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Announcements 

• Tentative Exam Dates 

 Planning with the following dates: 

 1st date:  Thursday,   13.08., afternoon 

 2nd date: Friday,        11.09., afternoon 

 

 We tried to avoid overlaps with other Computer Science Master 

lectures as much as possible. 

 Exact slot durations and rooms will still be announced. 

 

 Does anybody still have conflicts with both exam dates? 

 

2 
B. Leibe 
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Course Outline 

• Fundamentals (2 weeks) 

 Bayes Decision Theory 

 Probability Density Estimation 
 

• Discriminative Approaches (5 weeks) 

 Linear Discriminant Functions 

 Statistical Learning Theory & SVMs 

 Ensemble Methods & Boosting 

 Randomized Trees, Forests & Ferns 
 

• Generative Models (4 weeks) 

 Bayesian Networks 

 Markov Random Fields 
 

B. Leibe 
3 
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Applications of SVMs: Text Classification 

• Problem:  

 Classify a document in a number of categories 
 

 

 
 

• Representation: 

 “Bag-of-words” approach 

 Histogram of word counts (on learned dictionary) 

– Very high-dimensional feature space (~10.000 dimensions) 

– Few irrelevant features 
 

• This was one of the first applications of SVMs  

 T. Joachims (1997) 

 

 
4 
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Example Application: Text Classification 

• Results: 

5 
B. Leibe 
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Example Application: Text Classification 

• This is also how you could implement a simple spam 

filter… 

6 
B. Leibe 

Incoming email Word activations 

Dictionary 

SVM 
Mailbox 

Trash 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

M
a
c
h

in
e
 L

e
a
rn

in
g

, 
S

u
m

m
e
r 

‘1
5

 

Example Application: OCR 

• Handwritten digit 

recognition 

 US Postal Service Database 

 Standard benchmark task  

for many learning algorithms 
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Historical Importance 

• USPS benchmark 

 2.5% error: human performance 

 

• Different learning algorithms 

 16.2% error: Decision tree (C4.5) 

   5.9% error: (best) 2-layer Neural Network 

   5.1% error: LeNet 1 – (massively hand-tuned) 5-layer network 

 

• Different SVMs  

   4.0% error: Polynomial kernel (p=3, 274 support vectors) 

   4.1% error: Gaussian kernel    (¾=0.3, 291 support vectors) 

8 
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Example Application: OCR 

• Results 

 Almost no overfitting with higher-degree kernels. 

9 
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• Sliding-window approach 

 

 

 

 

 

 

 

• E.g. histogram representation (HOG) 

 Map each grid cell in the input window to a  

histogram of gradient orientations. 

 Train a linear SVM using training set of  

pedestrian vs. non-pedestrian windows. 
[Dalal & Triggs, CVPR 2005] 

Example Application: Object Detection 

Obj./non-obj. 

Classifier 
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Example Application: Pedestrian Detection 

N. Dalal, B. Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 2005  

B. Leibe 
11 

http://lear.inrialpes.fr/people/dalal
http://lear.inrialpes.fr/people/triggs
http://lear.inrialpes.fr/pubs/2005/DT05/
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Many Other Applications 

• Lots of other applications in all fields of technology 

 OCR 

 Text classification 

 Computer vision 

 

 … 

 

 High-energy physics 

 Monitoring of household appliances 

 Protein secondary structure prediction 

 Design on decision feedback equalizers (DFE) in telephony 
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So Far… 

• We’ve seen already a variety of different classifiers 

 k-NN 

 
 

 Bayes classifiers 

 
 

 Linear discriminants 

 
 

 SVMs 

 
 

• Each of them has their strengths and weaknesses… 

 Can we improve performance by combining them? 
13 
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Topics of This Lecture 

• Ensembles of Classifiers 
 

• Constructing Ensembles 
 Cross-validation 

 Bagging 
 

• Combining Classifiers 
 Stacking 

 Bayesian model averaging 

 Boosting 
 

• AdaBoost 
 Intuition 

 Algorithm 

 Analysis 

 Extensions 
 

• Applications 
14 
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Ensembles of Classifiers 

• Intuition 

 Assume we have K classifiers. 

