Machine Learning - Lecture 13

Introduction to Graphical Models
16.06.2015

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de
leibe@vision.rwth-aachen.de

Course Outline

- Fundamentals (2 weeks)
, Bayes Decision Theory
- Probability Density Estimation
- Discriminative Approaches (5 weeks)
, Linear Discriminant Functions
, Statistical Learning Theory \& SVMs
, Ensemble Methods \& Boosting
, Decision Trees \& Randomized Trees
Regression Problems
- Generative Models (4 weeks)
, Bayesian Networks
, Markov Random Fields
, Exact Inference

Topics of This Lecture

- Graphical Models

Introduction

- Directed Graphical Models (Bayesian Networks)
- Notation
- Conditional probabilities
. Computing the joint probability
- Factorization
- Conditional Independence
, D-Separation
, Explaining away

Graphical Models - What and Why?

- It's got nothing to do with graphics!
- Probabilistic graphical models
. Marriage between probability theory and graph theory.
Formalize and visualize the structure of a probabilistic model through a graph.
Give insights into the structure of a probabilistic model. Find efficient solutions using methods from graph theory.
, Natural tool for dealing with uncertainty and complexity.
, Becoming increasingly important for the design and analysis of machine learning algorithms.
, Often seen as new and promising way to approach problems related to Artificial Intelligence.

RWIHAACHE

Graphical Models

- There are two basic kinds of graphical models
, Directed graphical models or Bayesian Networks
, Undirected graphical models or Markov Random Fields
- Key components

, Nodes

, Edges
Directed or undirected

Directed graphical model

Topics of This Lecture

- Graphical Models

Introduction

- Directed Graphical Models (Bayesian Networks)
, Notation
- Conditional probabilities
, Computing the joint probability
, Factorization
, Conditional Independence
, D-Separation
, Explaining away

Example: Wet Lawn

- Mr. Holmes leaves his house.
- He sees that the lawn in front of his house is wet.

This can have several reasons: Either it rained, or Holmes forgot to shut the sprinkler off.
Without any further information, the probability of both events (rain, sprinkler) increases (knowing that the lawn is wet).

- Now Holmes looks at his neighbor's lawn
, The neighbor's lawn is also wet.
- This information increases the probability that it rained. And it lowers the probability for the sprinkler.
\Rightarrow How can we encode such probabilistic relationships?

Example: Wet Lawn

- Directed graphical model / Bayesian network:

Directed Graphical Models

- or Bayesian networks
- Are based on a directed graph.
- The nodes correspond to
the random variables.
The directed edges correspond to

Directed Graphical Models

- Nodes or random variables
, We usually know the range of the random variables.
, The value of a variable may be known or unknown.
, If they are known (observed), we usually shade the node:
the (causal) dependencies among the variables.
The notion of a causal nature of the dependencies is somewhat hard to grasp.
We will typically ignore the notion of causality here.
- The structure of the network qualitatively describes the dependencies of the random variables.

Directed Graphical Models

- Most often, we are interested in quantitative statements
, i.e. the probabilities (or densities) of the variables.
Example: What is the probability that it rained? ...
- These probabilities change if we have
more knowledge,
less knowledge, or
different knowledge
about the other variables in the network.

Directed Graphical Models

- Simplest case:

- This model encodes
, The value of b depends on the value of a.
, This dependency is expressed through the conditional probability:

$$
p(b \mid a)
$$

, Knowledge about a is expressed through the prior probability: $p(a)$

- The whole graphical model describes the joint probability of a and b :

$$
p(a, b)=p(b \mid a) p(a)
$$

Directed Graphical Models

- If we have such a representation, we can derive all other interesting probabilities from the joint.
, E.g. marginalization

$$
\begin{aligned}
& p(a)=\sum_{b} p(a, b)=\sum_{b} p(b \mid a) p(a) \\
& p(b)=\sum_{a} p(a, b)=\sum_{a} p(b \mid a) p(a)
\end{aligned}
$$

With the marginals, we can also compute other conditional probabilities:

$$
p(a \mid b)=\frac{p(a, b)}{p(b)}
$$

Directed Graphical Models

- Chains of nodes:

- As before, we can compute

$$
p(a, b)=p(b \mid a) p(a)
$$

$p(a, b)=p(b \mid a) p(a)$
, But we can also compute the joint distribution of all three variables:

$$
\begin{aligned}
p(a, b, c) & =p(c \mid \phi, b) p(a, b) \\
& =p(c \mid b) p(b \mid a) p(a)
\end{aligned}
$$

We can read off from the graphical representation that variable c does not depend on a, if b is known.

