Course Outline

- Fundamentals (2 weeks)
, Bayes Decision Theory
, Probability Density Estimation

- Discriminative Approaches (5 weeks)
, Linear Discriminant Functions
, Statistical Learning Theory \& SVMs
, Ensemble Methods \& Boosting
, Decision Trees \& Randomized Trees
- Generative Models (4 weeks)
, Bayesian Networks
- Markov Random Fields

, Exact Inference

Topics of This Lecture

- Recap: Directed Graphical Models (Bayesian Networks)
, Factorization properties
Conditional independence
- Bayes Ball algorithm
- Undirected Graphical Models (Markov Random Fields)
, Conditional Independence
- Factorization
, Example application: image restoration
, Converting directed into undirected graphs
- Exact Inference in Graphical Models
- Marginalization for undirected graphs
- Inference on a chain
- Inference on a tree
- Message passing formalism
B. Leibe

Recap: Directed Graphical Models

- Chains of nodes:

, Knowledge about a is expressed by the prior probability: $p(a)$
, Dependencies are expressed through conditional probabilities:

$$
p(b \mid a), p(c \mid b)
$$

, Joint distribution of all three variables:

$$
\begin{aligned}
p(a, b, c) & =p(c \mid a, b) p(a, b) \\
& =p(c \mid b) p(b \mid a) p(a)
\end{aligned}
$$

Slide credit: Bernt Schiele. Stefan Roth B. Leibe

- Key components

Recap: Graphical Models

- Two basic kinds of graphical models
, Directed graphical models or Bayesian Networks
, Undirected graphical models or Markov Random Fields
, Nodes
Random variables
, Edges
Directed or undirected

Directed graphical model graphical model Undirected
, The value of a random variable may be known or unknown.unknownknown
Slide credit: Bernt Schiele
B. Leibe

Recap: Directed Graphical Models

- Convergent connections:

RNDHAAGHE UNIVERSIT

. Here the value of c depends on both variables a and b
, This is modeled with the conditional probability:

$$
p(c \mid a, b)
$$

, Therefore, the joint probability of all three variables is given as:

$$
\begin{aligned}
p(a, b, c) & =p(c \mid a, b) p(a, b) \\
& =p(c \mid a, b) p(a) p(b)
\end{aligned}
$$

Recap: Factorization of the Joint Probability

- Computing the joint probability

General factorization
$p(\mathbf{x})=\prod_{k=1}^{K} p\left(x_{k} \mid \mathrm{pa}_{k}\right)$

We can directly read off the factorization of the joint from the network structure.
B. Leibe

Recap: Conditional Independence

- X is conditionally independent of Y given V
, Definition: $\quad X \Perp Y \mid V \Leftrightarrow p(X \mid Y, V)=p(X \mid V)$
, Also: $\quad X \Perp Y \mid V \Leftrightarrow p(X, Y \mid V)=p(X \mid V) p(Y \mid V)$

$$
\begin{aligned}
& \text { Special case: Marginal Independence } \\
& \qquad X \Perp Y \Leftrightarrow X \Perp Y \mid \emptyset \Leftrightarrow p(X, Y)=p(X) p(Y)
\end{aligned}
$$

- Often, we are interested in conditional independence between sets of variables:

$$
\mathcal{X} \Perp \mathcal{Y} \mid \mathcal{V} \Leftrightarrow\{X \Perp Y \mid \mathcal{V}, \forall X \in \mathcal{X} \text { and } \forall Y \in \mathcal{Y}\}
$$

B. Leibe

The "Bayes Ball" Algorithm

- Game rules

An unobserved node ($W \notin \mathcal{V}$) passes through balls from parents, but also bounces back balls from children.

An observed node ($W \in \mathcal{V}$) bounces back balls from parents, but blocks balls from children.

\Rightarrow The Bayes Ball algorithm determines those nodes that are dseparated from the query node.

Example: Bayes Ball

Example: Bayes Ball

- Which nodes are d-separated from G given C and D ?

Topics of This Lecture

```
- Recap: Directed Graphical Models (Bayesian Networks)
    Factorization properties
    Conditional independence
    Bayes Ball algorithm
```

- Undirected Graphical Models (Markov Random Fields)
, Conditional Independence
, Factorization
, Example application: image restoration
, Converting directed into undirected graphs
- Exact Inference in Graphical Models

Marginalization for undirected graphs
Inference on a chain
Inference on a tree
Message passing formalism

Undirected Graphical Models

- Undirected graphical models ("Markov Random Fields")
- Given by undirected graph

- Conditional independence is easier to read off for MRFs.
, Without arrows, there is only one type of neighbors.
, Simpler Markov blanket:

Factorization in MRFs

- Factorization
, Factorization is more complicated in MRFs than in BNs.
- Important concept: maximal cliques
, Clique
Subset of the nodes such that there exists a link between all pairs of nodes in the subset.
, Maximal clique
The biggest possible such clique in a given graph.

