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Course Outline 

• Fundamentals (2 weeks) 

 Bayes Decision Theory 

 Probability Density Estimation 
 

• Discriminative Approaches (5 weeks) 

 Linear Discriminant Functions 

 Statistical Learning Theory & SVMs 

 Ensemble Methods & Boosting 

 Randomized Trees, Forests & Ferns 
 

• Generative Models (4 weeks) 

 Bayesian Networks 

 Markov Random Fields 
 

B. Leibe 
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Recap: Stacking 

• Idea 

 Learn L classifiers (based on the training data) 

 Find a meta-classifier that takes as input the output of the L 

first-level classifiers. 

 

 

 

• Example 

 Learn L classifiers with  

leave-one-out. 

 Interpret the prediction of the L classifiers as L-dimensional 

feature vector. 

 Learn “level-2” classifier based on the examples generated this 

way. 
3 

B. Leibe Slide credit: Bernt Schiele 

Combination 

Classifier 

Classifier 1 

Classifier L 

Classifier 2 

… 

Data 
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Recap: Bayesian Model Averaging 

• Model Averaging 

 Suppose we have H different models h = 1,…,H with prior 

probabilities p(h). 

 Construct the marginal distribution over the data set 

 

 

 
 

• Average error of committee 

 
 

 This suggests that the average error of a model can be reduced 

by a factor of M simply by averaging M versions of the model! 

 Unfortunately, this assumes that the errors are all uncorrelated. 

In practice, they will typically be highly correlated. 
4 
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p(X) =

HX

h=1

p(Xjh)p(h)

ECOM =
1

M
EAV
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Topics of This Lecture 
 

• Recap: AdaBoost 
 Algorithm 

 Analysis 

 Extensions 
 

• Analysis 
 Comparing Error Functions 

 

• Applications 
 AdaBoost for face detection 

 

• Decision Trees 
 CART 

 Impurity measures, Stopping criterion, Pruning 

 Extensions, Issues 

 Historical development: ID3, C4.5 
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Recap: AdaBoost – “Adaptive Boosting”  

• Main idea             [Freund & Schapire, 1996] 

 Instead of resampling, reweight misclassified training examples. 

– Increase the chance of being selected in a sampled training set. 

– Or increase the misclassification cost when training on the full set. 
 

• Components 
 hm(x): “weak” or base classifier 

– Condition: <50% training error over any distribution 

 H(x): “strong” or final classifier 
 

• AdaBoost:  

 Construct a strong classifier as a thresholded linear combination 

of the weighted weak classifiers: 

 

6 
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H(x) = sign

Ã
MX

m=1

®mhm(x)

!
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1. Initialization: Set                 for n = 1,…,N. 
 

2. For m = 1,…,M iterations 

a) Train a new weak classifier hm(x) using the current weighting 

coefficients W(m) by minimizing the weighted error function  

 

 

b) Estimate the weighted error of this classifier on X: 

 

 

c) Calculate a weighting coefficient for hm(x): 

 
 

d) Update the weighting coefficients: 

 
 

®m = ln

½
1¡ ²m

²m

¾

Jm =

NX

n=1

w(m)
n I(hm(x) 6= tn)

Recap: AdaBoost – Algorithm 

7 
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w(1)
n =

1

N

²m =

PN

n=1 w
(m)
n I(hm(x) 6= tn)PN

n=1 w
(m)
n

w(m+1)
n = w(m)

n expf®mI(hm(xn) 6= tn)g
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Topics of This Lecture 
 

• Recap: AdaBoost 
 Algorithm 

 Analysis 

 Extensions 
 

• Analysis 
 Comparing Error Functions 

 

• Applications 
 AdaBoost for face detection 

 

• Decision Trees 
 CART 

 Impurity measures, Stopping criterion, Pruning 

 Extensions, Issues 

 Historical development: ID3, C4.5 
8 

B. Leibe 

P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g 

M
a

c
h

in
e

 L
e

a
rn

in
g

, 
S

u
m

m
e

r 
‘1

5
 

AdaBoost – Analysis 

• Result of this derivation 

 We now know that AdaBoost minimizes an exponential error 

function in a sequential fashion. 

