

Machine Learning - Lecture 10

Model Combination & Boosting

02.06.2015

Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de

Many slides adapted from B. Schiele

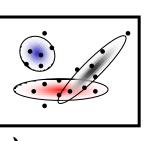
Announcements

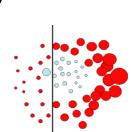
Tentative Exam Dates

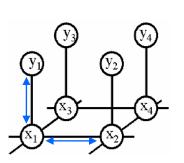
- Planning with the following dates:
- > 1st date: Thursday, 13.08., afternoon
- > 2nd date: Friday, 11.09., afternoon
- > We tried to avoid overlaps with other Computer Science Master lectures as much as possible.
- > Exact slot durations and rooms will still be announced.
- > Does anybody still have conflicts with *both* exam dates?

Course Outline

- Fundamentals (2 weeks)
 - Bayes Decision Theory
 - Probability Density Estimation
- Discriminative Approaches (5 weeks)
 - Linear Discriminant Functions
 - Statistical Learning Theory & SVMs
 - Ensemble Methods & Boosting
 - Randomized Trees, Forests & Ferns
- Generative Models (4 weeks)
 - Bayesian Networks
 - Markov Random Fields

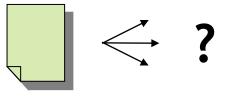






Applications of SVMs: Text Classification

- Problem:
 - Classify a document in a number of categories



• Representation:

- "Bag-of-words" approach
- > Histogram of word counts (on learned dictionary)
 - Very high-dimensional feature space (~10.000 dimensions)
 - Few irrelevant features
- This was one of the first applications of SVMs
 - T. Joachims (1997)

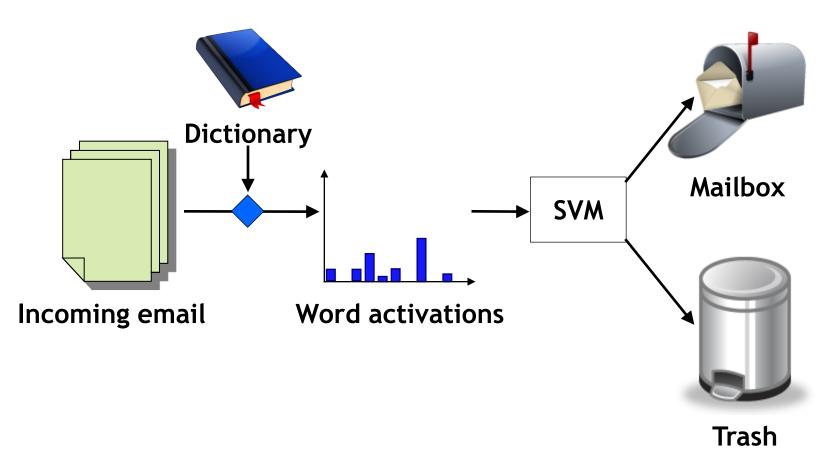
Example Application: Text Classification

• Results:

					SVM (poly)			SVM (rbf)					
					degree $d =$			width $\gamma =$					
	Bayes	Rocchio	C4.5	k-NN	1	2	3	4	5	0.6	0.8	1.0	1.2
earn	95.9	96.1	96.1	97.3	98.2	98.4	98.5	98.4	98.3	98.5	98.5	98.4	98.3
acq	91.5	92.1	85.3	92.0	92.6	94.6	95.2	95.2	95.3	95.0	95.3	95.3	95.4
money-fx	62.9	67.6	69.4	78.2	66.9	72.5	75.4	74.9	76.2	74.0	75.4	76.3	75.9
grain	72.5	79.5	89.1	82.2	91.3	93.1	92.4	91.3	89.9	93.1	91.9	91.9	90.6
crude	81.0	81.5	75.5	85.7	86.0	87.3	88.6	88.9	87.8	88.9	89.0	88.9	88.2
trade	50.0	77.4	59.2	77.4	69.2	75.5	76.6	77.3	77.1	76.9	78.0	77.8	76.8
interest	58.0	72.5	49.1	74.0	69.8	63.3	67.9	73.1	76.2	74.4	75.0	76.2	76.1
ship	78.7	83.1	80.9	79.2	82.0	85.4	86.0	86.5	86.0	85.4	86.5	87.6	87.1
wheat	60.6	79.4	85.5	76.6	83.1	84.5	85.2	85.9	83.8	85.2	85.9	85.9	85.9
corn	47.3	62.2	87.7	77.9	86.0	86.5	85.3	85.7	83.9	85.1	85.7	85.7	84.5
microavg.	72.0	79.9	79.4	82.3	84.2	85.1	85.9	86.2	85.9	86.4	86.5	86.3	86.2
					combined: 86.0			combined: 86.4					

Example Application: Text Classification

 This is also how you could implement a simple spam filter...



Example Application: OCR

Handwritten digit recognition

- > US Postal Service Database
- Standard benchmark task for many learning algorithms

Historical Importance

- USPS benchmark
 - > 2.5% error: human performance
- Different learning algorithms
 - > 16.2% error: Decision tree (C4.5)
 - **5.9% error: (best) 2-layer Neural Network**
 - 5.1% error: LeNet 1 (massively hand-tuned) 5-layer network

Different SVMs

- 4.0% error: Polynomial kernel (p=3, 274 support vectors)
- > 4.1% error: Gaussian kernel (σ =0.3, 291 support vectors)

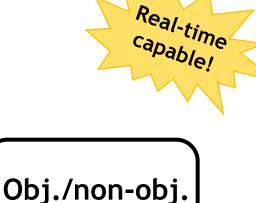
Example Application: OCR

- Results
 - > Almost no overfitting with higher-degree kernels.

degree of	dimensionality of	support	raw
polynomial	feature space	vectors	error
1	256	282	8.9
2	pprox 33000	227	4.7
3	$pprox 1 imes 10^6$	274	4.0
4	$\approx 1 \times 10^9$	321	4.2
5	$pprox 1 imes 10^{12}$	374	4.3
6	$pprox 1 imes 10^{14}$	377	4.5
7	$pprox 1 imes 10^{16}$	422	4.5

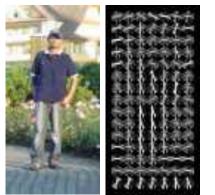
Example Application: Object Detection

Sliding-window approach



Classifier

- E.g. histogram representation (HOG)
 - Map each grid cell in the input window to a histogram of gradient orientations.
 - Train a linear SVM using training set of pedestrian vs. non-pedestrian windows.