 They are independent (i.e., their errors are uncorrelated). 

 Each of them has an error probability p < 0.5 on training data. 

– Why can we assume that p won’t be larger than 0.5? 

 

 Then a simple majority vote of all classifiers should have a  

lower error than each individual classifier… 

15 
B. Leibe Slide adapted from Bernt Schiele 
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Ensembles of Classifiers 

• Example 

 K classifiers with error probability p = 0.3. 

 Probability that exactly L classifiers make an error: 

 

 

 

 

 

 

 

 The probability that 11  

or more classifiers make 

an error is 0.026. 

16 
B. Leibe 

pL(1¡ p)K¡L

Slide credit: Bernt Schiele 
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Topics of This Lecture 

• Ensembles of Classifiers 
 

• Constructing Ensembles 
 Cross-validation 

 Bagging 
 

• Combining Classifiers 
 Stacking 

 Bayesian Model Averaging 

 Boosting 
 

• AdaBoost 
 Intuition 

 Algorithm 

 Analysis 

 Extensions 
 

• Applications 
17 
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Methods for obtaining  

a set of classifiers 

Methods for combining  

different classifiers 
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Constructing Ensembles 

• How do we get different classifiers? 

 Simplest case: train same classifier on different data. 

 But… where shall we get this additional data from? 

– Recall: training data is very expensive! 
 

• Idea: Subsample the training data 

 Reuse the same training algorithm several times on different 

subsets of the training data. 
 

• Well-suited for “unstable” learning algorithms 

 Unstable: small differences in training data can produce very 

different classifiers 

– E.g., Decision trees, neural networks, rule learning algorithms,… 

 Stable learning algorithms 

– E.g., Nearest neighbor, linear regression, SVMs,… 

18 
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Constructing Ensembles 

• Cross-Validation 

 Split the available data into N disjunct subsets. 

 In each run, train on N-1 subsets for training a classifier. 

 Estimate the generalization error on the held-out validation set. 

 

 

• E.g. 5-fold cross-validation 
 

19 

train train train train test 

train train train train test 

train train train train test 

train train train train test 

train train train train test 

B. Leibe 
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Constructing Ensembles 

• Bagging = “Bootstrap aggregation” (Breiman 1996) 

 In each run of the training algorithm, randomly select M 

samples from the full set of N training data points. 

 If M = N, then on average, 63.2% of the training points will be 

represented. The rest are duplicates. 

 

• Injecting randomness 

 Many (iterative) learning algorithms need a random initialization 

(e.g. k-means, EM) 

 Perform mutliple runs of the learning algorithm with different 

random initializations. 

 

20 
B. Leibe Slide adapted from Bernt Schiele 
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Topics of This Lecture 

• Ensembles of Classifiers 
 

• Constructing Ensembles 
 Cross-validation 

 Bagging 
 

• Combining Classifiers 
 Stacking 

 Bayesian Model Averaging 

 Boosting 
 

• AdaBoost 
 Intuition 

 Algorithm 

 Analysis 

 Extensions 
 

• Applications 
21 
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Methods for obtaining  

a set of classifiers 

Methods for combining  

different classifiers 
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Stacking 

• Idea 

 Learn L classifiers (based on the training data) 

 Find a meta-classifier that takes as input the output of the L 

first-level classifiers. 

 

 

 

• Example 

 Learn L classifiers with  

leave-one-out cross-validation. 

 Interpret the prediction of the L classifiers as L-dimensional 

feature vector. 

 Learn “level-2” classifier based on the examples generated this 

way. 
22 

B. Leibe Slide credit: Bernt Schiele 

Combination 

Classifier 

Classifier 1 

Classifier L 

Classifier 2 

… 

Data 
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Stacking 

• Why can this be useful? 

 Simplicity 

– We may already have several existing classifiers available. 

 No need to retrain those, they can just be combined with the rest. 
 

 Correlation between classifiers 

– The combination classifier can learn the correlation. 

 Better results than simple Naïve Bayes combination. 
 

 Feature combination 

– E.g. combine information from different sensors or sources 

(vision, audio, acceleration, temperature, radar, etc.). 