 This allows us to analyze AdaBoost’s behavior in more detail. 

 In particular, we can see how robust it is to outlier data points. 

9 
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Recap: Error Functions 

 

 

 

 

 

 

 

 
 

• Ideal misclassification error function (black) 

 This is what we want to approximate,  

 Unfortunately, it is not differentiable. 

 The gradient is zero for misclassified points. 

 We cannot minimize it by gradient descent. 10 
Image source: Bishop, 2006 

Ideal misclassification error 

Not differentiable! 

zn = tny(xn)
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Recap: Error Functions 

 

 

 

 

 

 

 

 
 

• Squared error used in Least-Squares Classification 

 Very popular, leads to closed-form solutions. 

 However, sensitive to outliers due to squared penalty. 

 Penalizes “too correct” data points 

 Generally does not lead to good classifiers. 11 
Image source: Bishop, 2006 

Ideal misclassification error 

Squared error 

Penalizes “too correct” 

 data points! 

Sensitive to outliers! 

zn = tny(xn)

P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

M
a

c
h

in
e

 L
e

a
rn

in
g

, 
S

u
m

m
e

r 
‘1

5
 

Recap: Error Functions 

 

 

 

 

 

 

 

 
 

• “Hinge error” used in SVMs 

 Zero error for points outside the margin (zn > 1)  

sparsity 

 Linear penalty for misclassified points (zn < 1)   robustness 

 Not differentiable around zn = 1  Cannot be optimized directly. 

 

12 
Image source: Bishop, 2006 

Ideal misclassification error 

Hinge error 

Squared error 

Not differentiable! Favors sparse  

solutions! 

Robust to outliers! 

zn = tny(xn)

B. Leibe 
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Discussion: AdaBoost Error Function 

 

 

 

 

 

 

 

 
 

• Exponential error used in AdaBoost 

 Continuous approximation to ideal misclassification function. 

 Sequential minimization leads to simple AdaBoost scheme. 

 Properties? 

 13 
B. Leibe Image source: Bishop, 2006 

Ideal misclassification error 

Hinge error 

Squared error 

Exponential error 

zn = tny(xn)
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Discussion: AdaBoost Error Function 

 

 

 

 

 

 

 

 
 

• Exponential error used in AdaBoost 

 No penalty for too correct data points, fast convergence. 

 Disadvantage: exponential penalty for large negative values! 

 Less robust to outliers or misclassified data points! 

 14 
B. Leibe Image source: Bishop, 2006 

Ideal misclassification error 

Hinge error 

Squared error 

Exponential error 
Sensitive to outliers! 

zn = tny(xn)
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Discussion: Other Possible Error Functions 

 

 

 

 

 

 

 

 
 

• “Cross-entropy error” used in Logistic Regression 

 Similar to exponential error for z>0. 

 Only grows linearly with large negative values of z. 

 Make AdaBoost more robust by switching to this error function. 

 “GentleBoost” 

 

15 
B. Leibe Image source: Bishop, 2006 

Ideal misclassification error 

Hinge error 

Squared error 

Exponential error 

Cross-entropy error 

E =¡
X

ftn lnyn + (1¡ tn) ln(1¡ yn)g

zn = tny(xn)
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Summary: AdaBoost 

• Properties 

 Simple combination of multiple classifiers. 

 Easy to implement. 

 Can be used with many different types of classifiers. 

– None of them needs to be too good on its own. 

– In fact, they only have to be slightly better than chance. 

 Commonly used in many areas. 

 Empirically good generalization capabilities. 
 

• Limitations 

 Original AdaBoost sensitive to misclassified training data points. 

– Because of exponential error function. 

