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Course Outline 

• Fundamentals (2 weeks) 

 Bayes Decision Theory 

 Probability Density Estimation 
 

• Discriminative Approaches (5 weeks) 

 Linear Discriminant Functions 

 Statistical Learning Theory & SVMs 

 Ensemble Methods & Boosting 

 Decision Trees & Randomized Trees 

 Regression Problems 
 

• Generative Models (4 weeks) 

 Bayesian Networks 

 Markov Random Fields 

 Exact Inference 
 B. Leibe 
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Topics of This Lecture 

• Graphical Models 
 Introduction 

 

• Directed Graphical Models (Bayesian Networks) 
 Notation 

 Conditional probabilities 

 Computing the joint probability 

 Factorization 

 Conditional Independence 

 D-Separation 
 

 Explaining away 
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Graphical Models – What and Why? 

• It’s got nothing to do with graphics! 
 

• Probabilistic graphical models 

 Marriage between probability theory and graph theory. 

– Formalize and visualize the structure of a probabilistic model 

through a graph. 

– Give insights into the structure of a probabilistic model. 

– Find efficient solutions using methods from graph theory. 
 

 Natural tool for dealing with uncertainty and complexity. 

 Becoming increasingly important for the design and analysis of 

machine learning algorithms. 

 Often seen as new and promising way to approach problems 

related to Artificial Intelligence. 

4 
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Graphical Models 

• There are two basic kinds of graphical models 

 Directed graphical models or Bayesian Networks 

 Undirected graphical models or Markov Random Fields 

 

• Key components 
 

 Nodes 
 

 

 

 Edges 

– Directed or undirected 

5 
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Directed 

graphical model 

Undirected 

graphical model 
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Topics of This Lecture 

• Graphical Models 
 Introduction 

 

• Directed Graphical Models (Bayesian Networks) 
 Notation 

 Conditional probabilities 

 Computing the joint probability 

 Factorization 

 Conditional Independence 

 D-Separation 
 

 Explaining away 
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Example: Wet Lawn 

• Mr. Holmes leaves his house. 

 He sees that the lawn in front of his house is wet. 

 This can have several reasons: Either it rained, or Holmes forgot 

to shut the sprinkler off. 

 Without any further information, the probability of both events 

(rain, sprinkler) increases (knowing that the lawn is wet). 

 

• Now Holmes looks at his neighbor’s lawn 

 The neighbor’s lawn is also wet. 

 This information increases the probability that it rained. And it 

lowers the probability for the sprinkler.  

 

 How can we encode such probabilistic relationships? 

7 
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Example: Wet Lawn 

• Directed graphical model / Bayesian network: 

8 
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Neighbor‘s 

lawn is wet 

Holmes‘s 

lawn is wet 

Rain Sprinkler 

“Rain can 

cause both 

lawns to be wet.” 
“Holmes’ lawn may 

be wet due to 

his sprinkler, but 

his neighbor’s 

lawn may not.” 

Slide credit: Bernt Schiele, Stefan Roth 
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Directed Graphical Models 

• or Bayesian networks 

 Are based on a directed graph. 

 The nodes correspond to  

the random variables. 

 The directed edges correspond to  

the (causal) dependencies among the variables. 

– The notion of a causal nature of the dependencies is somewhat hard 

to grasp. 

– We will typically ignore the notion of causality here. 
 

 The structure of the network qualitatively describes the 

dependencies of the random variables. 

9 
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Neighbor‘s 

lawn is wet 

Holmes‘s 

lawn is wet 

Rain Sprinkler 
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Directed Graphical Models 

• Nodes or random variables 

 We usually know the range of the random variables. 

 The value of a variable may be known or unknown. 

 If they are known (observed), we usually shade the node: 

 

 

 

• Examples of variable nodes 

 Binary events:  Rain (yes / no), sprinkler (yes / no) 

 Discrete variables:  Ball is red, green, blue, … 

 Continuous variables:  Age of a person, … 

10 
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unknown known 

Slide credit: Bernt Schiele, Stefan Roth 
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Directed Graphical Models 

• Most often, we are interested in quantitative statements 

 i.e. the probabilities (or densities) of the variables. 