– We can get good training data for each sensor individually, 

but data from all sensors together is rare. 

 Train each of the L classifiers on its own input data. 

Only combination classifier needs to be trained on combined input. 

 23 
B. Leibe 
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Recap: Model Combination 

• E.g. Mixture of Gaussians 

 Several components are combined probabilistically. 

 Interpretation: different data points can be generated by 

different components. 

 We model the uncertainty which mixture component is 

responsible for generating the corresponding data point: 

 

 

 

 For i.i.d. data, we write the marginal probability of a data set  

X = {x1,…,xN} in the form: 

24 
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p(x) =

KX

k=1

¼kN (xj¹k;§k)

p(X) =
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p(xn) =
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k=1

¼kN (xnj¹k;§k)
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Bayesian Model Averaging 

• Model Averaging 

 Suppose we have H different models h = 1,…,H with prior 

probabilities p(h). 

 Construct the marginal distribution over the data set 

 

 

 
 

• Interpretation 

 Just one model is responsible for generating the entire data set. 

 The probability distribution over h just reflects our uncertainty 

which model that is. 

 As the size of the data set increases, this uncertainty reduces, 

and p(X|h) becomes focused on just one of the models. 

 25 
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p(X) =

HX

h=1

p(Xjh)p(h)
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Note the Different Interpretations! 

• Model Combination 

 Different data points generated by different model components. 

 Uncertainty is about which component created which data point. 

 One latent variable zn for each data point: 

 

 

 
 

• Bayesian Model Averaging 

 The whole data set is generated by a single model. 

 Uncertainty is about which model was responsible. 

 One latent variable z for the entire data set: 
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p(X) =

NY

n=1

p(xn) =
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n=1

X
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p(xn; zn)

p(X) =
X

z

p(X; z)
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Model Averaging: Expected Error 

• Combine M predictors ym(x) for target output h(x). 

 E.g. each trained on a different bootstrap data set by bagging.  

 The committee prediction is given by 

 

 

 

 The output can be written as the true value plus some error. 

 
 

 Thus, the average sum-of-squares error takes the form 
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yCOM (x) =
1

M

MX

m=1

ym(x)

y(x) = h(x) + ²(x)

Ex =
h
fym(x)¡ h(x)g2

i
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£
²m(x)2

¤



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

M
a
c
h

in
e
 L

e
a
rn

in
g

, 
S

u
m

m
e
r 

‘1
5

 

Model Averaging: Expected Error 

• Average error of individual models 

 

 

• Average error of committee 

 

 

 

• Assumptions 

 Errors have zero mean: 
 

 Errors are uncorrelated: 

 

• Then: 

28 
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Ex [²m(x)²j(x)] = 0

ECOM =
1

M
EAV



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

M
a
c
h

in
e
 L

e
a
rn

in
g

, 
S

u
m

m
e
r 

‘1
5

 

Model Averaging: Expected Error 

29 
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• Average error of committee 

 

 

 This suggests that the average error of a model can be reduced 

by a factor of M simply by averaging M versions of the model! 

 Spectacular indeed… 

 This sounds almost too good to be true… 
 

• And it is… Can you see where the problem is? 

 Unfortunately, this result depends on the assumption that the 

errors are all uncorrelated. 

 In practice, they will typically be highly correlated. 

 Still, it can be shown that 

ECOM =
1

M
EAV

ECOM · EAV
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Discussion: Ensembles of Classifiers  

• Set of simple methods for improving classification 

 Often effective in practice. 
 

• Apparent contradiction 

 We have stressed before that a classifier should be trained on 

samples from the distribution on which it will be tested. 

 Resampling seems to violate this recommendation. 

 Why can a classifier trained on a weighted data distribution do 

better than one trained on the i.i.d. sample? 
 

• Explanation 

 We do not attempt to model the full category distribution here. 

 Instead, try to find the decision boundary more directly. 
 