Factorization in MRFs

- Joint distribution
, Written as product of potential functions over maximal cliques in the graph:

$$
p(\mathbf{x})=\frac{1}{Z} \prod_{C} \psi_{C}\left(\mathbf{x}_{C}\right)
$$

, The normalization constant Z is called the partition function.

$$
Z=\sum_{\mathbf{x}} \prod_{C} \psi_{C}\left(\mathbf{x}_{C}\right)
$$

- Remarks
- BNs are automatically normalized. But for MRFs, we have to explicitly perform the normalization.
- Presence of normalization constant is major limitation! Evaluation of Z involves summing over $\mathcal{O}\left(K^{M}\right)$ terms for M nodes.

Factorization in MRFs

- Role of the potential functions
, General interpretation
No restriction to potential functions that have a specific probabilistic interpretation as marginals or conditional distributions
, Convenient to express them as exponential functions ("Boltzmann distribution")

$$
\psi_{C}\left(\mathbf{x}_{C}\right)=\exp \left\{-E\left(\mathbf{x}_{C}\right)\right\}
$$

with an energy function E.
, Why is this convenient?
Joint distribution is the product of potentials \Rightarrow sum of energies. We can take the log and simply work with the sums...

Comparison: Directed vs. Undirected Graphs

- Directed graphs (Bayesian networks)
- Better at expressing causal relationships.
- Interpretation of a link:

Conditional probability $p(b \mid a)$.
$a \bigcirc \longrightarrow b$
, Factorization is simple (and result is automatically normalized).
, Conditional independence is more complicated.

- Undirected graphs (Markov Random Fields)
, Better at representing soft constraints between variables.
- Interpretation of a link:
"There is some relationship between a and b ".

- Factorization is complicated (and result needs normalization). - Conditional independence is simple.
- More difficult case: multiple parents

$p(\mathbf{x})=p\left(x_{1}\right) p\left(x_{2}\right) p\left(x_{3}\right) p\left(x_{4} \mid x_{1}, x_{2}, x_{3}\right)$
Need a clique of x_{1}, \ldots, x_{4} to represent this factor!
, Need to introduce additional links ("marry the parents"). \Rightarrow This process is called moralization. It results in the moral graph.

Converting Directed to Undirected Graphs

- General procedure to convert directed \rightarrow undirected

1. Add undirected links to marry the parents of each node.
2. Drop the arrows on the original links \Rightarrow moral graph.
3. Find maximal cliques for each node and initialize all clique potentials to 1 .
4. Take each conditional distribution factor of the original directed graph and multiply it into one clique potential.

- Restriction
, Conditional independence properties are often lost!
- Moralization results in additional connections and larger cliques.

RWIHAACFIER
Converting Directed to Undirected Graphs

- Simple case: chain

\Rightarrow We can directly replace the directed links by undirected ones.
Slide adanted from Chris Bisho B. Leibe 34

Inference in Graphical Models

- Example 1:

Goal: compute the marginals

$$
\begin{aligned}
& p(a)=\sum_{b, c} p(a) p(b \mid a) p(c \mid b) \\
& p(b)=\sum_{a, c} p(a) p(b \mid a) p(c \mid b)
\end{aligned}
$$

- Example 2:

$$
\begin{aligned}
p\left(a \mid b=b^{\prime}\right) & =\sum_{c} p(a) p\left(b=b^{\prime} \mid a\right) p\left(c \mid b=b^{\prime}\right) \\
& =p(a) p\left(b=b^{\prime} \mid a\right) \\
p\left(c \mid b=b^{\prime}\right) & =\sum_{a} p(a) p\left(b=b^{\prime} \mid a\right) p\left(c \mid b=b^{\prime}\right) \\
& =p\left(c \mid b=b^{\prime}\right)
\end{aligned}
$$

Inference in Graphical Models

- Inference - General definition

Evaluate the probability distribution over some set of variables, given the values of another set of variables (=observations).