– Improvement by GentleBoost 

 Single-class classifier 

– Multiclass extensions available 
16 
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Topics of This Lecture 
 

• Recap: AdaBoost 
 Algorithm 

 Analysis 

 Extensions 
 

• Analysis 
 Comparing Error Functions 

 

• Applications 
 AdaBoost for face detection 

 

• Decision Trees 
 CART 

 Impurity measures, Stopping criterion, Pruning 

 Extensions, Issues 

 Historical development: ID3, C4.5 
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Example Application: Face Detection 

• Frontal faces are a good example of a class where 

global appearance models + a sliding window 

detection approach fit well: 

 Regular 2D structure 

 Center of face almost shaped like a “patch”/window 

 

 

 

 

 

• Now we’ll take AdaBoost and see how the Viola-

Jones face detector works 

18 
B. Leibe Slide credit: Kristen Grauman 
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Feature extraction 

19 
B. Leibe 

Feature output is difference 

between adjacent regions 

[Viola & Jones, CVPR 2001] 

Efficiently computable 

with integral image: any 

sum can be computed 

in constant time 

Avoid scaling images  

scale features directly 

for same cost 

“Rectangular” filters 

Value at (x,y) is 

sum of pixels 

above and to the 

left of (x,y) 

Integral image 

Slide credit: Kristen Grauman 
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Large Library of Filters 

Considering all 

possible filter 

parameters: 

position, scale, 

and type:  

180,000+ possible 

features 

associated with 

each 24 x 24 

window 

 

Use AdaBoost both to select the informative features 

and to form the classifier 

B. Leibe [Viola & Jones, CVPR 2001] Slide credit: Kristen Grauman 
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AdaBoost for Feature+Classifier Selection 

• Want to select the single rectangle feature and threshold 

that best separates positive (faces) and negative (non-

faces) training examples, in terms of weighted error. 

Outputs of a 

possible rectangle 

feature on faces 

and non-faces. 

…
 

Resulting weak classifier: 

For next round, reweight the 

examples according to errors, 

choose another filter/threshold 

combo. 

B. Leibe [Viola & Jones, CVPR 2001] Slide credit: Kristen Grauman 
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AdaBoost for Efficient Feature Selection 

• Image features = weak classifiers 

• For each round of boosting: 

 Evaluate each rectangle filter on each example 

 Sort examples by filter values 

 Select best threshold for each filter (min error) 

– Sorted list can be quickly scanned for the optimal threshold 

 Select best filter/threshold combination 

 Weight on this features is a simple function of error rate 

 Reweight examples 

22 
B. Leibe 

P. Viola, M. Jones, Robust Real-Time Face Detection, IJCV, Vol. 57(2), 2004. 

(first version appeared at CVPR 2001)  

Slide credit: Kristen Grauman 
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Viola-Jones Face Detector: Results 

B. Leibe Slide credit: Kristen Grauman 
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Viola-Jones Face Detector: Results 

B. Leibe Slide credit: Kristen Grauman 
24 

http://www.springerlink.com/content/q70v4h6715v5p152/fulltext.pdf
http://www.springerlink.com/content/q70v4h6715v5p152/fulltext.pdf
http://www.springerlink.com/content/q70v4h6715v5p152/fulltext.pdf
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Viola-Jones Face Detector: Results 

B. Leibe Slide credit: Kristen Grauman 
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References and Further Reading 

• More information on Classifier Combination and Boosting 

can be found in Chapters 14.1-14.3 of Bishop’s book.  

 

 

 

 

 
 
 

• A more in-depth discussion of the statistical interpre-

tation of AdaBoost is available in the following paper: 

 J. Friedman, T. Hastie, R. Tibshirani, Additive Logistic 

Regression: a Statistical View of Boosting, The Annals of 

Statistics, Vol. 38(2), pages 337-374, 2000. 