 Also, increasing number of component classifiers broadens the 

class of implementable decision functions. 
34 
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Topics of This Lecture 

• Ensembles of Classifiers 
 

• Constructing Ensembles 
 Cross-validation 

 Bagging 
 

• Combining Classifiers 
 Stacking 

 Bayesian model averaging 

 Boosting 
 

• AdaBoost 
 Intuition 

 Algorithm 

 Analysis 

 Extensions 
 

• Applications 
35 
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AdaBoost – “Adaptive Boosting”  

• Main idea             [Freund & Schapire, 1996] 

 Instead of resampling, reweight misclassified training examples. 

– Increase the chance of being selected in a sampled training set. 

– Or increase the misclassification cost when training on the full set. 
 

• Components 

 hm(x): “weak” or base classifier 

– Condition: <50% training error over any distribution 

 H(x): “strong” or final classifier 
 

• AdaBoost:  

 Construct a strong classifier as a thresholded linear combination 

of the weighted weak classifiers: 
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H(x) = sign

Ã
MX

m=1

®mhm(x)

!
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AdaBoost: Intuition 

37 
B. Leibe 

Consider a 2D feature 

space with positive and 

negative examples. 

 

Each weak classifier splits 

the training examples with 

at least 50% accuracy. 

 

Examples misclassified by 

a previous weak learner 

are given more emphasis 

at future rounds. 

Slide credit: Kristen Grauman Figure adapted from Freund & Schapire 
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AdaBoost: Intuition 

38 
B. Leibe Slide credit: Kristen Grauman Figure adapted from Freund & Schapire 
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AdaBoost: Intuition 

 

39 
B. Leibe 

Final classifier is 

combination of the 

weak classifiers 

Slide credit: Kristen Grauman Figure adapted from Freund & Schapire 
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AdaBoost – Formalization 

• 2-class classification problem 

 Given: training set X = {x1, …, xN}  

with target values  T = {t1,  …, tN }, tn 2 {-1,1}. 

 Associated weights W={w1, …, wN} for each training point. 
 

• Basic steps 

 In each iteration, AdaBoost trains a new weak classifier hm(x) 

based on the current weighting coefficients W(m). 

 We then adapt the weighting coefficients for each point 

– Increase  wn if xn was misclassified by hm(x). 

– Decrease wn if xn was classified correctly by hm(x). 

 Make predictions using the final combined model 

40 
B. Leibe 

H(x) = sign

Ã
MX

m=1

®mhm(x)

!
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Jm =

NX

n=1

w(m)
n I(hm(x) 6= tn)

AdaBoost – Algorithm 

1. Initialization: Set                 for n = 1,…,N. 
 

2. For m = 1,…,M  iterations 

a) Train a new weak classifier hm(x) using the current weighting 

coefficients W(m) by minimizing the weighted error function  

 

 

b) Estimate the weighted error of this classifier on X: 

 

 

c) Calculate a weighting coefficient for hm(x): 

 
 

d) Update the weighting coefficients: 

 
 

41 
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w(1)
n =

1

N

²m =

PN

n=1 w
(m)
n I(hm(x) 6= tn)PN

n=1 w
(m)
n

®m = ?

w(m+1)
n = ?

How should we 

do this exactly? 
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AdaBoost – Historical Development 

• Originally motivated by Statistical Learning Theory 

 AdaBoost was introduced in 1996 by Freund & Schapire.  

 It was empirically observed that AdaBoost often tends not to 

overfit. (Breiman 96, Cortes & Drucker 97, etc.) 

 As a result, the margin theory (Schapire et al. 98) developed, 

which is based on loose generalization bounds.  

– Note: margin for boosting is not the same as margin for SVM. 

– A bit like retrofitting the theory… 

 However, those bounds are too loose to be of practical value. 
 

• Different explanation       (Friedman, Hastie, Tibshirani, 2000) 

 Interpretation as sequential minimization of an exponential 

error function (“Forward Stagewise Additive Modeling”). 

 Explains why boosting works well. 

 Improvements possible by altering the error function. 
42 

B. Leibe 
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• Exponential error function 

 

 

 

 where fm(x) is a classifier defined as a linear combination of 

base classifiers hl(x): 

 

 

 

• Goal 

 Minimize E with respect to both the weighting coefficients ®l 

and the parameters of the base classifiers hl(x). 
 