– Example: What is the probability that it rained? … 

 

 These probabilities change if we have  

– more knowledge,  

– less knowledge, or  

– different knowledge  

 about the other variables in the network. 
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Directed Graphical Models 

• Simplest case: 

 
 

• This model encodes 

 The value of b depends on the value of a. 
 

 This dependency is expressed through the conditional 

probability: 

 

 Knowledge about a is expressed through the prior probability: 

 
 

 The whole graphical model describes the joint probability of  

a and b: 
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p(bja)

p(a)

p(a; b) = p(bja)p(a)

Slide credit: Bernt Schiele, Stefan Roth 
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Directed Graphical Models 

• If we have such a representation, we can derive all 

other interesting probabilities from the joint. 

 E.g. marginalization 

 

 

 

 

 

 
 

 With the marginals, we can also compute other conditional 

probabilities: 
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p(a) =
X

b

p(a; b) =
X

b

p(bja)p(a)

p(b) =
X

a

p(a; b) =
X

a

p(bja)p(a)

p(ajb) = p(a; b)

p(b)
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Directed Graphical Models 

• Chains of nodes: 

 

 

 As before, we can compute 

 
 

 But we can also compute the joint distribution of all three 

variables: 

 

 
 

 We can read off from the graphical representation that variable 

c does not depend on a, if b is known. 

– How? What does this mean? 
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p(a; b) = p(bja)p(a)

p(a; b; c) = p(cja; b)p(a; b)

= p(cjb)p(bja)p(a)
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Directed Graphical Models 

• Convergent connections: 

 

 

 

 

 Here the value of c depends on both variables a and b. 

 This is modeled with the conditional probability: 

 

 

 Therefore, the joint probability of all three variables is given as: 
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p(a; b; c) = p(cja; b)p(a; b)

= p(cja; b)p(a)p(b)

p(cja; b)

Slide credit: Bernt Schiele, Stefan Roth 
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Example 

16 
B. Leibe Slide credit: Bernt Schiele, Stefan Roth 

Rain Sprinkler 

Wet grass 

Cloudy 

p(C)

p(W jR;S)

p(SjC) p(RjC)

Let’s see what such a 

Bayesian network  

could look like… 
 

 Structure? 

 Variable types? Binary. 

 Conditional probabilities? 
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Example 

• Evaluating the Bayesian network… 

 We start with the simple product rule: 

 

 

 

 This means that we can rewrite the joint probability of the 

variables as 

 
 

 But the Bayesian network tells us that 

 
 

– I.e. rain is independent of sprinkler (given the cloudyness). 

– Wet grass is independent of the cloudiness (given the state of the 

sprinkler and the rain). 

 This is a factorized representation of the joint probability. 
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p(C;S;R;W) = p(C)p(SjC)p(RjC;S)p(WjC;S;R)

p(C;S;R;W) = p(C)p(SjC)p(RjC)p(WjS;R)
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Directed Graphical Models 

• A general directed graphical model (Bayesian network) 

consists of 

 A set of variables: 

 

 A set of directed edges between the variable nodes. 

 

 The variables and the directed edges define an acyclic graph. 

– Acyclic means that there is no directed cycle in the graph. 

 

 For each variable xi with parent nodes pai in the graph, we 

require knowledge of a conditional probability: 

18 
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U = fx1; : : : ; xng

p(xijfxjjj 2 paig)

Slide credit: Bernt Schiele, Stefan Roth 
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Directed Graphical Models 

• Given 

 Variables: 

 Directed acyclic graph: 

– V: nodes = variables, E: directed edges 

 

 We can express / compute the joint probability as 

 

 
 

 where pai denotes the parent nodes of xi. 

 We can express the joint as a product of all the conditional 

distributions from the parent-child relations in the graph. 

 We obtain a factorized representation of the joint. 
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U = fx1; : : : ; xng
G = (V;E)

p(x1; : : : ; xn) =

nY

i=1

p (xijfxjjj 2 paig)
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Directed Graphical Models 

• Exercise: Computing the joint probability 

20 
B. Leibe Image source: C. Bishop, 2006 

p(x1; : : : ; x7) = ?
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Directed Graphical Models 

• Exercise: Computing the joint probability 

21 
B. Leibe Image source: C. Bishop, 2006 

p(x1; : : : ; x7) = p(x1)p(x2)p(x3) : : :
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Directed Graphical Models 