 

 

 
 

B. Leibe 
26 

Christopher M. Bishop 

Pattern Recognition and Machine Learning 

Springer, 2006 
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Topics of This Lecture 
 

• Recap: AdaBoost 
 Algorithm 

 Analysis 

 Extensions 
 

• Analysis 
 Comparing Error Functions 

 

• Applications 
 AdaBoost for face detection 

 

• Decision Trees 
 CART 

 Impurity measures, Stopping criterion, Pruning 

 Extensions, Issues 

 Historical development: ID3, C4.5 
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Decision Trees 

• Very old technique 

 Origin in the 60s, might seem outdated. 
 

• But… 

 Can be used for problems with nominal data 

– E.g. attributes color 2 {red, green, blue} or weather 2 {sunny, rainy}. 

– Discrete values, no notion of similarity or even ordering. 
 

 Interpretable results 

– Learned trees can be written as sets of if-then rules. 
 

 Methods developed for handling missing feature values. 
 

 Successfully applied to broad range of tasks 

– E.g. Medical diagnosis 

– E.g. Credit risk assessment of loan applicants 
 

 Some interesting novel developments building on top of them… 
 

28 
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Decision Trees 

 

 

 

 

 

 

 

 

 

• Example: 

 “Classify Saturday mornings according to whether they’re   

  suitable for playing tennis.” 

29 
B. Leibe Image source: T. Mitchell, 1997 
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Decision Trees 

 

 

 

 

 

 

 

 

 

• Elements 

 Each node specifies a test for some attribute. 

 Each branch corresponds to a possible value of the attribute. 

30 
B. Leibe Image source: T. Mitchell, 1997 

http://www-stat.stanford.edu/~hastie/Papers/AdditiveLogisticRegression/alr.pdf
http://www-stat.stanford.edu/~hastie/Papers/AdditiveLogisticRegression/alr.pdf


6 

P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

M
a

c
h

in
e

 L
e

a
rn

in
g

, 
S

u
m

m
e

r 
‘1

5
 

Decision Trees 

• Assumption 

 Links must be mutually distinct and exhaustive 

 I.e. one and only one link will be followed at each step. 

 

 

 

• Interpretability 

 Information in a tree can then be  

rendered as logical expressions. 

 In our example: 

31 
B. Leibe 

(Outlook = Sunny ^Humidity = Normal)

_ (Outlook = Overcast)

_ (Outlook = Rain ^Wind = Weak)

Image source: T. Mitchell, 1997 
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Training Decision Trees 

• Finding the optimal decision tree is NP-hard… 
 

• Common procedure: Greedy top-down growing 

 Start at the root node. 

 Progressively split the training data into smaller and smaller 

subsets. 

 In each step, pick the best attribute to split the data. 

 If the resulting subsets are pure (only one label) or if no further 

attribute can be found that splits them, terminate the tree. 

 Else, recursively apply the procedure to the subsets. 

 

• CART framework 

 Classification And Regression Trees (Breiman et al. 1993) 

 Formalization of the different design choices. 
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CART Framework 

• Six general questions 

1. Binary or multi-valued problem? 

– I.e. how many splits should there be at each node? 
 

2. Which property should be tested at a node? 

– I.e. how to select the query attribute? 
 

3. When should a node be declared a leaf? 

– I.e. when to stop growing the tree? 
 

4. How can a grown tree be simplified or pruned? 

– Goal: reduce overfitting. 
 

5. How to deal with impure nodes? 

– I.e. when the data itself is ambiguous. 
 

6. How should missing attributes be handled? 
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CART – 1. Number of Splits 

• Each multi-valued tree can be converted into an 

equivalent binary tree: 

 

 

 

 

 

 

 

 
 

 Only consider binary trees here… 

34 
B. Leibe Image source: R.O. Duda, P.E. Hart, D.G. Stork, 2001 
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CART – 2. Picking a Good Splitting Feature  

• Goal 

 Want a tree that is as simple/small as possible (Occam’s razor). 

 But: Finding a minimal tree is an NP-hard optimization problem. 

