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Machine Learning - Lecture 10

Model Combination & Boosting

02.06.2015

Bastian Leibe

RWTH Aachen
http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de

Manvy slides adapted from B. Schiele

Course Outline

¢ Fundamentals (2 weeks)
» Bayes Decision Theory
» Probability Density Estimation

¢ Discriminative Approaches (5 weeks)
» Linear Discriminant Functions
» Statistical Learning Theory & SVMs

» Ensemble Methods & Boosting
» Randomized Trees, Forests & Ferns

¢ Generative Models (4 weeks)
» Bayesian Networks
» Markov Random Fields

B. Leibe

Example Application: Text Classification

¢ Results:

RWTHACHEN

SVM (poly) SVM (rbf)

degree d = width v =
Bayes|Rocchio|Ca.5k-NNJ| 1 | 2 | 3 | 4| 5 [[os]o8]10]12
[earn 95.9 | 96,1 |96.1]97.3 [[98.2]08.4]08.5]98.4] 98.3 |[98.5]98.5] 98.4| 95.3
acq 91.5 | 92.1 [85.3]92.0 ||92.6[94.6]95.2[95.2|95.3][95.0 [95.3|95.3|05.4
money-fx || 629 | 67.6 [69.4]78.2 [[66.9]72.5]75.4|74.976.2||74.0[75.1/76.3| 75.9
grain 72.5 | 79.5 |89.1]82.2 [91.3[93.1[92.4]91.3[89.5[[93.1[91.9[91.9]90.6
crude 810 | 815 [75.5]85.7 ||86.0[87.3[88.6[88.8/57.8 ||88.9]89.0/85.0 | 85.2
trade 50.0 | 77.4 [59.2]77.4 |[69.2[75.5| 76.6|77.3 |77.1]| 76.9 |78.0]77.8] 76.8
interest || 58.0 | 72.5 [49.1 74,0 [[69.8[63.3[67.973.1|76.2( 74.4|75.0/76.2] 76.1
ship 78.7 | 831 [80.9]79.2 |[82.0[85.4]86.0|86.5| 86.0 ||85.4|86.5| 87,6 | 87.1
wheat || 60.6 | 794 |85.5] 76.6 [[83.1]84.5]85.2|85.9]| 83.8 |[85.2|85.0] 85,9 | 85.9
corn 47.3 | 622 |87.7] 779 |[86.0[86.5[85.3|85.7| 83.0 ||86.1]85.7| 85.7 | 84.5
] 84.2[85.1]85.9]86.2]85.9 ]| 86.4]86.5] 86.3 | 86.2

microavg. | 72.0 | 79.9 79.4/82.3 H combined: 86.0 combined: 86.4

B. Leibe

Machine Learning, Summer ‘15

Machine Learning, Summer ‘15

©0
=
=
)
£
=
3
(2
=)
=
£
a
51
o
o
=
=
S
<]
=

Announcements

¢ Tentative Exam Dates
» Planning with the following dates:
» 1stdate: Thursday, 13.08., afternoon
» 2nd date: Friday, 11.09., afternoon

We tried to avoid overlaps with other Computer Science Master
lectures as much as possible.

Exact slot durations and rooms will still be announced.

v

v

v

Does anybody still have conflicts with both exam dates?

B. Leibe
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Applications of SVMs: Text Classification

¢ Problem:
» Classify a document in a number of categories

d=-
¢ Representation:

» “Bag-of-words” approach

» Histogram of word counts (on learned dictionary)
- Very high-dimensional feature space (~10.000 dimensions)
- Few irrelevant features

¢ This was one of the first applications of SVMs
» T. Joachims (1997)

B. Leibe
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Example Application: Text Classification

¢ This is also how you could implement a simple spam
filter...