• Exercise: Computing the joint probability 

22 
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p(x1; : : : ; x7) = p(x1)p(x2)p(x3)p(x4jx1; x2; x3)
: : :

Image source: C. Bishop, 2006 
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Directed Graphical Models 

• Exercise: Computing the joint probability 

23 
B. Leibe 

p(x1; : : : ; x7) = p(x1)p(x2)p(x3)p(x4jx1; x2; x3)
p(x5jx1; x3) : : :

Image source: C. Bishop, 2006 
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Directed Graphical Models 

• Exercise: Computing the joint probability 

24 
B. Leibe 

p(x1; : : : ; x7) = p(x1)p(x2)p(x3)p(x4jx1; x2; x3)
p(x5jx1; x3)p(x6jx4) : : :

Image source: C. Bishop, 2006 
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Directed Graphical Models 

• Exercise: Computing the joint probability 

25 
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General factorization 

Image source: C. Bishop, 2006 

p(x1; : : : ; x7) = p(x1)p(x2)p(x3)p(x4jx1; x2; x3)
p(x5jx1; x3)p(x6jx4)p(x7jx4; x5)

We can directly read off the factorization 

of the joint from the network structure! 
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Factorized Representation 

• Reduction of complexity 

 Joint probability of n binary variables requires us to represent 

values by brute force 

 

 

 

 The factorized form obtained from the graphical model only 

requires 

 

 

– k: maximum number of parents of a node. 
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O(2n) terms 

O(n ¢ 2k) terms 
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Example: Classifier Learning 

• Bayesian classifier learning 

 Given N training examples x = {x1,…,xN} with target values t 

 We want to optimize the classifier y with parameters w. 
 

 We can express the joint probability of t and w: 

 

 
 

 Corresponding Bayesian network: 
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“Plate” 
(short notation for N copies) 

Short notation: 
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Conditional Independence 

• Suppose we have a joint density with 4 variables. 

 

 

 For example, 4 subsequent words in a sentence: 
 

x0 = “Machine”,   x1 = “learning”,   x2 = “is”,    x3 = “fun” 

 

• The product rule tells us that we can rewrite the joint 

density: 
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p(x0; x1; x2; x3)

p(x0; x1; x2; x3) = p(x3jx0; x1; x2)p(x0; x1; x2)

= p(x3jx0; x1; x2)p(x2jx0; x1)p(x1jx0)p(x0)

= p(x3jx0; x1; x2)p(x2jx0; x1)p(x0; x1)
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Conditional Independence 

29 
B. Leibe Slide credit: Bernt Schiele, Stefan Roth 

 

 

• Now, suppose we make a simplifying assumption 

 Only the previous word is what matters, i.e. given the previous 

word we can forget about every word before the previous one. 

 E.g.   p(x3|x0,x1,x2) = p(x3|x2)   or   p(x2|x0,x1) = p(x2|x1) 

 

 Such assumptions are called conditional independence 

assumptions. 

p(x0; x1; x2; x3) = p(x3jx0; x1; x2)p(x2jx0; x1)p(x1jx0)p(x0)

 It’s the edges that are missing in the graph that are important!  

    They encode the simplifying assumptions we make. 
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Conditional Independence 

• The notion of conditional independence means that 

 Given a certain variable, other variables become independent. 
 

 More concretely here: 

 
 

– This means that x3 ist conditionally independent from x0 and x1 

given x2. 

 
 

– This means that x2 is conditionally independent from x0 given x1. 
 

 Why is this? 
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p(x3jx0; x1; x2) = p(x3jx2)

p(x2jx0; x1) = p(x2jx1)

p(x0; x2jx1) = p(x2jx0; x1)p(x0jx1)
= p(x2jx1)p(x0jx1)

independent given x1 
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Conditional Independence – Notation  

• X is conditionally independent of Y given V  

 Equivalence: 

 

 Also: 

 

 Special case: Marginal Independence 

 

 

 Often, we are interested in conditional independence between 

sets of variables: 
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Conditional Independence 

• Directed graphical models are not only useful… 

 Because the joint probability is factorized into a product of 

simpler conditional distributions. 

 But also, because we can read off the conditional independence 

of variables. 

 

• Let’s discuss this in more detail… 
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First Case: Divergent (“Tail-to-Tail”) 

• Divergent model 

 

 
 

 Are a and b independent? 
 