[Dalal & Triggs, CVPR 2005]

Example Application: Pedestrian Detection

N. Dalal, B. Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 2005

Many Other Applications

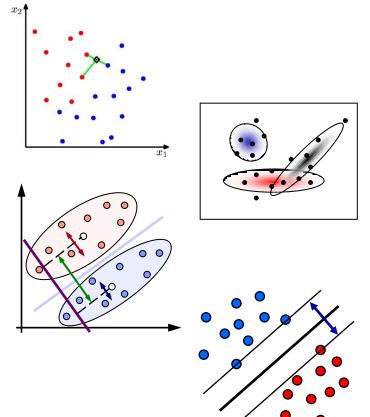
- Lots of other applications in all fields of technology
 - > OCR
 - Text classification
 - Computer vision

٠٠٠ >

- High-energy physics
- Monitoring of household appliances
- Protein secondary structure prediction
- > Design on decision feedback equalizers (DFE) in telephony

So Far...

- We've seen already a variety of different classifiers
 - > k-NN
 - Bayes classifiers
 - Linear discriminants
 - > SVMs



- Each of them has their strengths and weaknesses...
 - Can we improve performance by combining them?

Topics of This Lecture

- Ensembles of Classifiers
- Constructing Ensembles
 - Cross-validation
 - Bagging
- Combining Classifiers
 - Stacking
 - > Bayesian model averaging
 - Boosting

AdaBoost

- Intuition
- Algorithm
- Analysis
- Extensions
- Applications

Ensembles of Classifiers

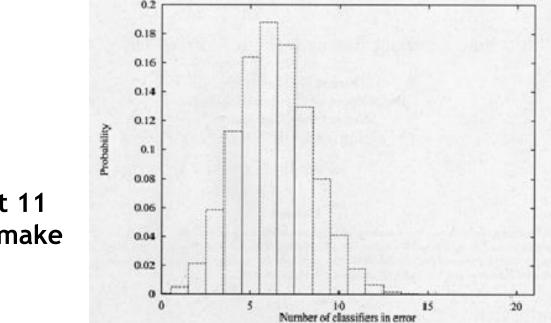
- Intuition
 - > Assume we have K classifiers.
 - > They are independent (i.e., their errors are uncorrelated).
 - > Each of them has an error probability p < 0.5 on training data.
 - Why can we assume that p won't be larger than 0.5?
 - > Then a simple majority vote of all classifiers should have a lower error than each individual classifier...

RWTHAACHEN UNIVERSITY

Ensembles of Classifiers

- Example
 - > K classifiers with error probability p = 0.3.
 - Probability that exactly L classifiers make an error:

$$p^L(1-p)^{K-L}$$



The probability that 11 or more classifiers make an error is 0.026.

RWTHAACHEN UNIVERSITY

Topics of This Lecture

• Ensembles of Classifiers

• Constructing Ensembles

- Cross-validation
- Bagging
- Combining Classifiers
 - Stacking
 - > Bayesian Model Averaging
 - Boosting

• AdaBoost

- Intuition
- Algorithm
- > Analysis
- > Extensions
- Applications

Methods for obtaining a set of classifiers

Methods for combining different classifiers

Constructing Ensembles

- How do we get different classifiers?
 - Simplest case: train same classifier on different data.
 - But... where shall we get this additional data from?
 - Recall: training data is very expensive!
- Idea: Subsample the training data
 - Reuse the same training algorithm several times on different subsets of the training data.
- Well-suited for "unstable" learning algorithms
 - Unstable: small differences in training data can produce very different classifiers
 - E.g., Decision trees, neural networks, rule learning algorithms,...
 - Stable learning algorithms
 - E.g., Nearest neighbor, linear regression, SVMs,...

Constructing Ensembles

- Cross-Validation
 - \succ Split the available data into N disjunct subsets.
 - \succ In each run, train on $N ext{-}1$ subsets for training a classifier.
 - Estimate the generalization error on the held-out validation set.

E.g. 5-fold cross-validation

train	train	train	train	test
train	train	train	test	train
train	train	test	train	train
train	test	train	train	train
test	train	train	train	train

Constructing Ensembles

- Bagging = "Bootstrap aggregation" (Breiman 1996)
 - > In each run of the training algorithm, randomly select M samples from the full set of N training data points.
 - > If M = N, then on average, 63.2% of the training points will be represented. The rest are duplicates.

Injecting randomness

- Many (iterative) learning algorithms need a random initialization (e.g. k-means, EM)
- Perform mutliple runs of the learning algorithm with different random initializations.

RWTHAACHEN UNIVERSITY

Topics of This Lecture

• Ensembles of Classifiers

Constructing Ensembles

- Cross-validation
- Bagging

• Combining Classifiers

- Stacking
- Bayesian Model Averaging
- Boosting

• AdaBoost

- Intuition
- Algorithm
- > Analysis
- > Extensions
- Applications

Methods for obtaining a set of classifiers

Methods for combining different classifiers

Combination

Classifier

Stacking

- Idea
 - \succ Learn L classifiers (based on the training data)
 - Find a meta-classifier that takes as input the output of the L first-level classifiers.
 Classifier 1

Data

Classifier 2

Classifier L

- Learn L classifiers with leave-one-out cross-validation.
- > Interpret the prediction of the L classifiers as L-dimensional feature vector.
- Learn "level-2" classifier based on the examples generated this way.

Stacking

- Why can this be useful?
 - Simplicity
 - We may already have several existing classifiers available.
 - \Rightarrow No need to retrain those, they can just be combined with the rest.
 - Correlation between classifiers
 - The combination classifier can learn the correlation.
 - \Rightarrow Better results than simple Naive Bayes combination.
 - Feature combination
 - E.g. combine information from different sensors or sources (vision, audio, acceleration, temperature, radar, etc.).
 - We can get good training data for each sensor individually, but data from all sensors together is rare.
 - \Rightarrow Train each of the L classifiers on its own input data. Only combination classifier needs to be trained on combined input.

Recap: Model Combination

- E.g. Mixture of Gaussians
 - Several components are combined probabilistically.
 - Interpretation: different data points can be generated by different components.
 - We model the uncertainty which mixture component is responsible for generating the corresponding data point:

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

> For i.i.d. data, we write the marginal probability of a data set $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ in the form:

$$p(\mathbf{X}) = \prod_{n=1}^{N} p(\mathbf{x}_n) = \prod_{n=1}^{N} \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

Bayesian Model Averaging

- Model Averaging
 - Suppose we have H different models h = 1,...,H with prior probabilities p(h).
 - Construct the marginal distribution over the data set

$$p(\mathbf{X}) = \sum_{h=1}^{H} p(\mathbf{X}|h)p(h)$$

- Interpretation
 - Just one model is responsible for generating the entire data set.
 - > The probability distribution over h just reflects our uncertainty which model that is.
 - > As the size of the data set increases, this uncertainty reduces, and $p(\mathbf{X}|h)$ becomes focused on just one of the models.