- Example: $p(A, B, C, D, E)=p(A) p(B) p(C \mid A, B) p(D \mid B, C) p(E \mid C, D)$
- How can we compute $p(A \mid C=c)$?
, Idea:

$$
p(A \mid C=c)=\frac{p(A, C=c)}{p(C=c)}
$$

Slide credit:Zoubin Gharahmani_ B. Leibe

Inference in Graphical Models

> We know $$
p(A, B, C, D, E)=p(A) p(B) p(C \mid A, B) p(D \mid B, C) p(E \mid C, D)
$$

- More efficient method for $p(A \mid C=c)$:

$$
\begin{aligned}
& \qquad \begin{array}{l}
p(A, C=c)=\sum_{B, D, E} p(A) p(B) p(C=c \mid A, B) p(D \mid B, C=c) p(E \mid C=c, D) \\
=\sum_{B} p(A) p(B) p(C=c \mid A, B) \underbrace{\sum_{D} p(D \mid B, C=c)}_{=1} \underbrace{\sum_{E} p(E \mid C=c, D)}_{=1} \\
=\sum_{B} p(A) p(B) p(C=c \mid A, B) \\
\text { 4 operations }
\end{array} \\
& \text { Rest stays the same: } \quad \text { Total: 4+2+2 = 8 operations } \\
& \begin{array}{l}
\text { Strategy: Use the conditional independence in a graph to } \\
\text { perform efficient inference. } \\
\Rightarrow \text { For singly connected graphs, exponential gains in efficiency! }
\end{array} \\
& \text { S. Leibe }
\end{aligned}
$$

Computing Marginals

- How do we apply graphical models?

Given some observed variables, we want to compute distributions of the unobserved variables.
In particular, we want to compute
 marginal distributions, for example $p\left(x_{4}\right)$.

- How can we compute marginals?
, Classical technique: sum-product algorithm by Judea Pearl.
In the context of (loopy) undirected models, this is also called (loopy) belief propagation [Weiss, 1997]
- Basic idea: message-passing.

Inference in Graphical Models

- Computing $p(A \mid C=c)$...

We know $p(A, B, C, D, E)=p(A) p(B) p(C \mid A, B) p(D \mid B, C) p(E \mid C, D)$

- Assume each variable is binary.
- Naïve approach: Two possible values for each $\Rightarrow 2^{4}$ terms

Total: $16+2+2=20$ operations

RNIMHAAGHE
UNVERSIT

Inference on a Chain

- Chain graph

- Joint probability

$$
p(\mathbf{x})=\frac{1}{Z} \psi_{1,2}\left(x_{1}, x_{2}\right) \psi_{2,3}\left(x_{2}, x_{3}\right) \cdots \psi_{N-1, N}\left(x_{N-1}, x_{N}\right)
$$

- Marginalization

$$
p\left(x_{n}\right)=\sum_{x_{1}} \cdots \sum_{x_{n-1}} \sum_{x_{n+1}} \cdots \sum_{x_{N}} p(\mathbf{x})
$$

, Idea: Split the computation into two parts ("messages").

$$
p\left(x_{n}\right)=\frac{1}{Z} \underbrace{\left[\sum_{x_{n-1}} \psi_{n-1, n}\left(x_{n-1}, x_{n}\right) \cdots\left[\sum_{x_{1}} \psi_{1,2}\left(x_{1}, x_{2}\right)\right] \cdots\right]}_{\mu_{\alpha}\left(x_{n}\right)}
$$

$$
\underbrace{\left[\sum_{x_{n+1}} \psi_{n, n+1}\left(x_{n}, x_{n+1}\right) \cdots\left[\sum_{x_{N}} \psi_{N-1, N}\left(x_{N-1}, x_{N}\right)\right] \cdots\right]}_{\mu_{\beta}\left(x_{n}\right)}
$$

, Until we reach the leaf nodes...

$$
\mu_{\alpha}\left(x_{2}\right)=\sum_{x_{1}} \psi_{1,2}\left(x_{1}, x_{2}\right) \quad \mu_{\beta}\left(x_{N-1}\right)=\sum_{x_{N}} \psi_{N-1, N}\left(x_{N-1}, x_{N}\right)
$$

- Interpretation

We pass messages from the two ends towards the query node x_{n}.
, We still need the normalization constant Z.
This can be easily obtained from the marginals:

$$
Z=\sum_{x_{n}} \mu_{\alpha}\left(x_{n}\right) \mu_{\beta}\left(x_{n}\right)
$$

B. Leibe

Inference on Trees

- Let's next assume a tree graph.
- Example:

We are given the following joint distribution:
$p(A, B, C, D, E)=\frac{1}{Z} f_{1}(A, B) \cdot f_{2}(B, D) \cdot f_{3}(C, D) \cdot f_{4}(D, E)$

- Assume we want to know the marginal $p(E)$...

