mathbf{x}_{s}\right) \prod_{m \in \operatorname{ne}\left(f_{s}\right) \backslash x} \mu_{x_{m} \rightarrow f_{s}}\left(x_{m}\right)
$$

$$
\mu_{x_{m} \rightarrow f_{s}}\left(x_{m}\right) \equiv \prod_{l \in \operatorname{ne}\left(x_{m}\right) \backslash f_{s}} \mu_{f_{s} \rightarrow x_{m}}\left(x_{m}\right)
$$

$$
\mu_{x_{3} \rightarrow f_{b}}\left(x_{3}\right)=1
$$

$$
\mu_{f_{b} \rightarrow x_{2}}\left(x_{2}\right)=\sum_{x_{3}} f_{b}\left(x_{2}, x_{3}\right)
$$

$$
\mu_{x_{2} \rightarrow f_{a}}\left(x_{2}\right)=\mu_{f_{b} \rightarrow x_{2}}\left(x_{2}\right) \mu_{f_{c} \rightarrow x_{2}}\left(x_{2}\right)
$$

$$
\mu_{f_{a} \rightarrow x_{1}}\left(x_{1}\right)=\sum_{x_{2}} f_{a}\left(x_{1}, x_{2}\right) \mu_{x_{2} \rightarrow f_{a}}\left(x_{2}\right)
$$

$$
\mu_{x_{2} \rightarrow f_{c}}\left(x_{2}\right)=\mu_{f_{a} \rightarrow x_{2}}\left(x_{2}\right) \mu_{f_{b} \rightarrow x_{2}}\left(x_{2}\right)
$$

Sum-Product: Example

Message definitions:

$$
\begin{aligned}
\mu_{f_{s} \rightarrow x}(x) & \equiv \sum_{X_{s}} f_{s}\left(\mathbf{x}_{s}\right) \prod_{m \in \operatorname{ne}\left(f_{s}\right) \backslash x} \mu_{x_{m} \rightarrow f_{s}}\left(x_{m}\right) \\
\mu_{x_{m} \rightarrow f_{s}}\left(x_{m}\right) & \equiv \prod_{l \in \operatorname{ne}\left(x_{m}\right) \backslash f_{s}} \mu_{f_{l} \rightarrow x_{m}}\left(x_{m}\right)
\end{aligned}
$$

$$
\mu_{x_{3} \rightarrow f_{b}}\left(x_{3}\right)=1
$$

$$
\mu_{f_{b} \rightarrow x_{2}}\left(x_{2}\right)=\sum_{x_{3}} f_{b}\left(x_{2}, x_{3}\right)
$$

$$
\mu_{x_{2} \rightarrow f_{a}}\left(x_{2}\right)=\mu_{f_{b} \rightarrow x_{2}}\left(x_{2}\right) \mu_{f_{c} \rightarrow x_{2}}\left(x_{2}\right)
$$

$$
\mu_{f_{a} \rightarrow x_{1}}\left(x_{1}\right)=\sum_{x_{2}} f_{a}\left(x_{1}, x_{2}\right) \mu_{x_{2} \rightarrow f_{a}}\left(x_{2}\right)
$$

$$
\mu_{x_{2} \rightarrow f_{c}}\left(x_{2}\right)=\mu_{f_{a} \rightarrow x_{2}}\left(x_{2}\right) \mu_{f_{b} \rightarrow x_{2}}\left(x_{2}\right)
$$

$$
\mu_{f_{c} \rightarrow x_{4}}\left(x_{4}\right)=\sum_{x_{2}} f_{c}\left(x_{2}, x_{4}\right) \mu_{x_{2} \rightarrow f_{c}}\left(x_{2}\right)
$$