 Marginalize out c: 

 

 

 

 In general, this is not equal to p(a)p(b). 

 The variables are not independent. 
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p(a; b) =
X

c

p(a; b; c) =
X

c

p(ajc)p(bjc)p(c)
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First Case: Divergent (“Tail-to-Tail”) 

• What about now? 

 

 
 

 Are a and b independent? 
 

 Marginalize out c: 

 

 

 

 If there is no undirected connection between two variables, 

then they are independent. 
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p(a; b) =
X

c

p(a; b; c) =
X

c

p(ajc)p(b)p(c) = p(a)p(b)
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First Case: Divergent (“Tail-to-Tail”) 

• Let’s return to the original graph, but now assume that 
we observe the value of c: 

 

 
 

 

 The conditional probability is given by: 

 

 

 

 If c becomes known, the variables a and b become conditionally 

independent. 
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p(a; bjc) = p(a; b; c)

p(c)
=

p(ajc)p(bjc)p(c)
p(c)

= p(ajc)p(bjc)
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Second Case: Chain (“Head-to-Tail”) 

• Let us consider a slightly different graphical model: 

 

 

 Are a and b independent?  

 

 

 

 If c becomes known, are a and b conditionally independent? 
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p(a; b) =
X

c

p(a; b; c) =
X

c

p(bjc)p(cja)p(a) = p(bja)p(a)

p(a; bjc) = p(a; b; c)

p(c)
=

p(a)p(cja)p(bjc)
p(c)

= p(ajc)p(bjc)

Chain graph 

No! 

Yes! 
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Third Case: Convergent (“Head-to-Head”) 

• Let’s look at a final case: Convergent graph 

 

 
 

 Are a and b independent?   
 

 

 

 

 This is very different from the previous cases. 

 Even though a and b are connected, they are independent. 
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p(a; b) =
X

c

p(a; b; c) =
X

c

p(cja; b)p(a)p(b) = p(a)p(b)

YES! 

Image source: C. Bishop, 2006 
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Third Case: Convergent (“Head-to-Head”) 

• Now we assume that c is observed 

 

 
 

 Are a and b independent?   
 

 

 

 

 In general, they are not conditionally independent. 

– This also holds when any of c’s descendants is observed. 

 This case is the opposite of the previous cases! 
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NO! 

p(a; bjc) = p(a; b; c)

p(c)
=

p(a)p(b)p(cja; b)

p(c)

Image source: C. Bishop, 2006 
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Summary: Conditional Independence 

• Three cases 

 Divergent (“Tail-to-Tail”) 

– Conditional independence when c is observed. 

 
 

 Chain (“Head-to-Tail”) 

– Conditional independence when c is observed. 

 
 

 Convergent (“Head-to-Head”) 

– Conditional independence when neither c, 

nor any of its descendants are observed. 
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D-Separation 

• Definition 

 Let A, B, and C be non-intersecting subsets of nodes in a 

directed graph. 

 A path from A to B is blocked if it contains a node such that 

either 

– The arrows on the path meet either head-to-tail or  

tail-to-tail at the node, and the node is in the set C, or 

– The arrows meet head-to-head at the node, and neither  

the node, nor any of its descendants, are in the set C. 

 If all paths from A to B are blocked, A is said to be d-separated 

from B by C.  
 

• If A is d-separated from B by C, the joint distribution 

over all variables in the graph satisfies                 . 

 Read: “A is conditionally independent of B given C.” 
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D-Separation: Example 

• Exercise: What is the relationship between a and b? 

41 
B. Leibe Image source: C. Bishop, 2006 
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Explaining Away 

• Let’s look at Holmes’ example again: 

 

 

 

 

 

 

 

 Observation “Holmes’ lawn is wet” increases the probability of 

both “Rain” and “Sprinkler”. 

42 
B. Leibe Slide adapted from Bernt Schiele, Stefan Roth 

Neighbor‘s 

lawn is wet 

Holmes‘s 

lawn is wet 

Rain Sprinkler 
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Explaining Away 

• Let’s look at Holmes’ example again: 

 

 

 

 

 

 

 

 Observation “Holmes’ lawn is wet” increases the probability of 

both “Rain” and “Sprinkler”. 

 Also observing “Neighbor’s lawn is wet” decreases the 

probability for “Sprinkler”. (They’re conditionally dependent!) 