 

 

 

fm(x) =
1

2

mX

l=1

®lhl(x)

AdaBoost – Minimizing Exponential Error 

43 
B. Leibe 

E =

NX

n=1

expf¡tnfm(xn)g
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AdaBoost – Minimizing Exponential Error 

• Sequential Minimization 

 Suppose that the base classifiers h1(x),…, hm-1(x) and their 

coefficients ®1,…,®m-1 are fixed. 

 Only minimize with respect to ®m and hm(x). 
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=

NX

n=1

exp

½
¡tnfm¡1(xn)¡

1

2
tn®mhm(xn)

¾

fm(x) =
1

2

mX

l=1

®lhl(x)E =

NX

n=1

expf¡tnfm(xn)g with 

=

NX

n=1

w(m)
n exp

½
¡1

2
tn®mhm(xn)

¾
= const. 
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AdaBoost – Minimizing Exponential Error 

 

 

 

 Observation:  

– Correctly classified points:  tnhm(xn) = +1 

– Misclassified points:        tnhm(xn) = 1 
 

 Rewrite the error function as 

45 
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E =

NX

n=1

w(m)
n exp

½
¡1

2
tn®mhm(xn)

¾

E = e¡®m=2
X

n2Tm

w(m)
n + e®m=2

X

n2Fm

w(m)
n

 collect in Tm 

 collect in Fm 

=
³
e®m=2 ¡ e¡®m=2

´ NX

n=1

w(m)
n I(hm(xn) 6= tn) + e¡®m=2

NX

n=1

w(m)
n
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AdaBoost – Minimizing Exponential Error 

 

 

 

 Observation:  

– Correctly classified points:  tnhm(xn) = +1 

– Misclassified points:        tnhm(xn) = 1 
 

 Rewrite the error function as 
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E =

NX

n=1

w(m)
n exp

½
¡1

2
tn®mhm(xn)

¾

E = e¡®m=2
X

n2Tm

w(m)
n + e®m=2

X

n2Fm

w(m)
n

 collect in Tm 

 collect in Fm 

=
³
e®m=2 ¡ e¡®m=2

´ NX

n=1

w(m)
n I(hm(xn) 6= tn) + e¡®m=2

NX

n=1

w(m)
n
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AdaBoost – Minimizing Exponential Error 

47 
B. Leibe 

• Minimize with respect to hm(x): 

 

 

 

 

 

 This is equivalent to minimizing 

 

 
 

 (our weighted error function from step 2a) of the algorithm) 

 

 We’re on the right track. Let’s continue… 

E =
³
e®m=2 ¡ e¡®m=2

´ NX

n=1

w(m)
n I(hm(xn) 6= tn) + e¡®m=2

NX

n=1

w(m)
n

Jm =

NX

n=1

w(m)
n I(hm(x) 6= tn)

= const. = const. 

@E

@hm(xn)

!
= 0
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AdaBoost – Minimizing Exponential Error 
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• Minimize with respect to ®m: 

 

 

 

 

 

 

 

 

 

 
 

 Update for the ® coefficients: 

E =
³
e®m=2 ¡ e¡®m=2

´ NX

n=1

w(m)
n I(hm(xn) 6= tn) + e¡®m=2

NX

n=1

w(m)
n

µ
1

2
e®m=2 +

1

2
e¡®m=2

¶ NX

n=1

w(m)
n I(hm(xn) 6= tn)

!
=

1

2
e¡®m=2

NX

n=1

w(m)
n

@E

@®m

!
= 0

PN

n=1 w
(m)
n I(hm(xn) 6= tn)PN

n=1 w
(m)
n

=
e¡®m=2

e®m=2 + e¡®m=2

²m =
1

e®m + 1

®m = ln

½
1¡ ²m

²m

¾

²m :=
weighted 

error 
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AdaBoost – Minimizing Exponential Error 
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• Remaining step: update the weights  

 Recall that 

 

 

 

 

 
 

 Therefore 

 

 

 

 
 

 Update for the weight coefficients. 