How? What does this mean?

Directed Graphical Models

- Convergent connections:

- Here the value of c depends on both variables a and b.
, This is modeled with the conditional probability:

$$
p(c \mid a, b)
$$

, Therefore, the joint probability of all three variables is given as:

$$
\begin{aligned}
p(a, b, c) & =p(c \mid a, b) p(a, b) \\
& =p(c \mid a, b) p(a) p(b)
\end{aligned}
$$

Example

- Evaluating the Bayesian network...
- We start with the simple product rule:

$$
\begin{aligned}
p(a, b, c) & =p(a \mid b, c) p(b, c) \\
& =p(a \mid b, c) p(b \mid c) p(c)
\end{aligned}
$$

Directed Graphical Models

- A general directed graphical model (Bayesian network) consists of
, A set of variables: $U=\left\{x_{1}, \ldots, x_{n}\right\}$
. A set of directed edges between the variable nodes.
This means that we can rewrite the joint probability of the variables as
$p(C, S, R, W)=p(C) p(S \mid C) p\left(R \mid C, \phi^{\prime}\right) p(W \mid \phi, S, R)$
- But the Bayesian network tells us that

$$
p(C, S, R, W)=p(C) p(S \mid C) p(R \mid C) p(W \mid S, R)
$$

The variables and the directed edges define an acyclic graph. Acyclic means that there is no directed cycle in the graph.
, For each variable x_{i} with parent nodes pa_{i} in the graph, we require knowledge of a conditional probability:

$$
p\left(x_{i} \mid\left\{x_{j} \mid j \in \mathrm{pa}_{i}\right\}\right)
$$

- I.e. rain is independent of sprinkler (given the cloudyness).

Wet grass is independent of the cloudiness (given the state of the sprinkler and the rain).
\Rightarrow This is a factorized representation of the joint probability.

Directed Graphical Models

- Exercise: Computing the joint probability

Directed Graphical Models

- Exercise: Computing the joint probability

Directed Graphical Models

- Exercise: Computing the joint probability
$p\left(x_{1}\right) p\left(x_{2}\right) p\left(x_{3}\right) p\left(x_{4} \mid x_{1}, x_{2}, x_{3}\right)$
$p\left(x_{5} \mid x_{1}, x_{3}\right) \ldots$

Directed Graphical Models

- Exercise: Computing the joint probability

Directed Graphical Models

- Exercise: Computing the joint probability

Directed Graphical Models

- Exercise: Computing the joint probability

We can directly read off the factorization of the joint from the network structure!
B. Leibe

Factorized Representation

- Reduction of complexity

Joint probability of n binary variables requires us to represent values by brute force

$$
\mathcal{O}\left(2^{n}\right) \text { terms }
$$

The factorized form obtained from the graphical model only requires

$$
\mathcal{O}\left(n \cdot 2^{k}\right) \text { terms }
$$

$-k$: maximum number of parents of a node.

Example: Classifier Learning

- Bayesian classifier learning

, Given N training examples $\mathbf{x}=\left\{x_{1}, \ldots, x_{N}\right\}$ with target values \mathbf{t}
, We want to optimize the classifier y with parameters \mathbf{w}.
, We can express the joint probability of t and w :

$$
p(\mathbf{t}, \mathbf{w})=p(\mathbf{w}) \prod_{n=1}^{N} p\left(t_{n} \mid y\left(\mathbf{w}, x_{n}\right)\right)
$$

- Corresponding Bayesian network:

Short notation:

(short notation for N copies) 27

Conditional Independence

- Suppose we have a joint density with 4 variables.