Note the Different Interpretations!

- Model Combination
 - > Different data points generated by different model components.
 - Uncertainty is about which component created which data point.
 - \Rightarrow One latent variable \mathbf{z}_n for each data point:

$$p(\mathbf{X}) = \prod_{n=1}^{N} p(\mathbf{x}_n) = \prod_{n=1}^{N} \sum_{\mathbf{z}_n} p(\mathbf{x}_n, \mathbf{z}_n)$$

- Bayesian Model Averaging
 - The whole data set is generated by a single model.
 - > Uncertainty is about which model was responsible.
 - \Rightarrow One latent variable z for the entire data set:

$$p(\mathbf{X}) = \sum_{\mathbf{z}} p(\mathbf{X}, \mathbf{z})$$

B. Leibe

Model Averaging: Expected Error

- Combine M predictors $y_m(\mathbf{x})$ for target output $h(\mathbf{x})$.
 - > E.g. each trained on a different bootstrap data set by bagging.
 - The committee prediction is given by

$$y_{COM}(\mathbf{x}) = \frac{1}{M} \sum_{m=1}^{M} y_m(\mathbf{x})$$

- > The output can be written as the true value plus some error. $y(\mathbf{x}) = h(\mathbf{x}) + \epsilon(\mathbf{x})$
- > Thus, the average sum-of-squares error takes the form $\mathbb{E}_{\mathbf{x}} = \left[\left\{ y_m(\mathbf{x}) - h(\mathbf{x}) \right\}^2 \right] = \mathbb{E}_{\mathbf{x}} \left[\epsilon_m(\mathbf{x})^2 \right]$

Model Averaging: Expected Error

• Average error of individual models

$$\mathbb{E}_{AV} = \frac{1}{M} \sum_{m=1}^{M} \mathbb{E}_{\mathbf{x}} \left[\epsilon_m(\mathbf{x})^2 \right]$$

Average error of committee

$$\mathbb{E}_{COM} = \mathbb{E}_{\mathbf{x}} \left[\left\{ \frac{1}{M} \sum_{m=1}^{M} y_m(\mathbf{x}) - h(\mathbf{x}) \right\}^2 \right] = \mathbb{E}_{\mathbf{x}} \left[\left\{ \frac{1}{M} \sum_{m=1}^{M} \epsilon_m(\mathbf{x}) \right\}^2 \right]$$

- Assumptions
 - \succ Errors have zero mean: $\mathbb{E}_{\mathbf{x}}\left[\epsilon_m(\mathbf{x})
 ight]=0$
 - > Errors are uncorrelated: $\mathbb{E}_{\mathbf{x}}\left[\epsilon_m(\mathbf{x})\epsilon_j(\mathbf{x})
 ight]=0$

• Then:

$$\mathbb{E}_{COM} = \frac{1}{M} \mathbb{E}_{AV}$$

LO.

Model Averaging: Expected Error

• Average error of committee

$$\mathbb{E}_{COM} = \frac{1}{M} \mathbb{E}_{AV}$$

- > This suggests that the average error of a model can be reduced by a factor of M simply by averaging M versions of the model!
- Spectacular indeed...
- > This sounds almost too good to be true...
- And it is... Can you see where the problem is?
 - Unfortunately, this result depends on the assumption that the errors are all uncorrelated.
 - In practice, they will typically be highly correlated.
 - Still, it can be shown that

$$\mathbb{E}_{COM}$$
 · \mathbb{E}_{AV}

Discussion: Ensembles of Classifiers

- Set of simple methods for improving classification
 - > Often effective in practice.
- Apparent contradiction
 - > We have stressed before that a classifier should be trained on samples from the distribution on which it will be tested.
 - Resampling seems to violate this recommendation.
 - Why can a classifier trained on a weighted data distribution do better than one trained on the i.i.d. sample?

Explanation

- > We do not attempt to model the full category distribution here.
- > Instead, try to find the decision boundary more directly.
- Also, increasing number of component classifiers broadens the class of implementable decision functions.

RWTHAACHEN UNIVERSITY

Topics of This Lecture

- Ensembles of Classifiers
- Constructing Ensembles
 - > Cross-validation
 - Bagging
- Combining Classifiers
 - > Stacking
 - > Bayesian model averaging
 - Boosting

AdaBoost

- Intuition
- Algorithm
- Analysis
- Extensions
- Applications

RWTHAACHEN UNIVERSITY

AdaBoost - "Adaptive Boosting"

• Main idea

[Freund & Schapire, 1996]

- Instead of resampling, reweight misclassified training examples.
 - Increase the chance of being selected in a sampled training set.
 - Or increase the misclassification cost when training on the full set.

Components

- > $h_m(\mathbf{x})$: "weak" or base classifier
 - Condition: <50% training error over any distribution
- > $H(\mathbf{x})$: "strong" or final classifier

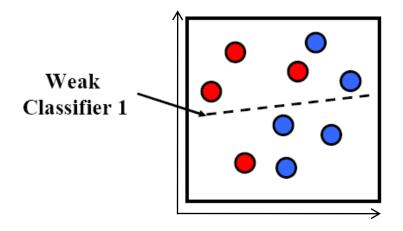
• AdaBoost:

Construct a strong classifier as a thresholded linear combination of the weighted weak classifiers:

$$H(\mathbf{x}) = sign\left(\sum_{\substack{m=1\\B \text{ leibe}}}^{M} \alpha_m h_m(\mathbf{x})\right)$$

36

AdaBoost: Intuition



Consider a 2D feature space with positive and negative examples.

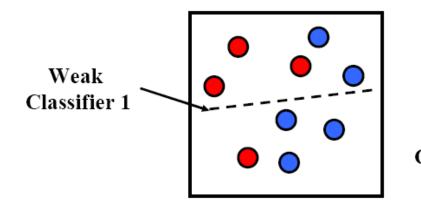
Each weak classifier splits the training examples with at least 50% accuracy.