Incoming email

- A

Dictionary

41_.|L.L-_L‘_'

Word activations

Mailbox

C2

)
=

Trash

B. Leibe
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Example Application: OCR Historical Importance

¢ Handwritten digit EYTIREVE AART ERRRER RS A

e USPS benchmark
recognition JLRazl )l &q S LLARLEHR2LEZY

}.22.1.3?.22919&1&50“.1 RRAILLZ » 2.5% error: human performance
» US Postal Service Database 329&12515%;&559“;1925
. Standard benchmark task ~ $12 '}%égéﬁimgu 5901875 « Different learning algorithms
for many learning algorithms */’ églg}néilgkilizkli‘.iiﬁi b

» 16.2% error: Decision tree (C4.5)
> 5.9% error: (best) 2-layer Neural Network
> 5.1% error: LeNet 1 - (massively hand-tuned) 5-layer network

9455522901336 L12RQ3A4R3.23
;:’Pli".LLZ-i?J-ﬁ}HQiS”E}.!J.
132031t LiLaz)e23)2)00 LY
IEINEAEE T CRETSRRE 2 LN SN
£35?159&31£ﬂ1151:§J.,QQ.LG.JQJ.

« Different SVMs

» 4.0% error: Polynomial kernel (p=3, 274 support vectors)
> 4.1% error: Gaussian kernel (¢=0.3, 291 support vectors)

a?LAP§$1E§ A2 LAR, @
TelE2To1eY 121 1 br 010 8)
©109707558133).2230)58L10R%
ESEEYREE SR TN ER RN RE-BE 21
L2308R.C352622324035 16055
LEZASL08IRIREISARIALILQL
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Example Application: OCR Example Application: Object Detection
¢ Results o Slldlng -window approach c"Pe btm,e
» Almost no overfitting with higher-degree kernels. Vs
degree of || dimensionality of | support | raw
polynornial feature space vectors | error —| Obj./non-obj.
1 256 282 8.9 Classifier
2 2 A2 33000 227 4.7 2
= 3 1% 108 274 4.0 z
£ 4 &1 x 10° 321 4.2 £
2] 12}
5 5 1 x 1012 374 4.3 E} . .
g 6 a1 x 10 377 45 = « E.g. histogram representation (HOG)
§ 7 ~1x 1016 429 4.5 § » Map each grid cell in the input window to a
@ ] histogram of gradient orientations.
§ % » Train a linear SVM using training set of
= B = pedestrian vs. non-pedestrian windows.
B. Leibe [Dalal & Triggs, CVPR 2005
RWTH ACHET RWTH ACHET

Example Application: Pedestrian Detection Many Other Applications

¢ Lots of other applications in all fields of technology
» OCR
» Text classification
» Computer vision

» High-energy physics

» Monitoring of household appliances

» Protein secondary structure prediction

» Design on decision feedback equalizers (DFE) in telephony
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N. Dalal, B. Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 2005
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http://lear.inrialpes.fr/people/dalal
http://lear.inrialpes.fr/people/triggs
http://lear.inrialpes.fr/pubs/2005/DT05/
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So Far... Topics of This Lecture
* We’ve seen already a variety of different classifiers e Ensembles of Classifiers
- k-NN ¢ Constructing Ensembles
7> . Cross-validation
» Bagging
~ Bayes classifiers . igs
4 ¢ Combining Classifiers
» Stacking
e e : 5
5 . Linear discriminants 5 - Bayesian model averaging
£ £ » Boosting
£ £
@ 7| ¢ AdaBoost
E - SVMs E » Intuition
§ % » Algorithm
° 3 » Analysis
é ¢ Each of them has their strengths and weaknesses... E . Extensions
<§“u » Can we improve performance by combining them? é « Applications
B. Leibe 13 B. Leibe “
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Ensembles of Classifiers Ensembles of Classifiers
¢ Intuition ¢ Example
» Assume we have K classifiers. » K classifiers with error probability p = 0.3.
» They are independent (i.e., their errors are uncorrelated). » Probability that exactly L classifiers make an error:
» Each of them has an error probability p < 0.5 on training data. pL(l _ p)KfL
- Why can we assume that p won’t be larger than 0.5?
% . Then a simple majority vote of all classifiers should have a g il
2 lower error than each individual classifier... 2 &1 |
5 £ i 1
@ @ i o !
H g L
= £ . The probability that 11 s |
s g or more classifiers make one 1l
2 2 an error is 0.026. on |
g g Nerber o st e
; 15 ) 16
lide adapted from Bernt Schiele B. Leibe ide credit: Bernt Schiele B. Leibe

Topics of This Lecture Constructing Ensembles

¢ How do we get different classifiers?