 

E =

NX

n=1

w(m)
n exp

½
¡1

2
tn®mhm(xn)

¾

This becomes              

in the next iteration. 

w(m+1)
n

w(m+1)
n = w(m)

n exp

½
¡1

2
tn®mhm(xn)

¾

= w(m)
n expf®mI(hm(xn) 6= tn)g

= :::
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1. Initialization: Set                 for n = 1,…,N. 
 

2. For m = 1,…,M  iterations 

a) Train a new weak classifier hm(x) using the current weighting 

coefficients W(m) by minimizing the weighted error function  

 

 

b) Estimate the weighted error of this classifier on X: 

 

 

c) Calculate a weighting coefficient for hm(x): 

 
 

d) Update the weighting coefficients: 

 
 

Jm =

NX

n=1

w(m)
n I(hm(x) 6= tn)

AdaBoost – Final Algorithm 
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w(1)
n =

1

N

²m =

PN

n=1 w
(m)
n I(hm(x) 6= tn)PN

n=1 w
(m)
n

®m = ln

½
1¡ ²m

²m

¾

w(m+1)
n = w(m)

n expf®mI(hm(xn) 6= tn)g
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AdaBoost – Analysis 

• Result of this derivation 

 We now know that AdaBoost minimizes an exponential error 

function in a sequential fashion. 

 This allows us to analyze AdaBoost’s behavior in more detail. 

 In particular, we can see how robust it is to outlier data points. 

51 
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Recap: Error Functions 

 

 

 

 

 

 

 

 
 

• Ideal misclassification error function (black) 

 This is what we want to approximate,  

 Unfortunately, it is not differentiable. 

 The gradient is zero for misclassified points. 

 We cannot minimize it by gradient descent. 52 
Image source: Bishop, 2006 

Ideal misclassification error 

Not differentiable! 

zn = tny(xn)
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Recap: Error Functions 

 

 

 

 

 

 

 

 
 

• Squared error used in Least-Squares Classification 

 Very popular, leads to closed-form solutions. 

 However, sensitive to outliers due to squared penalty. 

 Penalizes “too correct” data points 

 Generally does not lead to good classifiers. 53 
Image source: Bishop, 2006 

Ideal misclassification error 

Squared error 

Penalizes “too correct” 

 data points! 

Sensitive to outliers! 

zn = tny(xn)
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Recap: Error Functions 

 

 

 

 

 

 

 

 
 

• “Hinge error” used in SVMs 

 Zero error for points outside the margin (zn > 1)  

sparsity 

 Linear penalty for misclassified points (zn < 1)   robustness 

 Not differentiable around zn = 1  Cannot be optimized directly. 

 

54 
Image source: Bishop, 2006 

Ideal misclassification error 

Hinge error 

Squared error 

Not differentiable! Favors sparse  

solutions! 

Robust to outliers! 

zn = tny(xn)

B. Leibe 
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Discussion: AdaBoost Error Function 

 

 

 

 

 

 

 

 
 

• Exponential error used in AdaBoost 

 Continuous approximation to ideal misclassification function. 

 Sequential minimization leads to simple AdaBoost scheme. 

 Properties? 

 55 
B. Leibe Image source: Bishop, 2006 

Ideal misclassification error 

Hinge error 

Squared error 

Exponential error 

zn = tny(xn)
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Discussion: AdaBoost Error Function 

 

 

 

 

 

 

 

 
 

• Exponential error used in AdaBoost 

 No penalty for too correct data points, fast convergence. 

 Disadvantage: exponential penalty for large negative values! 

 Less robust to outliers or misclassified data points! 

 56 
B. Leibe Image source: Bishop, 2006 

Ideal misclassification error 

Hinge error 

Squared error 

Exponential error 
Sensitive to outliers! 

zn = tny(xn)
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Discussion: Other Possible Error Functions 

 

 

 

 

 

 

 

 
 

• “Cross-entropy error” used in Logistic Regression 

 Similar to exponential error for z>0. 

 Only grows linearly with large negative values of z. 

 Make AdaBoost more robust by switching to this error function. 