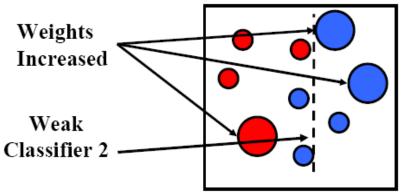
Examples misclassified by a previous weak learner are given more emphasis at future rounds.

Slide credit: Kristen Grauman

RWTHAACHEN UNIVERSITY

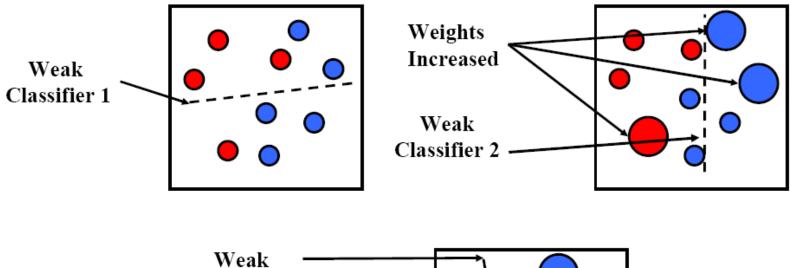
AdaBoost: Intuition

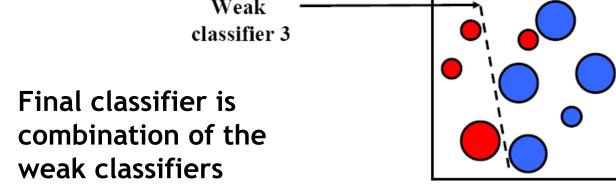




RWTHAACHEN UNIVERSITY

AdaBoost: Intuition





Machine Learning, Summer '15

Slide credit: Kristen Grauman

AdaBoost - Formalization

- 2-class classification problem
 - > Given: training set $\mathbf{X} = \{\mathbf{x}_1, ..., \mathbf{x}_N\}$ with target values $\mathbf{T} = \{t_1, ..., t_N\}, t_n \in \{-1, 1\}$.
 - > Associated weights $W = \{w_1, ..., w_N\}$ for each training point.
- Basic steps
 - > In each iteration, AdaBoost trains a new weak classifier $h_m(\mathbf{x})$ based on the current weighting coefficients $\mathbf{W}^{(m)}$.
 - We then adapt the weighting coefficients for each point
 - Increase w_n if \mathbf{x}_n was misclassified by $h_m(\mathbf{x})$.
 - Decrease w_n if \mathbf{x}_n was classified correctly by $h_m(\mathbf{x})$.
 - Make predictions using the final combined model

$$H(\mathbf{x}) = sign\left(\sum_{\substack{m=1\\ \text{B. Leibe}}}^{M} \alpha_m h_m(\mathbf{x})\right)$$

AdaBoost - Algorithm

- **1.** Initialization: Set $w_n^{(1)} = \frac{1}{N}$ for n = 1,...,N. **2.** For m = 1,...,M iterations
 - a) Train a new weak classifier $h_m(\mathbf{x})$ using the current weighting coefficients $\mathbf{W}^{(m)}$ by minimizing the weighted error function

$$J_m = \sum_{n=1}^{N} w_n^{(m)} I(h_m(\mathbf{x}) \neq t_n) \qquad I(A) = \begin{cases} 1, & \text{if } A \text{ is true} \\ 0, & \text{else} \end{cases}$$

b) Estimate the weighted error of this classifier on \mathbf{X} :

$$\epsilon_m = \frac{\sum_{n=1}^N w_n^{(m)} I(h_m(\mathbf{x}) \neq t_n)}{\sum_{n=1}^N w_n^{(m)}}$$

c) Calculate a weighting coefficient for $h_m(\mathbf{x})$:

$$\alpha_m = ?$$

d) Update the weighting coefficients:

$$w_n^{(m+1)} = ?$$

How should we do this exactly?

AdaBoost - Historical Development

- Originally motivated by Statistical Learning Theory
 - > AdaBoost was introduced in 1996 by Freund & Schapire.
 - It was empirically observed that AdaBoost often tends not to overfit. (Breiman 96, Cortes & Drucker 97, etc.)
 - As a result, the margin theory (Schapire et al. 98) developed, which is based on loose generalization bounds.
 - Note: margin for boosting is *not* the same as margin for SVM.
 - A bit like retrofitting the theory...
 - > However, those bounds are too loose to be of practical value.
- Different explanation (Friedman, Hastie, Tibshirani, 2000)
 - Interpretation as sequential minimization of an exponential error function ("Forward Stagewise Additive Modeling").
 - Explains why boosting works well.
 - > Improvements possible by altering the error function.

AdaBoost - Minimizing Exponential Error

Exponential error function

$$E = \sum_{n=1}^{N} \exp\left\{-t_n f_m(\mathbf{x}_n)\right\}$$

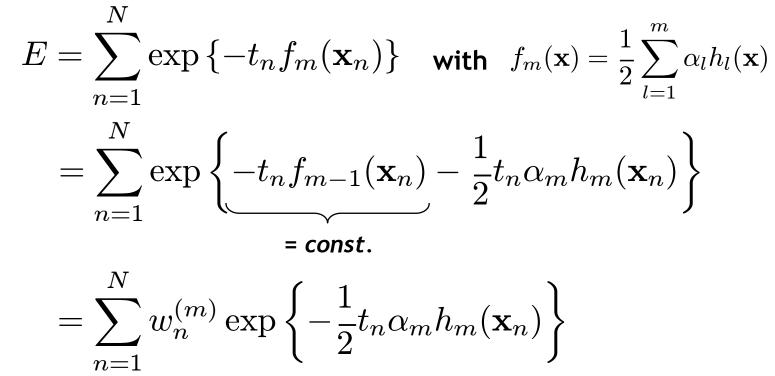
> where $f_m(\mathbf{x})$ is a classifier defined as a linear combination of base classifiers $h_l(\mathbf{x})$:

$$f_m(\mathbf{x}) = \frac{1}{2} \sum_{l=1}^m \alpha_l h_l(\mathbf{x})$$

- Goal
 - > Minimize E with respect to both the weighting coefficients α_l and the parameters of the base classifiers $h_l(\mathbf{x})$.

AdaBoost - Minimizing Exponential Error

- Sequential Minimization
 - > Suppose that the base classifiers $h_1(\mathbf{x}), \ldots, h_{m-1}(\mathbf{x})$ and their coefficients $\alpha_1, \ldots, \alpha_{m-1}$ are fixed.
 - \Rightarrow Only minimize with respect to α_m and $h_m(\mathbf{x})$.