» Constructing Ensembles Methods f btaini » Simplest case: train same classifier on different data.
» Cross-validation ea szt sofocrl:ssi?ig]::g » But... where shall we get this additional data from?
» Bagging - Recall: training data is very expensive!
¢ Combining Classifiers -
Stackingg Methods for combining ¢ |dea: Subsample the training data
. Bayesian Model Averaging different classifiers > Retl)Jse':':hef ::m: tr.ai.ning:;I atlgorithm several times on different
. Boosting subsets of the training data.

¢ Well-suited for “unstable” learning algorithms
» Unstable: small differences in training data can produce very
different classifiers
- E.g., Decision trees, neural networks, rule learning algorithms,...
» Stable learning algorithms
- E.g., Nearest neighbor, linear regression, SVMs,...
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Constructing Ensembles

¢ Cross-Validation
» Split the available data into IV disjunct subsets.
» In each run, train on N-1 subsets for training a classifier.
» Estimate the generalization error on the held-out validation set.

¢ E.g. 5-fold cross-validation

Machine Learning, Summer ‘15

B. Leibe

Topics of This Lecture

¢ COZStrUCt::g _Ensembles Methods for obtaining
» Cross-validation a set of classifiers
» Bagging
¢ Combining Classifiers
» Stacking Methods for combining
0 . i
g » Bayesian Model Averaging different classifiers
g » Boosting
£
2]
2
£
[
g
2
=
£
B. Leibe z
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Stacking

¢ Why can this be useful?
» Simplicity
- We may already have several existing classifiers available.
= No need to retrain those, they can just be combined with the rest.

» Correlation between classifiers
- The combination classifier can learn the correlation.
= Better results than simple Naive Bayes combination.

» Feature combination
- E.g. combine information from different sensors or sources
(vision, audio, acceleration, temperature, radar, etc.).
- We can get good training data for each sensor individually,
but data from all sensors together is rare.
= Train each of the L classifiers on its own input data.
Only combination classifier needs to be trained on combined input.
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Constructing Ensembles

« Bagging = “Bootstrap aggregation” (Breiman 1996)
» In each run of the training algorithm, randomly select M/
samples from the full set of NV training data points.

» If M = N, then on average, 63.2% of the training points will be
represented. The rest are duplicates.

¢ Injecting randomness

» Many (iterative) learning algorithms need a random initialization
(e.g. k-means, EM)

» Perform mutliple runs of the learning algorithm with different
random initializations.

Machine Learning, Summer ‘15

ide adapted from Bernt Schiele B. Leibe

Stacking

¢ |dea
» Learn L classifiers (based on the training data)
» Find a meta-classifier that takes as input the output of the L

first-level classifiers.
_Classifier 1
Classifier 2

20
5
E * Example
"c’.’ . Learn L classifiers with
= leave-one-out cross-validation.
g ~ Interpret the prediction of the L classifiers as L-dimensional
E:: feature vector.
§ » Learn “level-2” classifier based on the examples generated this
= way.
ide credit: np:n Schiele B. Leibe z

Recap: Model Combination

¢ E.g. Mixture of Gaussians
Several components are combined probabilistically.

Interpretation: different data points can be generated by
different components.

We model the uncertainty which mixture component is
responsible for generating the corresponding data point:

K
p(x) =Y mN (x|, Br)

k=1

v

v

v

» Fori.i.d. data, we write the marginal probability of a data set
X ={xy,...,x\} in the form:

N N K
p(X) =[] pen) = [ D mlN (xnl ity k)
n=1 n=1k=1
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Bayesian Model Averaging

¢ Model Averaging
» Suppose we have H different models h = 1,...,H with prior
probabilities p(h).
» Construct the marginal distribution over the data set

p(X) = 3 p(X[R)p(h)
h=1

¢ Interpretation
» Just one model is responsible for generating the entire data set.
» The probability distribution over h just reflects our uncertainty
which model that is.
As the size of the data set increases, this uncertainty reduces,
and p(X|h) becomes focused on just one of the models.

v

B. Leibe
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Model Averaging: Expected Error

e Combine M predictors y,,(x) for target output h(x).
» E.g. each trained on a different bootstrap data set by bagging.
» The committee prediction is given by

LM
yoom (x) = 7= > ym(x)

» The output can be written as the true value plus some error.
Y(x) = h(x) +€(x)
» Thus, the average sum-of-squares error takes the form

Ex = [{ym () = h()}| = Ex [em(x)]

B. Leibe
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RWTH ACHET
Model Averaging: Expected Error
¢ Average error of committee
1
E =_E
com i AV
» This suggests that the average error of a model can be reduced
by a factor of M simply by averaging M versions of the model!