Sum-Product: Example

$$
\begin{aligned}
& \text { Message definitions: } \\
& \mu_{f_{s} \rightarrow x}(x) \equiv \sum_{X_{s}} f_{s}\left(\mathbf{x}_{s}\right) \prod_{m \in \operatorname{ne}\left(f_{s}\right) \backslash x} \mu_{x_{m} \rightarrow f_{s}}\left(x_{m}\right) \\
& \mu_{x_{m} \rightarrow f_{s}}\left(x_{m}\right) \equiv \prod_{l \in \operatorname{ne}\left(x_{m}\right) \backslash f_{s}} \mu_{f_{l} \rightarrow x_{m}}\left(x_{m}\right)
\end{aligned}
$$

Verify that marginal is correct:

$$
\begin{aligned}
\widetilde{p}\left(x_{2}\right) & =\mu_{f_{a} \rightarrow x_{2}}\left(x_{2}\right) \mu_{f_{b} \rightarrow x_{2}}\left(x_{2}\right) \mu_{f_{c} \rightarrow x_{2}}\left(x_{2}\right) \\
= & {\left[\sum_{x_{1}} f_{a}\left(x_{1}, x_{2}\right)\right]\left[\sum_{x_{3}} f_{b}\left(x_{2}, x_{3}\right)\right] } \\
& {\left[\sum_{x_{4}} f_{c}\left(x_{2}, x_{4}\right)\right] }
\end{aligned}
$$

x_{4}
Machine Learning, Summer '15

$$
=\sum_{x_{1}} \sum_{x_{3}} \sum_{x_{4}} f_{a}\left(x_{1}, x_{2}\right) f_{b}\left(x_{2}, x_{3}\right) f_{c}\left(x_{2}, x_{4}\right)
$$

$$
=\sum_{x_{1}} \sum_{x_{3}} \sum_{x_{4}} \widetilde{p}(\mathbf{x})
$$

R

Sum-Product Algorithm - Extensions

- Dealing with observed nodes
, Until now we had assumed that all nodes were hidden...
, Observed nodes can easily be incorporated:
- Partition x into hidden variables h and observed variables $\mathbf{v}=\hat{\mathbf{v}}$.
- Simply multiply the joint distribution $p(\mathbf{x})$ by

$$
\prod_{i} I\left(v_{i}, \hat{v}_{i}\right) \text { where } I\left(v_{i}, \hat{v}_{i}\right)= \begin{cases}1, & \text { if } v_{i}=\hat{v}_{i} \\ 0, & \text { else }\end{cases}
$$

\Rightarrow Any summation over variables in \mathbf{v} collapses into a single term.

- Further generalizations
, So far, assumption that we are dealing with discrete variables.
> But the sum-product algorithm can also be generalized to simple continuous variable distributions, e.g. linear-Gaussian variables.

Topics of This Lecture

- Factor graphs
, Construction
, Properties
- Sum-Product Algorithm for computing marginals
, Key ideas
, Derivation
, Example
- Max-Sum Algorithm for finding most probable value
, Key ideas
, Derivation
, Example
- Algorithms for loopy graphs
, Junction Tree algorithm
, Loopy Belief Propagation

Max-Sum Algorithm

- Objective: an efficient algorithm for finding
, Value $\mathbf{x}^{\text {max }}$ that maximises $p(\mathbf{x})$;
, Value of $p\left(\mathbf{x}^{\max }\right)$.
\Rightarrow Application of dynamic programming in graphical models.
- In general, maximum marginals \neq joint maximum.
, Example:

	$x=0$	$x=1$
$y=0$	0.3	0.4
$y=1$	0.3	0.0

$$
\underset{x}{\arg \max } p(x, y)=1 \quad \underset{x}{\arg \max } p(x)=0
$$

Max-Sum Algorithm - Key Ideas

- Key idea 1: Distributive Law (again)

$$
\begin{aligned}
\max (a b, a c) & =a \max (b, c) \\
\max (a+b, a+c) & =a+\max (b, c)
\end{aligned}
$$

\Rightarrow Exchange products/summations and max operations exploiting the tree structure of the factor graph.