$$
p\left(x_{0}, x_{1}, x_{2}, x_{3}\right)
$$

- For example, 4 subsequent words in a sentence:
$x_{0}=$ "Machine", $x_{1}=$ "learning", $x_{2}=$ "is", $x_{3}=$ "fun"
- The product rule tells us that we can rewrite the joint density:

$$
\begin{aligned}
p\left(x_{0}, x_{1}, x_{2}, x_{3}\right) & =p\left(x_{3} \mid x_{0}, x_{1}, x_{2}\right) p\left(x_{0}, x_{1}, x_{2}\right) \\
& =p\left(x_{3} \mid x_{0}, x_{1}, x_{2}\right) p\left(x_{2} \mid x_{0}, x_{1}\right) p\left(x_{0}, x_{1}\right) \\
& =p\left(x_{3} \mid x_{0}, x_{1}, x_{2}\right) p\left(x_{2} \mid x_{0}, x_{1}\right) p\left(x_{1} \mid x_{0}\right) p\left(x_{0}\right)
\end{aligned}
$$

B. Leibe

Conditional Independence

$p\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=p\left(x_{3} \mid x_{0}, x_{1}, x_{2}\right) p\left(x_{2} \mid x_{0}, x_{1}\right) p\left(x_{1} \mid x_{0}\right) p\left(x_{0}\right)$

- Now, suppose we make a simplifying assumption - Only the previous word is what matters, i.e. given the previous word we can forget about every word before the previous one.
, E.g. $p\left(x_{3} \mid x_{0}, x_{1}, x_{2}\right)=p\left(x_{3} \mid x_{2}\right)$ or $p\left(x_{2} \mid x_{0}, x_{1}\right)=p\left(x_{2} \mid x_{1}\right)$
- Such assumptions are called conditional independence assumptions.

Conditional Independence

- The notion of conditional independence means that
, Given a certain variable, other variables become independent.
- More concretely here:

$$
p\left(x_{3} \mid x_{0}, x_{1}, x_{2}\right)=p\left(x_{3} \mid x_{2}\right)
$$

This means that x_{3} ist conditionally independent from x_{0} and x_{1}
given x_{2}.

$$
p\left(x_{2} \mid x_{0}, x_{1}\right)=p\left(x_{2} \mid x_{1}\right)
$$

This means that x_{2} is conditionally independent from x_{0} given x_{1}.
. Why is this?
$p\left(x_{0}, x_{2} \mid x_{1}\right)=p\left(x_{2} \mid \not \mathscr{L}_{0}, x_{1}\right) p\left(x_{0} \mid x_{1}\right)$
$=p\left(x_{2} \mid x_{1}\right) p\left(x_{0} \mid x_{1}\right)$
independent given x_{1}

- Directed graphical models are not only useful...

Because the joint probability is factorized into a product of simpler conditional distributions.

- Let's discuss this in more detail...

First Case: Divergent ("Tail-to-Tail")

- Divergent model
, Are a and b independent?
- Marginalize out c :

$$
p(a, b)=\sum_{c} p(a, b, c)=\sum_{c} p(a \mid c) p(b \mid c) p(c)
$$

, In general, this is not equal to $p(a) p(b)$.

$$
\Rightarrow \text { The variables are not independent. }
$$

First Case: Divergent ("Tail-to-Tail")

- Let's return to the original graph, but now assume that we observe the value of c :

, The conditional probability is given by:

$$
p(a, b \mid c)=\frac{p(a, b, c)}{p(c)}=\frac{p(a \mid c) p(b \mid c) p(c)}{p(c)}=p(a \mid c) p(b \mid c)
$$

\Rightarrow If c becomes known, the variables a and b become conditionally independent.

- What about now?

First Case: Divergent ("Tail-to-Tail")

- Are a and b independent?
- Marginalize out c :

$$
p(a, b)=\sum_{c} p(a, b, c)=\sum_{c} p(a \mid c) p(b) p(c)=p(a) p(b)
$$

\Rightarrow If there is no undirected connection between two variables, then they are independent.