 

• Greedy top-down search 

 Efficient, but not guaranteed to find the smallest tree. 

 Seek a property T at each node N that makes the data in the 

child nodes as pure as possible. 

 For formal reasons more convenient to define impurity i(N). 

 Several possible definitions explored. 
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CART – Impurity Measures 

 

 

 

 

 

 

 
 

• Misclassification impurity 
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i(P )

P

i(N) = 1¡max
j

p(CjjN)

“Fraction of the  

training patterns  

in category Cj that 

end up in node N.” 

Problem: 

discontinuous derivative! 

Image source: R.O. Duda, P.E. Hart, D.G. Stork, 2001 
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CART – Impurity Measures 

 

 

 

 

 

 

 
 

• Entropy impurity 
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i(P )

P

i(N) = ¡
X

j

p(CjjN) log2 p(CjjN)
“Reduction in  

entropy = gain in 

information.” 

Image source: R.O. Duda, P.E. Hart, D.G. Stork, 2001 
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CART – Impurity Measures 

 

 

 

 

 

 

 
 

• Gini impurity (variance impurity) 
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i(P )

P

i(N) =
X

i 6=j
p(CijN)p(Cj jN)

=
1

2
[1¡

X

j

p2(Cj jN)]

“Expected error 
rate at node N if 

 the category label is  

selected randomly.” 

Image source: R.O. Duda, P.E. Hart, D.G. Stork, 2001 
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CART – Impurity Measures 

• Which impurity measure should we choose? 

 Some problems with misclassification impurity. 

– Discontinuous derivative. 

 Problems when searching over continuous parameter space. 

– Sometimes misclassification impurity does not decrease when Gini 

impurity would. 
 

 Both entropy impurity and Gini impurity perform well. 

– No big difference in terms of classifier performance. 

– In practice, stopping criterion and pruning method are often more 

important. 
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CART – 2. Picking a Good Splitting Feature  

• Application 

 Select the query that decreases impurity the most 

 

 

 

• Multiway generalization (gain ratio impurity): 

 Maximize 

 

 

 

 where the normalization factor ensures that large K are not 

inherently favored: 
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4i(N) = i(N)¡PLi(NL)¡ (1¡PL)i(NR)

4i(s) =
1

Z

Ã
i(N)¡

KX

k=1

Pki(Nk)

!

Z = ¡
KX

k=1

Pk log2 Pk
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• For efficiency, splits are often based on a single feature 

 “Monothetic decision trees” 

 

 

 

 

 

 

 
 

• Evaluating candidate splits 

 Nominal attributes: exhaustive search over all possibilities. 

 Real-valued attributes: only need to consider changes in label. 

– Order all data points based on attribute xi. 

– Only need to test candidate splits where label(xi)  label(xi+1). 

CART – Picking a Good Splitting Feature 
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CART – 3. When to Stop Splitting 

• Problem: Overfitting 

 Learning a tree that classifies the training data perfectly may 

not lead to the tree with the best generalization to unseen data. 

 Reasons 

– Noise or errors in the training data. 

– Poor decisions towards the leaves of the tree that are based on very 

little data. 
 

• Typical behavior 
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hypothesis complexity 

a
c
c
u
ra

c
y
 

on training data 

on test data 

Slide adapted from Raymond Mooney 
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CART – Overfitting Prevention (Pruning) 

• Two basic approaches for decision trees 

 Prepruning: Stop growing tree as some point during top-down 

construction when there is no longer sufficient data to make 

reliable decisions. 

 Postpruning: Grow the full tree, then remove subtrees that do 

not have sufficient evidence. 
 

• Label leaf resulting from pruning with the majority class 

of the remaining data, or a class probability distribution.  
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N

CN = argmax
k

p(CkjN)

N

p(CkjN)

Slide adapted from Raymond Mooney 
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Decision Trees – Handling Missing Attributes 

• During training 

 Calculate impurities at a node using only the attribute 

information present. 

 E.g. 3-dimensional data, one point is missing attribute x3. 