» Spectacular indeed...
» This sounds almost too good to be true...

e And it is... Can you see where the problem is?

> Unfortunately, this result depends on the assumption that the
errors are all uncorrelated.

» In practice, they will typically be highly correlated.
» Still, it can be shown that
Ecoum + Eav

B. Leibe

Machine Learning, Summer ‘15
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Note the Different Interpretations!

¢ Model Combination
. Different data points generated by different model components.
» Uncertainty is about which component created which data point.
= One latent variable z, for each data point:

N N
p(X) = Hp(xn) = H Zp(xmzn)

n=1 z,

* Bayesian Model Averaging
» The whole data set is generated by a single model.
» Uncertainty is about which model was responsible.
= One latent variable z for the entire data set:

p(X) = p(X,2)

B. Leibe

RWTH CHE
Model Averaging: Expected Error

* Average error of indiviﬂ?ual models

Eay = 1\17 Z Ex [em(x)z}

m=1

¢ Average error of committee

1 XM 2 LM 2]
Ecom = Ex {H;ym(x)*h(x)} =Ex {szm(x)}

e Assumptions

~ Errors have zero mean: [Ex [e(x)] =0

- Errors are uncorrelated: [y [€,,,(x)€;(x)] =0
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Discussion: Ensembles of Classifiers

¢ Set of simple methods for improving classification
» Often effective in practice.

e Apparent contradiction

» We have stressed before that a classifier should be trained on
samples from the distribution on which it will be tested.
Resampling seems to violate this recommendation.

» Why can a classifier trained on a weighted data distribution do
better than one trained on the i.i.d. sample?

v

¢ Explanation
» We do not attempt to model the full category distribution here.
» Instead, try to find the decision boundary more directly.
» Also, increasing number of component classifiers broadens the

class of implementable decision functions.
B. Leibe




Topics of This Lecture

¢ AdaBoost
> Intuition
» Algorithm
> Analysis
» Extensions

Machine Learning, Summer ‘15

B. Leibe

AdaBoost: Intuition

Consider a 2D feature
space with positive and
negative examples.

Weak
Classifier 1 ™

Each weak classifier splits
the training examples with
at least 50% accuracy.

Examples misclassified by
a previous weak learner
are given more emphasis
at future rounds.

Machine Learning, Summer ‘15
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Slide credit: Kristen Grauman B. Leibe Figure adapted from Freund & Schapir

AdaBoost: Intuition

o © Weights
Weak S ® o Increased (]
)

Classifier 1| > - - -
LY Weak _\_. )
) Classifier 2 ——1 6}

Weak —F——
classifier 3 o,
Final classifier is
combination of the
weak classifiers
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Slide credit: Kristen Grauman LA Eisure adapted from Freund & Schapird

RWTH/CET
AdaBoost - “Adaptive Boosting”

¢ Main idea [Freund & Schapire, 1996]
» Instead of resampling, reweight misclassified training examples.
- Increase the chance of being selected in a sampled training set.
- Or increase the misclassification cost when training on the full set.

+ Components
> h,(x): “weak” or base classifier
- Condition: <50% training error over any distribution
» H(x): “strong” or final classifier

¢ AdaBoost:

» Construct a strong classifier as a thresholded linear combination
of the weighted weak classifiers:

M
H(x) = sign <Z amhm(x)>
m=1

B. Leibe

Machine Learning, Summer ‘15

36

AdaBoost: Intuition

o Q Weights
Weak ® g | Inoreased ]
= Py

Classifier 1 ™~ ---
LY Weak >.___: (]
o9 Classifier 2 — Q

Machine Learning, Summer ‘15
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ide credit: Kristen Grauman B. Leibe Figure adapted from Freund & Schapir

AdaBoost - Formalization

¢ 2-class classification problem
~ Given: training set X = {x,, ..., Xy}
with target values T ={t,, ...ty }, ¢, € {-1,1}.
» Associated weights W={w,, ..., wy} for each training point.

¢ Basic steps

~ In each iteration, AdaBoost trains a new weak classifier &,,(x)
based on the current weighting coefficients W),

» We then adapt the weighting coefficients for each point
- Increase w, if x, was misclassified by h,,(x).
- Decrease w, if x, was classified correctly by h,,(x).