Second Case: Chain ("Head-to-Tail")

- Let us consider a slightly different graphical model:
Chain graph

2 Are a and b independent? No!
$p(a, b)=\sum_{c} p(a, b, c)=\sum_{c} p(b \mid c) p(c \mid a) p(a)=p(b \mid a) p(a)$
, If c becomes known, are a and b conditionally independent? Yes!
$p(a, b \mid c)=\frac{p(a, b, c)}{p(c)}=\frac{p(a) p(c \mid a) p(b \mid c)}{p(c)}=p(a \mid c) p(b \mid c)$

Third Case: Convergent ("Head-to-Head")

- Let's look at a final case: Convergent graph

Are a and b independent? YES!
$p(a, b)=\sum_{c} p(a, b, c)=\sum_{c} p(c \mid a, b) p(a) p(b)=p(a) p(b)$

- This is very different from the previous cases.
, Even though a and b are connected, they are independent.

Third Case: Convergent ("Head-to-Head")

- Now we assume that c is observed

Are a and b independent? NO!

$$
p(a, b \mid c)=\frac{p(a, b, c)}{p(c)}=\frac{p(a) p(b) p(c \mid a, b)}{p(c)}
$$

, In general, they are not conditionally independent.
This also holds when any of c 's descendants is observed.

- This case is the opposite of the previous cases!

D-Separation

- Definition

- Let A, B, and C be non-intersecting subsets of nodes in a directed graph.
A path from A to B is blocked if it contains a node such that either

The arrows on the path meet either head-to-tail or tail-to-tail at the node, and the node is in the set C, or
The arrows meet head-to-head at the node, and neither
the node, nor any of its descendants, are in the set C.
If all paths from A to B are blocked, A is said to be d-separated from B by C.

- If A is d-separated from B by C, the joint distribution over all variables in the graph satisfies $A \Perp B \mid C$. , Read: " A is conditionally independent of B given C."

D-Separation: Example

- Exercise: What is the relationship between a and b ?

$a \not \perp b \mid c$

$a \Perp b \mid f$

Explaining Away

- Let's look at Holmes' example again:

, Observation "Holmes' lawn is wet" increases the probability of both "Rain" and "Sprinkler".

Explaining Away

- Let's look at Holmes' example again:

Observation "Holmes' lawn is wet" increases the probability of both "Rain" and "Sprinkler".
, Also observing "Neighbor's lawn is wet" decreases the probability for "Sprinkler". (They're conditionally dependent!)
\Rightarrow The "Sprinkler" is explained away.
slide adanted from Bernt_Schiele.Stefan Roth_B. Leibe

Intuitive View: The "Bayes Ball" Algorithm

- Game
, Can you get a ball from X to Y without being blocked by \mathcal{V} ?
- Depending on its direction and the previous node, the ball can Pass through (from parent to all children, from child to all parents) Bounce back (from any parent/child to all parents/children) Be blocked
R.D. Shachter, Bayes-Ball: The Rational Pastime (for Determining Irrelevance R.D. Shachter, Bayes-Bal: The Rational Pastime (for Determining Irrelevance
and Requisite Information in Belief Networks and Influence Diagrams), UAl'98, 1998

The "Bayes Ball" Algorithm

- Game rules
- An unobserved node $(W \notin \mathcal{V})$ passes through balls from parents, but also bounces back balls from children.

An observed node ($W \in \mathcal{V}$) bounces back balls from parents, but blocks balls from children.

\Rightarrow The Bayes Ball algorithm determines those nodes that are dseparated from the query node.
B. Leibe

RWIHAACHET UNVERSIT

Example: Bayes Ball

- Which nodes are d-separated from G given C and D ?

Example: Bayes Ball

- Which nodes are d-separated from G given C and D ?

Example: Bayes Ball

- Which nodes are d-separated from G given C and D ?

- Which nodes are d-separated from G given C and D ? $\Rightarrow F$ is d-separated from G given C and D.

Summary

- Marriage between probability theory and graph theory.
- Give insights into the structure of a probabilistic model.

Direct dependencies between variables. Conditional independence

- Allow for efficient factorization of the joint.

Factorization can be read off directly from the graph.
We will use this for efficient inference algorithms!

- Capability to explain away hypotheses by new evidence.
- Next lecture
, Undirected graphical models (Markov Random Fields)
- Efficient methods for performing exact inference.

References and Further Reading

- A thorough introduction to Graphical Models in general and Bayesian Networks in particular can be found in Chapter 8 of Bishop's book.

Christopher M. Bishop Pattern Reconnition and Machine Learning Springer, 2006	