 “GentleBoost” 

 

57 
B. Leibe Image source: Bishop, 2006 

Ideal misclassification error 

Hinge error 

Squared error 

Exponential error 

Cross-entropy error 

E =¡
X

ftn lnyn + (1¡ tn) ln(1¡ yn)g

zn = tny(xn)
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Summary: AdaBoost 

• Properties 

 Simple combination of multiple classifiers. 

 Easy to implement. 

 Can be used with many different types of classifiers. 

– None of them needs to be too good on its own. 

– In fact, they only have to be slightly better than chance. 

 Commonly used in many areas. 

 Empirically good generalization capabilities. 
 

• Limitations 

 Original AdaBoost sensitive to misclassified training data points. 

– Because of exponential error function. 

– Improvement by GentleBoost 

 Single-class classifier 

– Multiclass extensions available 
58 
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Topics of This Lecture 

• Ensembles of Classifiers 
 

• Constructing Ensembles 
 Cross-validation 

 Bagging 
 

• Combining Classifiers 
 Stacking 

 Bayesian model averaging 

 Boosting 
 

• AdaBoost 
 Intuition 

 Algorithm 

 Analysis 

 Extensions 
 

• Applications 
59 
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Example Application: Face Detection 

• Frontal faces are a good example of a class where 

global appearance models + a sliding window 

detection approach fit well: 

 Regular 2D structure 

 Center of face almost shaped like a “patch”/window 

 

 

 

 

 

• Now we’ll take AdaBoost and see how the Viola-

Jones face detector works 

60 
B. Leibe Slide credit: Kristen Grauman 
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Feature extraction 

61 
B. Leibe 

Feature output is difference 

between adjacent regions 

[Viola & Jones, CVPR 2001] 

Efficiently computable 

with integral image: any 

sum can be computed 

in constant time 

Avoid scaling images  

scale features directly 

for same cost 

“Rectangular” filters 

Value at (x,y) is 

sum of pixels 

above and to the 

left of (x,y) 

Integral image 

Slide credit: Kristen Grauman 
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Large Library of Filters 

Considering all 

possible filter 

parameters: 

position, scale, 

and type:  

180,000+ possible 

features 

associated with 

each 24 x 24 

window 

 

Use AdaBoost both to select the informative features 

and to form the classifier 

B. Leibe [Viola & Jones, CVPR 2001] Slide credit: Kristen Grauman 
62 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

M
a
c
h

in
e
 L

e
a
rn

in
g

, 
S

u
m

m
e
r 

‘1
5

 

AdaBoost for Feature+Classifier Selection 

• Want to select the single rectangle feature and threshold 

that best separates positive (faces) and negative (non-

faces) training examples, in terms of weighted error. 

Outputs of a 

possible rectangle 

feature on faces 

and non-faces. 

…
 

Resulting weak classifier: 

For next round, reweight the 

examples according to errors, 

choose another filter/threshold 

combo. 

B. Leibe [Viola & Jones, CVPR 2001] Slide credit: Kristen Grauman 
63 
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AdaBoost for Efficient Feature Selection 

• Image features = weak classifiers 

• For each round of boosting: 

 Evaluate each rectangle filter on each example 

 Sort examples by filter values 

 Select best threshold for each filter (min error) 

– Sorted list can be quickly scanned for the optimal threshold 

 Select best filter/threshold combination 

 Weight on this features is a simple function of error rate 

 Reweight examples 

64 
B. Leibe 

P. Viola, M. Jones, Robust Real-Time Face Detection, IJCV, Vol. 57(2), 2004. 

(first version appeared at CVPR 2001)  

Slide credit: Kristen Grauman 

http://www.springerlink.com/content/q70v4h6715v5p152/fulltext.pdf
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References and Further Reading 

• More information on Classifier Combination and Boosting 

can be found in Chapters 14.1-14.3 of Bishop’s book.  

 

 

 

 

 
 
 

• A more in-depth discussion of the statistical interpre-

tation of AdaBoost is available in the following paper: 

 J. Friedman, T. Hastie, R. Tibshirani, Additive Logistic 

Regression: a Statistical View of Boosting, The Annals of 

Statistics, Vol. 38(2), pages 337-374, 2000. 
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