» Make predictions using the final combined model

M
H(x) = sign (Z amhm(x)>
m=1

B. Leibe
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AdaBoost - Algorithm

1. Initialization: Set w() = % forn=1,...,.N.
2. For m=1,...,M iterations

a) Train a new weak classifier h,,(x) using the current weighting
coefficients W™ by minimizing the weighted error function
N
I = w0 #t0) - o naem
b) Estimate the weighted error of this classifier on X:
Sy " T (hin (%) # ta)
e =t 1 T
Zlnvzl sz )
c) Calculate a weighting coefficient for h,,(x):

= 7

How should we

d) Update the weighting coefficients: do this exactly?

wimt) = 7

Machine Learning, Summer ‘15
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AdaBoost - Minimizing Exponential Error

¢ Exponential error function
N

E= Z exp {—tn frm (xn)}

- where f,,(x) is a classifier defined as a linear combination of
base classifiers h,(x):

fm(x) = %Zalhl(x)
=1

¢ Goal

» Minimize E with respect to both the weighting coefficients «;
and the parameters of the base classifiers h,(x).

Machine Learning, Summer ‘15

. 43
B. Leibe
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AdaBoost - Minimizing Exponential Error

N
1
E=Y wm — O o (%
nZIwn exp{ Flnax (x )}

» Observation:
- Correctly classified points: t,h,,(x,) = +1 = collectin 7,,
- Misclassified points: th,(x,) =-1 = collect in F,

m

> Rewrite the error function as

E=eom/2 Z w{™
n€Tm

N
= (eam/z ) Zwﬁfn)l(hm (%n) # tn)
n=1
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AdaBoost - Historical Development

¢ Originally motivated by Statistical Learning Theory
» AdaBoost was introduced in 1996 by Freund & Schapire.
» It was empirically observed that AdaBoost often tends not to
overfit. (Breiman 96, Cortes & Drucker 97, etc.)
As a result, the margin theory (Schapire et al. 98) developed,
which is based on loose generalization bounds.
- Note: margin for boosting is not the same as margin for SVM.
- A Dbit like retrofitting the theory...
» However, those bounds are too loose to be of practical value.

v

o Different explanation (Friedman, Hastie, Tibshirani, 2000)

» Interpretation as sequential minimization of an exponential
error function (“Forward Stagewise Additive Modeling”).

» Explains why boosting works well.
» Improvements possible by altering the error function.

Machine Learning, Summer ‘15

42

B. Leibe
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AdaBoost - Minimizing Exponential Error

¢ Sequential Minimization
» Suppose that the base classifiers h,(x),..., h,,.,(x) and their
coefficients a,...,q,, , are fixed.

» Xy

= Only minimize with respect to «,, and h,,(x).

N
E= Zexp{ftnfm(xn)} with fm(x) = %Zalhl(x)
=1

wn
= n=1
g N 1
5 = Zexp {7tnfmfl(xn) - §tnamhm(xn)}
= n=1 T
E = const.
x 1
2 = Z w{™ exp { - 5tncvm hom(x5) }
S n=1
= ) 44
B. Leibe
RWTH ACHET

AdaBoost - Minimizing Exponential Error

N
1
E=Y wm — O o (%X
nZIwn exp{ Flnax (x )}

» Observation:
- Correctly classified points: ,h,,(x,) = +1 = collectin 7,,
- Misclassified points: th,(x,) = -1 = collect in F,

m

» Rewrite the error function as

e

N N
= (e"‘"’/z - e"”"n) W (hyp (%) # t) + € Om/? Z wl™
1 n=1

n=
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AdaBoost - Minimizing Exponential Error

e . OE
« Minimize with respect to h,,(x): e <
E— ( o /2 _ C—a,,/l) Zw(m)I B (%) # tn) + €~ /2 Zw(m
n=1
— %/—/
= const. = const.
= This is equivalent to minimizing
T = zwm hon(x) # )

(our weighted error function from step 2a) of the algorithm)

= We’re on the right track. Let’s continue...
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AdaBoost - Minimizing Exponential Error
¢ Remaining step: update the weights
> Recall that
al 1
E= Z ngm) exp {7 §tnarnhrn (xn)}
n=1
This becomes w(" 1)
in the next iteration.
» Therefore
1
wm D) = () exp {—itnamhm(xn)}
= w£Lm) exp{amI (b (xn) # tn)}
= Update for the weight coefficients.
49
B. Leibe
RWTH ACHET

AdaBoost - Analysis

¢ Result of this derivation

» We now know that AdaBoost minimizes an exponential error
function in a sequential fashion.