Summary: Inference on a Chain

NWIHAMCFE

- To compute local marginals:
, Compute and store all forward messages $\mu_{\alpha}\left(x_{n}\right)$.
, Compute and store all backward messages $\mu_{\beta}\left(x_{n}\right)$.
, Compute Z at any node x_{m}.
, Compute

$$
p\left(x_{n}\right)=\frac{1}{Z} \mu_{\alpha}\left(x_{n}\right) \mu_{\beta}\left(x_{n}\right)
$$

for all variables required.

- Inference through message passing
, We have thus seen a first message passing algorithm.
- How can we generalize this?

Slide adapted from Chris Bishop B. Leibe

Inference on Trees

- Strategy
- Marginalize out all other variables by summing over them.
, Then rearrange terms:

Marginalization with Messages

- Use messages to express the marginalization: \bigcirc^{A}

$$
\begin{aligned}
m_{A \rightarrow B} & =\sum_{A} f_{1}(A, B) \quad m_{C \rightarrow D}=\sum_{C} f_{3}(C, D) \\
m_{B \rightarrow D} & =\sum_{B} f_{2}(B, D) m_{A \rightarrow B}(B) \\
m_{D \rightarrow E} & f_{4}(D, E) m_{B \rightarrow D}(D) m_{C \rightarrow D}(D) \\
p(E) & \frac{1}{Z}\left(\sum_{D} f_{4}(D, E) \cdot\left(\sum_{C} f_{3}(C, D)\right) \cdot\left(\sum_{B} f_{2}(B, D) \cdot\left(\sum_{A} f_{1}(A, B)\right)\right)\right) \\
= & \frac{1}{Z}\left(\sum_{D} f_{4}(D, E) \cdot\left(\sum_{C} f_{3}(C, D)\right) \cdot\left(\sum_{B} f_{2}(B, D) \cdot m_{A \rightarrow B}(B)\right)\right)
\end{aligned}
$$

Marginalization with Messages

- Use messages to express the marginalization: $\bigcirc A$ $m_{A \rightarrow B}=\sum_{A} f_{1}(A, B) \quad m_{C \rightarrow D}=\sum_{C} f_{3}(C, D)$ $m_{B \rightarrow D}=\sum_{B}^{A} f_{2}(B, D) m_{A \rightarrow B}(B)$
$m_{D \rightarrow E}=\sum_{D}^{B} f_{4}(D, E) m_{B \rightarrow D}(D) m_{C \rightarrow D}(D)$
 $p(E)=\frac{1}{Z}\left(\sum_{D} f_{4}(D, E) \cdot\left(\sum_{C} f_{3}(C, D)\right) \cdot\left(\sum_{B} f_{2}(B, D) \cdot\left(\sum_{A} f_{1}(A, B)\right)\right)\right)$

$$
=\frac{1}{Z}\left(\sum_{D} f_{4}(D, E) \cdot\left(\sum_{C} f_{3}(C, D)\right) \cdot m_{B \rightarrow D}(D)\right)
$$

Marginalization with Messages

- Use messages to express the marginalization: \bigcirc^{A}

$$
\begin{aligned}
& m_{A \rightarrow B}=\sum_{A} f_{1}(A, B) \quad m_{C \rightarrow D}=\sum_{C} f_{3}(C, D) \\
& m_{B \rightarrow D}=\sum_{B \rightarrow E} f_{2}(B, D) m_{A \rightarrow B}(B) \\
& m_{D} f_{4}(D, E) m_{B \rightarrow D}(D) m_{C \rightarrow D}(D) \\
& \quad p(E)=\frac{1}{Z}\left(\sum_{D} f_{4}(D, E) \cdot\left(\sum_{C} f_{3}(C, D)\right) \cdot\left(\sum_{B} f_{2}(B, D) \cdot\left(\sum_{A} f_{1}(A, B)\right)\right)\right) \\
& =\frac{1}{Z}\left(\sum_{D} f_{4}(D, E) \cdot m_{C \rightarrow D}(D) \cdot m_{B \rightarrow D}(D)\right)
\end{aligned}
$$

Inference on Trees

- We can generalize this for all tree graphs.
- Root the tree at the variable that we want to compute the marginal of.
- Start computing messages at the leaves.
- Compute the messages for all nodes for which all incoming messages have already been computed.
Repeat until we reach the root.
- If we want to compute the marginals for all possible nodes (roots), we can reuse some of the messages.
, Computational expense linear in the number of nodes.

RWIIHAMCH

References and Further Reading- A thorough introduction to Graphical Models in generaland Bayesian Networks in particular can be found inChapter 8 of Bishop's book.

Christopher M. Bishop
Pattern Recognition and Machine Learning Springer, 2006