S

UNIVERSI AdaBoost - Minimizing Exponential Error

$$E = \sum_{n=1}^{N} w_n^{(m)} \exp\left\{-\frac{1}{2}t_n \alpha_m h_m(\mathbf{x}_n)\right\}$$

- > Observation:
 - Correctly classified points: $t_n h_m(\mathbf{x}_n) = +1 \implies$ collect in \mathcal{T}_n
 - Misclassified points: $t_n h_m(\mathbf{x}_n) = -1$

 $\Rightarrow \text{ collect in } \mathcal{T}_m$ $\Rightarrow \text{ collect in } \mathcal{F}_m$

Rewrite the error function as

$$E = e^{-\alpha_m/2} \sum_{n \in \mathcal{T}_m} w_n^{(m)} + e^{\alpha_m/2} \sum_{n \in \mathcal{F}_m} w_n^{(m)}$$
$$= \left(e^{\alpha_m/2}\right) \sum_{n=1}^N w_n^{(m)} I(h_m(\mathbf{x}_n) \neq t_n)$$

UNIVERSI AdaBoost - Minimizing Exponential Error

$$E = \sum_{n=1}^{N} w_n^{(m)} \exp\left\{-\frac{1}{2}t_n \alpha_m h_m(\mathbf{x}_n)\right\}$$

- > Observation:
 - Correctly classified points: $t_n h_m(\mathbf{x}_n) = +1 \implies$ collect in \mathcal{T}_m
 - Misclassified points: $t_n h_m(\mathbf{x}_n) = -1$

 $\Rightarrow \text{ collect in } \mathcal{T}_m$ $\Rightarrow \text{ collect in } \mathcal{F}_m$

Rewrite the error function as

$$E = e^{-\alpha_m/2} \sum_{n \in \mathcal{T}_m} w_n^{(m)} + e^{\alpha_m/2} \sum_{n \in \mathcal{F}_m} w_n^{(m)}$$
$$= \left(e^{\alpha_m/2} - e^{-\alpha_m/2}\right) \sum_{n=1}^N w_n^{(m)} I(h_m(\mathbf{x}_n) \neq t_n) + e^{-\alpha_m/2} \sum_{n=1}^N w_n^{(m)}$$

46

AdaBoost - Minimizing Exponential Error

• Minimize with respect to $h_m(\mathbf{x})$: $\frac{\partial E}{\partial h_m(\mathbf{x})} \stackrel{!}{=} 0$

$$E = \left(e^{\alpha_m/2} - e^{-\alpha_m/2}\right) \sum_{n=1}^{N} w_n^{(m)} I(h_m(\mathbf{x}_n) \neq t_n) + e^{-\alpha_m/2} \sum_{n=1}^{N} w_n^{(m)}$$

= const.
= const.

 \Rightarrow This is equivalent to minimizing

$$J_m = \sum_{n=1}^N w_n^{(m)} I(h_m(\mathbf{x}) \neq t_n)$$

(our weighted error function from step 2a) of the algorithm)

 \Rightarrow We're on the right track. Let's continue...

AdaBoost - Minimizing Exponential Error

• Minimize with respect to α_m : $\frac{\partial E}{\partial \alpha_m} \stackrel{!}{=} 0$

$$E = \left(e^{\alpha_m/2} - e^{-\alpha_m/2}\right) \sum_{n=1}^N w_n^{(m)} I(h_m(\mathbf{x}_n) \neq t_n) + e^{-\alpha_m/2} \sum_{n=1}^N w_n^{(m)}$$

 \Rightarrow Update for the α coefficients:

$$\alpha_m = \ln\left\{\frac{1-\epsilon_m}{\epsilon_m}\right\}$$

 ϵ_m

RWTHAACHEN UNIVERSITY AdaBoost - Minimizing Exponential Error

- Remaining step: update the weights
 - Recall that

$$E = \sum_{n=1}^{N} w_n^{(m)} \exp\left\{-\frac{1}{2}t_n \alpha_m h_m(\mathbf{x}_n)\right\}$$

This becomes $w_n^{(m+1)}$
in the next iteration.

Therefore

$$w_n^{(m+1)} = w_n^{(m)} \exp\left\{-\frac{1}{2}t_n\alpha_m h_m(\mathbf{x}_n)\right\}$$
$$= \dots$$
$$= w_n^{(m)} \exp\left\{\alpha_m I(h_m(\mathbf{x}_n) \neq t_n)\right\}$$

 \Rightarrow Update for the weight coefficients.

AdaBoost - Final Algorithm

- **1.** Initialization: Set $w_n^{(1)} = \frac{1}{N}$ for n = 1,...,N. **2.** For m = 1,...,M iterations
 - a) Train a new weak classifier $h_m(\mathbf{x})$ using the current weighting coefficients $\mathbf{W}^{(m)}$ by minimizing the weighted error function

$$J_m = \sum_{n=1}^{N} w_n^{(m)} I(h_m(\mathbf{x}) \neq t_n)$$

b) Estimate the weighted error of this classifier on \mathbf{X} :

$$\epsilon_m = \frac{\sum_{n=1}^N w_n^{(m)} I(h_m(\mathbf{x}) \neq t_n)}{\sum_{n=1}^N w_n^{(m)}}$$

c) Calculate a weighting coefficient for $h_m(\mathbf{x})$:

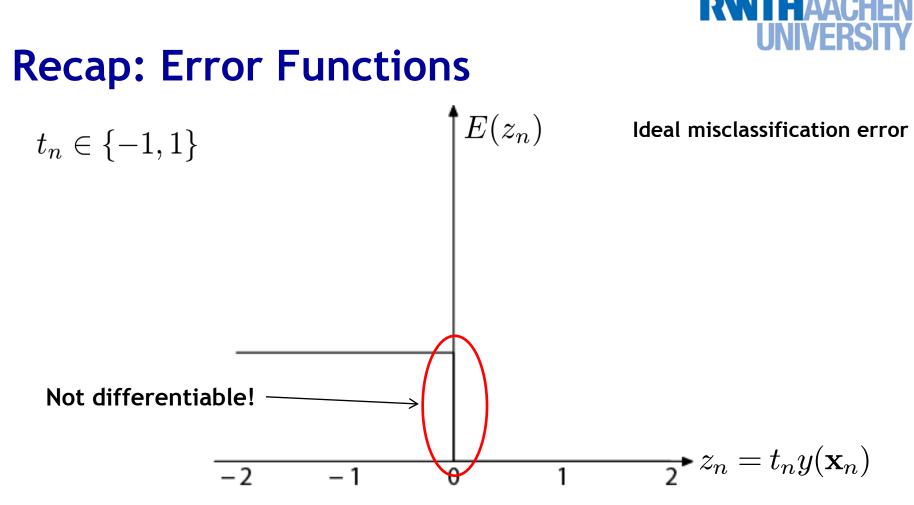
$$\alpha_m = \ln\left\{\frac{1-\epsilon_m}{\epsilon_m}\right\}$$

d) Update the weighting coefficients:

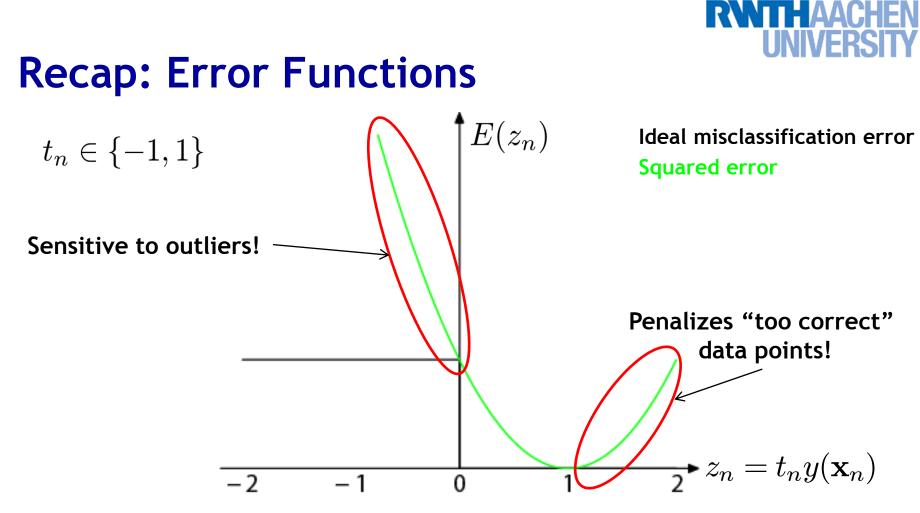
 $w_n^{(m+1)} = w_n^{(m)} \exp\left\{\alpha_m I(h_m(\mathbf{x}_n) \neq t_n)\right\}$

AdaBoost - Analysis

- Result of this derivation
 - We now know that AdaBoost minimizes an exponential error function in a sequential fashion.
 - > This allows us to analyze AdaBoost's behavior in more detail.
 - > In particular, we can see how robust it is to outlier data points.

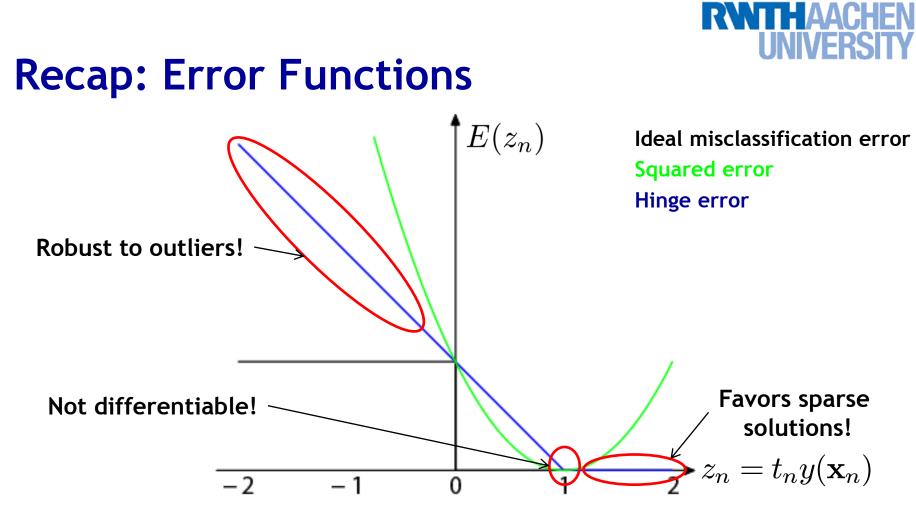


- Ideal misclassification error function (black)
 - > This is what we want to approximate,
 - > Unfortunately, it is not differentiable.
 - The gradient is zero for misclassified points.
 - \Rightarrow We cannot minimize it by gradient descent.



• Squared error used in Least-Squares Classification

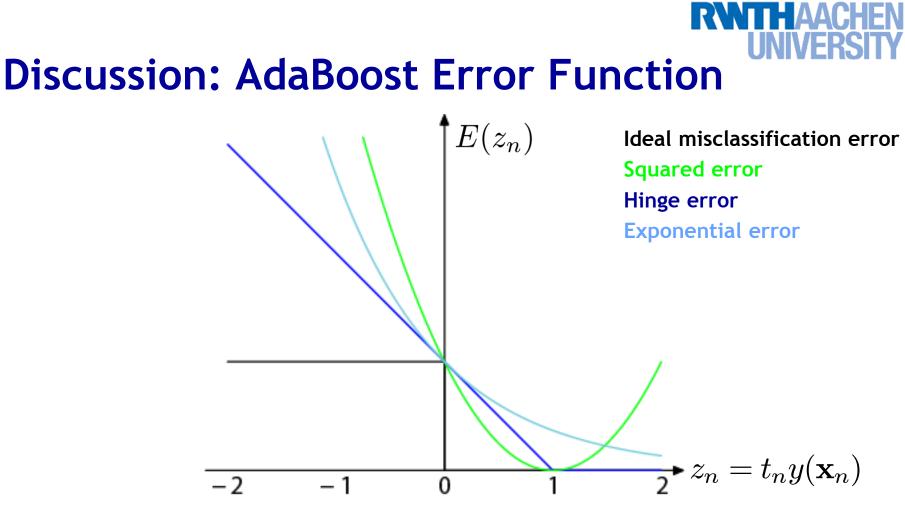
- Very popular, leads to closed-form solutions.
- > However, sensitive to outliers due to squared penalty.
- Penalizes "too correct" data points
- \Rightarrow Generally does not lead to good classifiers.