» This allows us to analyze AdaBoost’s behavior in more detail.
» In particular, we can see how robust it is to outlier data points.

B. Leibe

Machine Learning, Summer ‘15
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AdaBoost - Minimizing Exponential Error
E
¢ Minimize with respect to a,,: ;T =0

N
E = (e””/z — e”’mﬂ) Z 1U$L'”)I m(Xn) # tn) + e 0m/? z w("'

n=1 n=1

N
(%e"""/2 +¥ 7"‘"‘“) Zw " (R (%) # tn) L ge"’m/z Zwﬁ:")
n=1

Yy
weighted L _
€m = =
error

e—am/2

eam/2 4 e—am/2
1
em + 1

1—en
a, = In -
m

€m

= Update for the o coefficients:

48

B. Leibe

AdaBoost - Final Algorithm

1. Initialization: Set w() = JLV forn=1,....N.
2. For m=1,...,M iterations

a) Train a new weak classifier h,,(x) using the current weighting
coefficients W(m) by minimizing the weighted error function

Jm Zu ST (o (%) # )

b) Estimate the weighted error of this classifier on X:

€m

N (m]
Zn 1 Wn
c) Calculate a weighting coefficient for h,,(x):
—€m
Qay, =1n
€m

d) Update the weighting coefficients:
w™ Y = w(™ exp { I (hn(%0) # t)}
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Recap: Error Functions
tC { 1 1} E[:z.,,) Ideal misclassification error]
Not differentiable! ———
2 - o’ 1 2 Zn = tny(xn)

¢ Ideal misclassification error function (black)
» This is what we want to approximate,
» Unfortunately, it is not differentiable.
» The gradient is zero for misclassified points.

= We cannot minimize it by gradient descent. 52
lmage source: Bishop, 2004
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Recap: Error Functions

t,C{ 1.1}

Sensitive to outliers!

E(z,)

RWTHAACHE

Ideal misclassification error]
Squared error

Penalizes “too correct”
data points!

-2 -1
¢ Squared error used in Least-Squares Classification

» Very popular, leads to closed-form solutions.
» However, sensitive to outliers due to squared penalty.

0

» Penalizes “too correct” data points

= Generally does not lead to good classifiers.

=3 = tny(xn)

Image source: Bishop, 200

Discussion: AdaBoost Error Function

E(z,)

RWTHACHEN

Ideal misclassification error]
Squared error
Hinge error

» Continuous approximation to ideal misclassification function.
» Sequential minimization leads to simple AdaBoost scheme.

» Properties?

B. Leibe

5+ Zn = tay(Xn)

55

Image source; Bishop, 200
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Discussion: Other Possible Error Functions

E= Z{f/n Iny, + (1 —t,)In(1

E(z,)

Yn)}

RWTHACHEN

Ideal misclassification error]
Squared error
Hinge error

Cross-entropy error

e “Cross-entropy error” used in Logistic Regression

0

» Similar to exponential error for z>0.

» Only grows linearly with large negative values of z.
= Make AdaBoost more robust by switching to this error function.
57

= “GentleBoost”

B. Leibe

1

3 Zn = tny(xn)

Image source: Bishop, 200d
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Recap: Error Functions

Robust to outliers!

Not differentiable! \

E(z,)

RWTHAACHE

Ideal misclassification error]
Squared error
Hinge error

Favors sparse
solutions!

-2 =1 0

e “Hinge error” used in SVMs

» LZero error for points outside the margin (z, > 1) =

sparsity

» Linear penalty for misclassified points (2, < 1) = robustness

> Not differentiable around > =
B.'teibe

Y—=%= tny(Xy)

1 = Cannot be optimized directly«s
lma;

ource; Bishop, 200
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Discussion: AdaBoost Error Function
E[::”) Ideal misclassification error]
Squared error
Hinge error
Sensitive to outliers!
. B— 0 = 5+ Zn = tay(Xn)

» No penalty for too correct data

» Disadvantage: exponential penalty for large negative values!
= Less robust to outliers or misclassified data points!