The “Sprinkler” is explained away. 
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Neighbor‘s 

lawn is wet 

Holmes‘s 

lawn is wet 

Rain Sprinkler 
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Intuitive View: The “Bayes Ball” Algorithm 

 

 

 
 

 

 

• Game 

 Can you get a ball from X to Y without being blocked by V? 

 Depending on its direction and the previous node, the ball can 

– Pass through (from parent to all children, from child to all parents) 

– Bounce back (from any parent/child to all parents/children) 

– Be blocked 

 

44 
B. Leibe Slide adapted from Zoubin Gharahmani 

R.D. Shachter, Bayes-Ball: The Rational Pastime (for Determining Irrelevance 

 and Requisite Information in Belief Networks and Influence Diagrams), UAI’98, 1998 

P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

M
a
c
h

in
e
 L

e
a
rn

in
g

, 
S

u
m

m
e
r 

‘1
5
 

The “Bayes Ball” Algorithm 

• Game rules 

 An unobserved node (W  V) passes through balls from parents, 

but also bounces back balls from children. 

 

 
 

 An observed node (W 2 V) bounces back balls from parents, but 

blocks balls from children. 

 

 

 

 The Bayes Ball algorithm determines those nodes that are d-

separated from the query node. 
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Example: Bayes Ball 

 

 

 

 

 

 

 

 

 

• Which nodes are d-separated from G given C and D? 
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Example: Bayes Ball 

 

 

 

 

 

 

 

 

 

• Which nodes are d-separated from G given C and D? 
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Example: Bayes Ball 

 

 

 

 

 

 

 

 

 

• Which nodes are d-separated from G given C and D? 
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Query 
Rule: 

http://www.gatsby.ucl.ac.uk/~zoubin/course03/BayesBall.pdf
http://www.gatsby.ucl.ac.uk/~zoubin/course03/BayesBall.pdf
http://www.gatsby.ucl.ac.uk/~zoubin/course03/BayesBall.pdf
http://www.gatsby.ucl.ac.uk/~zoubin/course03/BayesBall.pdf
http://www.gatsby.ucl.ac.uk/~zoubin/course03/BayesBall.pdf
http://www.gatsby.ucl.ac.uk/~zoubin/course03/BayesBall.pdf
http://www.gatsby.ucl.ac.uk/~zoubin/course03/BayesBall.pdf
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Example: Bayes Ball 

 

 

 

 

 

 

 

 

 

• Which nodes are d-separated from G given C and D? 

49 
B. Leibe 

A 

D 

B 

E 

C 

G 

F 

Query 
Rule: 

P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

M
a
c
h

in
e
 L

e
a
rn

in
g

, 
S

u
m

m
e
r 

‘1
5

 

Example: Bayes Ball 

 

 

 

 

 

 

 

 

 

• Which nodes are d-separated from G given C and D? 

50 
B. Leibe 

A 

D 

B 

E 

C 

G 

F 

Query 
Rules: 

P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

M
a
c
h

in
e
 L

e
a
rn

in
g

, 
S

u
m

m
e
r 

‘1
5
 

Example: Bayes Ball 

 

 

 

 

 

 

 

 

 

• Which nodes are d-separated from G given C and D? 

 F is d-separated from G given C and D. 
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The Markov Blanket 

 

 

 

 

 

 

 

• Markov blanket of a node xi  

 Minimal set of nodes that isolates xi from the rest of the graph. 

 This comprises the set of 

– Parents, 

– Children, and 

– Co-parents of xi. 
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This is what we have to watch out for! 

Image source: C. Bishop, 2006 
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Summary 

• Graphical models 

 Marriage between probability theory  

and graph theory. 

 Give insights into the structure of a  

probabilistic model. 

– Direct dependencies between variables. 

– Conditional independence 

 Allow for efficient factorization of the joint. 

– Factorization can be read off directly from the graph. 

– We will use this for efficient inference algorithms! 

 Capability to explain away hypotheses by new evidence. 
 

• Next lecture 

 Undirected graphical models (Markov Random Fields) 

 Efficient methods for performing exact inference. 
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References and Further Reading 

• A thorough introduction to Graphical Models in general 

and Bayesian Networks in particular can be found in 

Chapter 8 of Bishop’s book.  
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