– Compute possible splits on x1 using all N points. 

– Compute possible splits on x2 using all N points. 

– Compute possible splits on x3 using N-1 non-deficient points. 

 Choose split which gives greatest reduction in impurity. 
 

• During test 

 Cannot handle test patterns that are lacking the decision 

attribute! 

 In addition to primary split, store an ordered set of surrogate 

splits that try to approximate the desired outcome based on 

different attributes. 

47 
B. Leibe 

P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g 

M
a

c
h

in
e

 L
e

a
rn

in
g

, 
S

u
m

m
e

r 
‘1

5
 

Decision Trees – Feature Choice 

 

 

 

 

 

 

 

 
 

• Best results if proper features are used 
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Bad tree 
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Decision Trees – Feature Choice 

 

 

 

 

 

 

 

 
 

• Best results if proper features are used 

 Preprocessing to find important axes often pays off. 
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Good tree 
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Decision Trees – Non-Uniform Cost 

• Incorporating category priors 

 Often desired to incorporate different priors for the categories. 

 Solution: weight samples to correct for the prior frequencies. 

 

• Incorporating non-uniform loss 

 Create loss matrix ¸ij  

 Loss can easily be incorporated into Gini impurity 
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i(N) =
X

ij

¸ijp(Ci)p(Cj)
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Historical Development 

• ID3 (Quinlan 1986) 

 One of the first widely used decision tree algorithms. 

 Intended to be used with nominal (unordered) variables 

– Real variables are first binned into discrete intervals. 

 General branching factor  

– Use gain ratio impurity based on entropy (information gain) 

criterion. 
 

• Algorithm 

 Select attribute a that best classifies examples, assign it to root. 

 For each possible value vi of a, 

– Add new tree branch corresponding to test a = vi. 

– If example_list(vi) is empty, add leaf node with most common label 

in example_list(a). 

– Else, recursively call ID3 for the subtree with attributes A \ a. 
51 
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Historical Development 

• C4.5 (Quinlan 1993) 

 Improved version with extended capabilities. 

 Ability to deal with real-valued variables. 

 Multiway splits are used with nominal data 

– Using gain ratio impurity based on entropy (information gain) 

criterion. 

 Heuristics for pruning based on statistical significance of splits. 

 Rule post-pruning 
 

• Main difference to CART 

 Strategy for handling missing attributes. 

 When missing feature is queried, C4.5 follows all B possible 

answers. 

 Decision is made based on all B possible outcomes, weighted by 

decision probabilities at node N. 
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Decision Trees – Computational Complexity  

• Given 

 Data points {x1,…,xN}  

 Dimensionality D  
 

• Complexity 
 

 Storage: 
 

 Test runtime: 
 

 Training runtime: 

– Most expensive part. 

– Critical step: selecting the optimal splitting point. 

– Need to check D dimensions, for each need to sort N data points. 
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O(DN2 logN)

O(logN)

O(N)

O(DN logN)
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Summary: Decision Trees 

• Properties 

 Simple learning procedure, fast evaluation. 

 Can be applied to metric, nominal, or mixed data. 

 Often yield interpretable results. 
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Summary: Decision Trees 

• Limitations 

 Often produce noisy (bushy) or weak (stunted) classifiers. 

 Do not generalize too well. 

 Training data fragmentation:  

– As tree progresses, splits are selected based on less and less data. 

 Overtraining and undertraining: 

– Deep trees: fit the training data well, will not generalize well to 

new test data. 

– Shallow trees: not sufficiently refined. 

 Stability 

– Trees can be very sensitive to details of the training points. 

– If a single data point is only slightly shifted, a radically different 

tree may come out! 

 Result of discrete and greedy learning procedure.  

 Expensive learning step 

– Mostly due to costly selection of optimal split. 55 
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References and Further Reading 

• More information on Decision Trees can be found in 

Chapters 8.2-8.4 of Duda & Hart.  
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