B. Leibe

points, fast convergence.

56

Image source; Bishop, 200
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Summary: AdaBoost

¢ Properties
» Simple combination of multiple
» Easy to implement.

» Can be used with many different types of classifiers.
- None of them needs to be too good on its own.
- In fact, they only have to be slightly better than chance.

» Commonly used in many areas.
» Empirically good generalization

¢ Limitations

» Original AdaBoost sensitive to misclassified training data points.
- Because of exponential error function.

- Improvement by GentleBoost
» Single-class classifier
- Multiclass extensions available

B. Leibe

classifiers.

capabilities.




Machine Learning, Summer ‘15

Machine Learning, Summer ‘15

Topics of This Lecture

¢ Applications

B. Leibe

Slide credit: Kristen Grauman B. Leibe

Feature extraction
“Rectangular” filters
g ‘ g Feature output is difference
between adjacent regions
. | =] (LN
al-)

Value at (x,y) is
_sum of pixels

above and to the »

Efficiently computable
with integral image: any |
sum can be computed
in constant time

left of (x,y)

Avoid scaling images 2>
scale features directly
for same cost

Integral image Dalsd=2+D)
A+ A+ B+ C e D= A+C+ A+ B

D

61
[Viola & Jones, CVPR 2001
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Slide credit: Kristen Grauman LA
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AdaBoost for Feature+Classifier Selection

¢ Want to select the single rectangle feature and threshold
that best separates positive (faces) and negative (non-
faces) training examples, in terms of weighted error.

& : 9, : 6, Resulting weak classifier:
"5 oeeeoresee

-1 otherwise

bix) = { 1 f £e0 > 6,

For next round, reweight the
examples according to errors,
choose another filter/threshold
combo.

L) —
Outputs of a
possible rectangle
feature on faces
and non-faces.

63
[Viola & Jones, CVPR 200
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RWTH/CET
Example Application: Face Detection

¢ Frontal faces are a good example of a class where
global appearance models + a sliding window
detection approach fit well:
» Regular 2D structure
» Center of face almost shaped like a “patch”/window

g 11(\ b

1

Bl Sim el
e

¢ Now we’ll take AdaBoost and see how the Viola-
Jones face detector works

ide credit: Kristen Grauman B. Leibe

Large Library of Filters

Considering all
possible filter
parameters:
position, scale,

e 1 ] and type:
) 180,000+ possible
L L L | features
| | s

associated with
each 24 x 24

Use AdaBoost both to select the informative features

and to form the classifier

= p = &

1

window

.-!l

62,
[Viola & Jones, CVPR 2001

ide credit: Kristen Grauman B. Leibe
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RWTHAACHER
AdaBoost for Efficient Feature Selection

¢ Image features = weak classifiers
¢ For each round of boosting:
» Evaluate each rectangle filter on each example
» Sort examples by filter values
» Select best threshold for each filter (min error)
- Sorted list can be quickly scanned for the optimal threshold
Select best filter/threshold combination
Weight on this features is a simple function of error rate
Reweight examples

v

v

v

P. Viola, M. Jones, Robust Real-Time Face Detection, IJCV, Vol. 57(2), 2004.
(first version appeared at CVPR 2001)

ide credit: Kristen Grauman LA

64
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http://www.springerlink.com/content/q70v4h6715v5p152/fulltext.pdf
http://www.springerlink.com/content/q70v4h6715v5p152/fulltext.pdf
http://www.springerlink.com/content/q70v4h6715v5p152/fulltext.pdf
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Viola-Jones Face Detector: Results
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Viola-Jones Face Detector: Results
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ide credit: Kristen Grauman B. Leibe

ide credit: Kristen Grauman B. Leibe

RWTHACHE
Viola-Jones Face Detector: Results
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References and Further Reading

¢ More information on Classifier Combination and Boosting
can be found in Chapters 14.1-14.3 of Bishop’s book.

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006

¢ A more in-depth discussion of the statistical interpre-
tation of AdaBoost is available in the following paper:
» J. Friedman, T. Hastie, R. Tibshirani, Additive Logistic

Regression: a Statistical View of Boosting, The Annals of
Statistics, Vol. 38(2), pages 337-374, 2000.
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http://www-stat.stanford.edu/~hastie/Papers/AdditiveLogisticRegression/alr.pdf
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