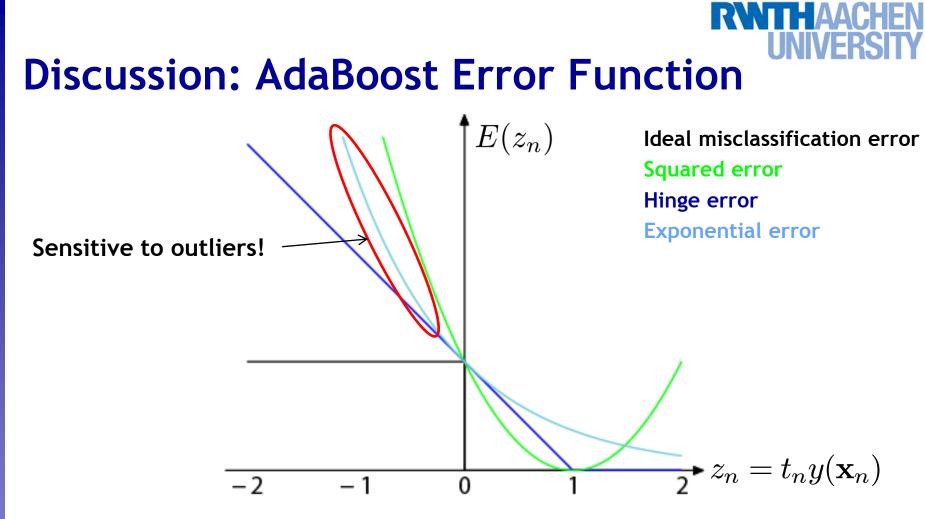
• "Hinge error" used in SVMs

- > Zero error for points outside the margin ($z_n > 1$) \Rightarrow sparsity
- > Linear penalty for misclassified points ($z_n < 1$) \Rightarrow robustness
- ▶ Not differentiable around $z_n = 1 \Rightarrow$ Cannot be optimized directly4

Image source: Bishop, 2006

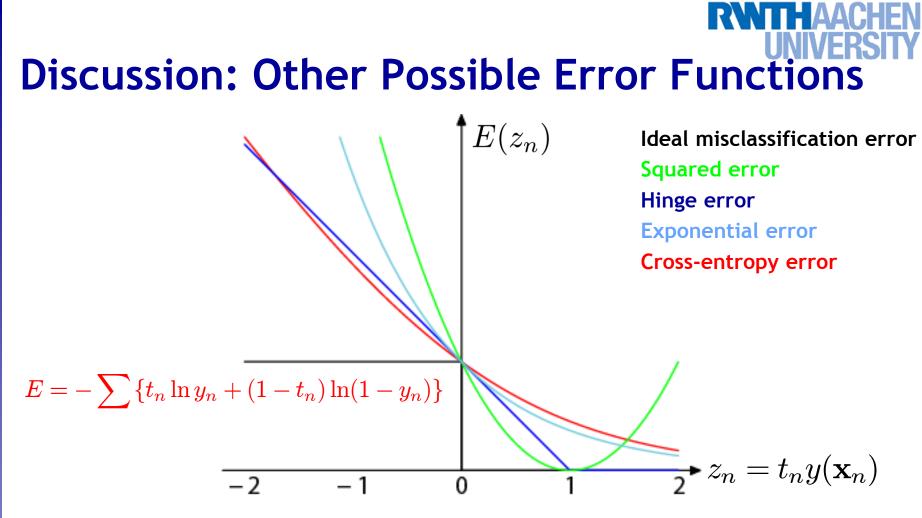


- Exponential error used in AdaBoost
 - Continuous approximation to ideal misclassification function.
 - Sequential minimization leads to simple AdaBoost scheme.
 - > Properties?



Exponential error used in AdaBoost

- > No penalty for too correct data points, fast convergence.
- > Disadvantage: exponential penalty for large negative values!
- \Rightarrow Less robust to outliers or misclassified data points!



• "Cross-entropy error" used in Logistic Regression

- > Similar to exponential error for $z{>}0$.
- > Only grows linearly with large negative values of z.
- \Rightarrow Make AdaBoost more robust by switching to this error function.
- \Rightarrow "GentleBoost"

B. Leibe

RWTHAACHEN UNIVERSITY

Summary: AdaBoost

- Properties
 - Simple combination of multiple classifiers.
 - Easy to implement.
 - > Can be used with many different types of classifiers.
 - None of them needs to be too good on its own.
 - In fact, they only have to be slightly better than chance.
 - Commonly used in many areas.
 - Empirically good generalization capabilities.

Limitations

- > Original AdaBoost sensitive to misclassified training data points.
 - Because of exponential error function.
 - Improvement by GentleBoost
- Single-class classifier
 - Multiclass extensions available

RWTHAACHEN UNIVERSITY

Topics of This Lecture

- Ensembles of Classifiers
- Constructing Ensembles
 - > Cross-validation
 - Bagging
- Combining Classifiers
 - > Stacking
 - > Bayesian model averaging
 - Boosting
- AdaBoost
 - Intuition
 - > Algorithm
 - > Analysis
 - Extensions

Applications

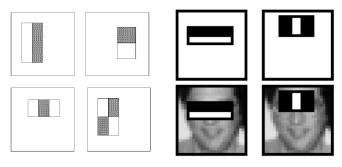
Example Application: Face Detection

- Frontal faces are a good example of a class where global appearance models + a sliding window detection approach fit well:
 - Regular 2D structure
 - Center of face almost shaped like a "patch"/window

 Now we'll take AdaBoost and see how the Viola-Jones face detector works

Feature extraction

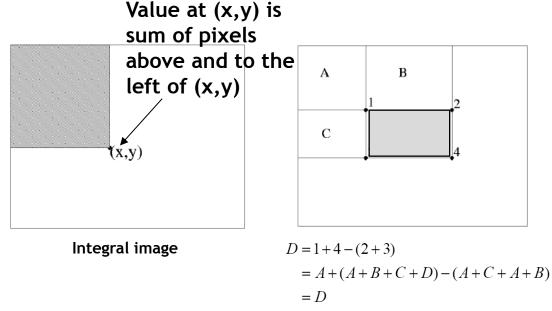
"Rectangular" filters



Feature output is difference between adjacent regions

Efficiently computable with integral image: any sum can be computed in constant time

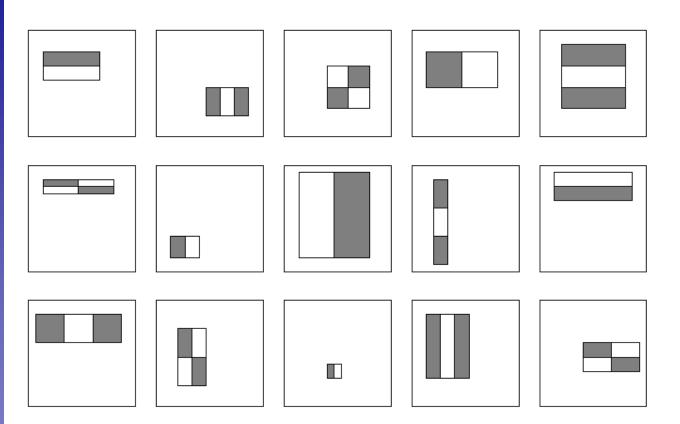
Avoid scaling images → scale features directly for same cost