- Key idea 2: Max-Product \rightarrow Max-Sum
- We are interested in the maximum value of the joint distribution

$$
p\left(\mathbf{x}^{\max }\right)=\max _{\mathbf{x}} p(\mathbf{x})
$$

\Rightarrow Maximize the product $p(\mathbf{x})$.
, For numerical reasons, use the logarithm.

$$
\ln \left(\max _{\mathbf{x}} p(\mathbf{x})\right)=\max _{\mathbf{x}} \ln p(\mathbf{x})
$$

\Rightarrow Maximize the sum (of log-probabilities).

Max-Sum Algorithm

- Maximizing over a chain (max-product)

- Exchange max and product operators

$$
\begin{aligned}
p\left(\mathbf{x}^{\max }\right) & =\max _{\mathbf{x}} p(\mathbf{x})=\max _{x_{1}} \ldots \max _{x_{M}} p(\mathbf{x}) \\
& =\frac{1}{Z} \max _{x_{1}} \cdots \max _{x_{N}}\left[\psi_{1,2}\left(x_{1}, x_{2}\right) \cdots \psi_{N-1, N}\left(x_{N-1}, x_{N}\right)\right] \\
& =\frac{1}{Z} \max _{x_{1}}\left[\max _{x_{2}}\left[\psi_{1,2}\left(x_{1}, x_{2}\right)\left[\cdots \max _{x_{N}} \psi_{N-1, N}\left(x_{N-1}, x_{N}\right)\right] \cdots\right]\right]
\end{aligned}
$$

- Generalizes to tree-structured factor graph

$$
\max _{\mathbf{x}} p(\mathbf{x})=\max _{x_{n}} \prod_{f_{s} \in \operatorname{ne}\left(x_{n}\right)} \max _{X_{s}} f_{s}\left(x_{n}, X_{s}\right)
$$

Max-Sum Algorithm

- Initialization (leaf nodes)

$$
\mu_{x \rightarrow f}(x)=0 \quad \mu_{f \rightarrow x}(x)=\ln f(x)
$$

- Recursion

$$
\begin{aligned}
& \text { Messages } \\
& \begin{aligned}
\mu_{f \rightarrow x}(x) & =\max _{x_{1}, \ldots, x_{M}}\left[\ln f\left(x, x_{1}, \ldots, x_{M}\right)+\sum_{m \in \operatorname{ne}\left(f_{s}\right) \backslash x} \mu_{x_{m} \rightarrow f}\left(x_{m}\right)\right] \\
\mu_{x \rightarrow f}(x) & =\sum_{l \in \operatorname{ne}(x) \backslash f} \mu_{f_{l} \rightarrow x}(x)
\end{aligned}
\end{aligned}
$$

. For each node, keep a record of which values of the variables gave rise to the maximum state:

$$
\phi(x)=\underset{x_{1}, \ldots, x_{M}}{\arg \max }\left[\ln f\left(x, x_{1}, \ldots, x_{M}\right)+\sum_{m \in \operatorname{ne}\left(f_{s}\right) \backslash x} \mu_{x_{m} \rightarrow f}\left(x_{m}\right)\right]
$$

Max-Sum Algorithm

- Termination (root node)
, Score of maximal configuration

$$
p^{\max }=\max _{x}\left[\sum_{s \in \operatorname{ne}(x)} \mu_{f_{s} \rightarrow x}(x)\right]
$$

, Value of root node variable giving rise to that maximum

$$
x^{\max }=\underset{x}{\arg \max }\left[\sum_{s \in \operatorname{ne}(x)} \mu_{f_{s} \rightarrow x}(x)\right]
$$

, Back-track to get the remaining variable values

$$
x_{n-1}^{\max }=\phi\left(x_{n}^{\max }\right)
$$

Visualization of the Back-Tracking Procedure

- Example: Markov chain

\Rightarrow Same idea as in Viterbi algorithm for HMMs...

References and Further Reading

- A thorough introduction to Graphical Models in general and Bayesian Networks in particular can be found in Chapter 8 of Bishop's book.

Christopher M. Bishop
Pattern Recognition and Machine Learning Springer, 2006