61 [Viola & Jones, CVPR 2001]

Slide credit: Kristen Grauman

Large Library of Filters



Considering all possible filter parameters: position, scale, and type:

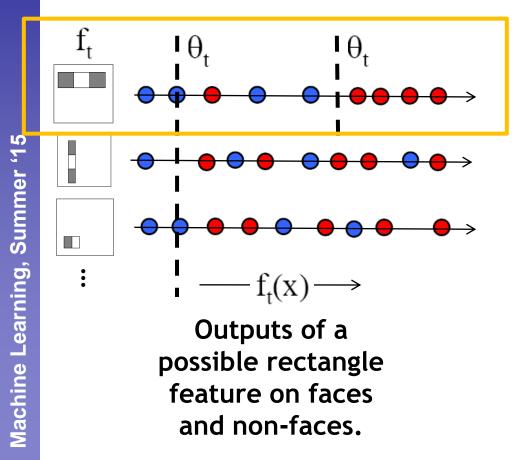
180,000+ possible features associated with each 24 x 24 window

Use AdaBoost both to select the informative features and to form the classifier

62 [Viola & Jones, CVPR 2001]

AdaBoost for Feature+Classifier Selection

 Want to select the single rectangle feature and threshold that best separates positive (faces) and negative (nonfaces) training examples, in terms of weighted error.



Resulting weak classifier:

$$h_{t}(x) = \begin{cases} +1 & \text{if } f_{t}(x) > \theta_{t} \\ -1 & \text{otherwise} \end{cases}$$

For next round, reweight the examples according to errors, choose another filter/threshold combo.

> 63 [Viola & Jones, CVPR 2001]

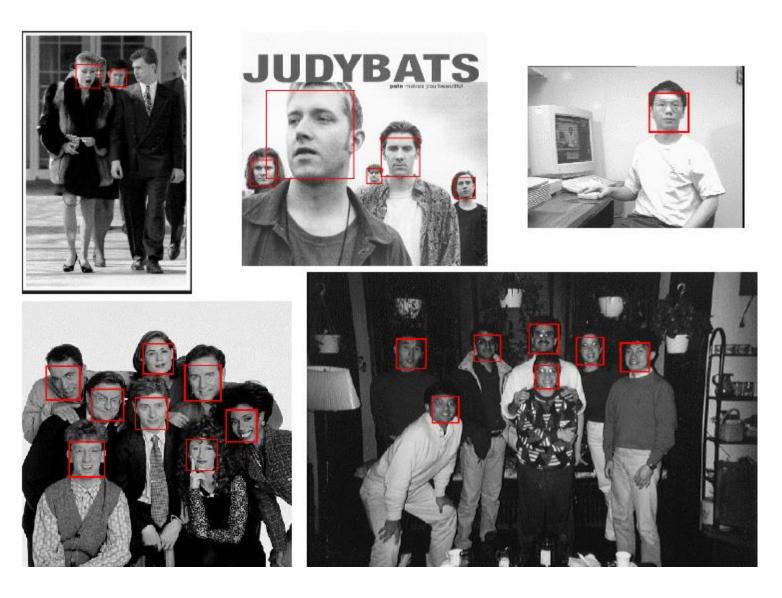
Slide credit: Kristen Grauman

AdaBoost for Efficient Feature Selection

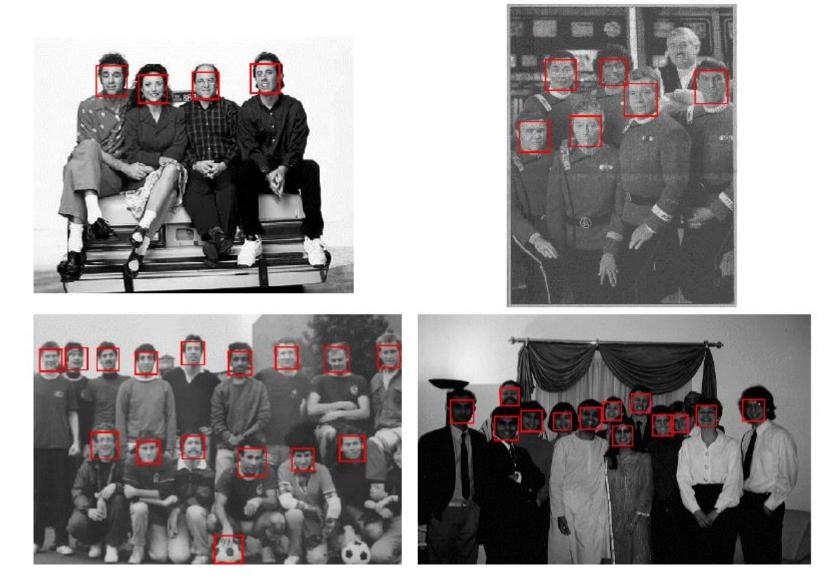
- Image features = weak classifiers
- For each round of boosting:
 - > Evaluate each rectangle filter on each example
 - Sort examples by filter values
 - Select best threshold for each filter (min error)
 - Sorted list can be quickly scanned for the optimal threshold
 - Select best filter/threshold combination
 - Weight on this features is a simple function of error rate
 - Reweight examples

P. Viola, M. Jones, <u>Robust Real-Time Face Detection</u>, IJCV, Vol. 57(2), 2004. (first version appeared at CVPR 2001)

Viola-Jones Face Detector: Results



Viola-Jones Face Detector: Results



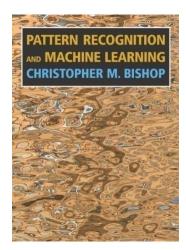
Viola-Jones Face Detector: Results

RNTHAA(

References and Further Reading

• More information on Classifier Combination and Boosting can be found in Chapters 14.1-14.3 of Bishop's book.

Christopher M. Bishop Pattern Recognition and Machine Learning Springer, 2006



- A more in-depth discussion of the statistical interpretation of AdaBoost is available in the following paper:
 - J. Friedman, T. Hastie, R. Tibshirani, <u>Additive Logistic</u> <u>Regression: a Statistical View of Boosting</u>, *The Annals of Statistics*, Vol. 38(2), pages 337-374, 2000.