Machine Learning - Lecture 9

Nonlinear SVMs

19.05.2013
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Course Outline

e Fundamentals (2 weeks)
- Bayes Decision Theory
~ Probability Density Estimation

e Discriminative Approaches (5 weeks)
> Linear Discriminant Functions
~ Statistical Learning Theory & SVMs
- Ensemble Methods & Boosting
> Randomized Trees, Forests & Ferns

e Generative Models (4 weeks)
> Bayesian Networks
> Markov Random Fields
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Topics of This Lecture

e Support Vector Machines (Recap)
> Lagrangian (primal) formulation
> Dual formulation
» Soft-margin classification

 Nonlinear Support Vector Machines
> Nonlinear basis functions
> The Kernel trick
> Mercer’s condition
- Popular kernels

e Analysis
> VC dimensions
> Error function

e Applications

B. Leibe



RWTH
Recap: Support Vector Machine (SVM)

e Basic idea

~ The SVM tries to find a classifier which
maximizes the margin between pos. and
neg. data points.

> Up to now: consider linear classifiers

wix+b=0

e Formulation as a convex optimization problem

» Find the hyperplane satisfying
1

arg min — ||w||”
w,b 2

under the constraints

to(Wix, +b)>1 Vn

based on training data points x, and target values ¢,, € {—1, 1}.
6
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RWNTH
Recap: SVM - Primal Formulation

e Lagrangian primal form

N
1
L, = 5 [w]|* — Zan {t,(W'x, +b) — 1}
n=1

N
1
— 2_ ||WH2 o Zan {tny(xn) o 1}
n=1

e The solution of L, needs to fulfill the KKT conditions

» Necessary and sufficient conditions

AVARRAV,

KKT:
Ap Z 0 \
tny(xn) —1 > 0 £(x)
an {tny(xn)_l} = 0 )‘f(X)
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Recap: SVM - Solution

e Solution for the hyperplane
» Computed as a linear combination of the training examples

N
W = E antnXy,
n=1

- Sparse solution: a, # 0 only for some points, the support vectors
= Only the SVs actually influence the decision boundary!

» Compute b by averaging over all support vectors:

b= Nis Z t, — Z amtmxg;xn

nesS meS
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Recap: SVM - Support Vectors

e The training points for which a, > 0 are called
“support vectors”.

e Graphical interpretation:

> The support vectors are the . ° °
points on the margin.

© » They define the margin ¢
E and thus the hyperplane. o W
= . .
n = All other data points can .
= be discarded! °
£ -\ @
s o
= rigin A
E ° 0. 7
.ccLch o Margin
>

9

Image source: C. Burges, 1998
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Recap: SVM - Dual Formulation

¢ Maximize

N | NN
Lgy(a) = Z an — 5 Sj Sj UnGmtntm (X X,,)
n=1

n=1m=1

under the conditions

IV
-

Vn

Qn,

N
E antn
n=1

|
-

e Comparison
> L, is equivalent to the primal form L , but only depends on a,,.
> L, scales with O(D3).
> L, scales with O(/V3) - in practice between O(XNV) and O(/V?).
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Slide adapted from Bernt Schiele B. Leibe
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RWTH
Recap: SVM for Non-Separable Data

e Slack variables
- One slack variable ¢, > 0 for each training data point.

e Interpretation
> & =0 for points that are on the correct side of the margin.
- & =|t, —y(x,)| for all other points.

Point on decision
boundary: ¢, =1

E, > 1
® o
> We do not have to set the slack variables ourselves!
= They are jointly optimized together with w.

B. Leibe

Misclassified point:

11
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RWNTH
Recap: SVM - New Dual Formulation

e New SVM Dual: Maximize

N | NN
Lgy(a) = Z an — 5 Sj Sj UnGmtntm (X X,,)
n=1

n=1m=1

under the conditions
0 a, -

N
Zantn = 0
n=1

e This is again a quadratic programming problem
= Solve as before...

O This is all
that changed!

Slide adapted from Bernt Schiele B. Leibe
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RWTH
Interpretation of Support Vectors

e Those are the hard examples!
> We can visualize them, e.g. for face detection
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Image source: E. Osuna, F. Girosi, 1997



Topics of This Lecture

 Nonlinear Support Vector Machines
> Nonlinear basis functions
> The Kernel trick
> Mercer’s condition
- Popular kernels
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UNIVERSITY
So Far...

» Current problem formulation has no
solution if the data are not linearly
separable!

> Need to introduce some tolerance to
outlier data points.

= Slack variables. Q/

e Only looked at linear decision boundaries...

> This is not sufficient for many applications.

> Want to generalize the ideas to non-linear
boundaries.

18

B. Leibe Image source: B. Schoelkopf, A. Smola, 2002
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Nonlinear SVM

e Linear SVMs

~ Datasets that are linearly separable with some noise work well:

—eo o-@|®—o "

~ But what are we going to do if the dataset is just too hard?

B. Leibe

Slide credit: Raymond Mooney
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Another Example
e Non-separable by a hyperplane in 2D
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Another Example

e Separable by a surface in 3D
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Nonlinear SVM - Feature Spaces

e General idea: The original input space can be mapped to
some higher-dimensional feature space where the
training set is separable:
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Slide credit: Raymond Mooney
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Nonlinear SVM

e General idea
- Nonlinear transformation ¢ of the data points x_:

xeRP ¢:RP - H
» Hyperplane in higher-dim. space H (linear classifier in )

wlig(x)+b=0

= Nonlinear classifier in R?.

Slide credit: Bernt Schiele B. Leibe
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What Could This Look Like?

e Example:
- Mapping to polynomial space, x, y € RZ2:

~ Motivation: Easier to separate data in higher-dimensional space.

» But wait - isn’t there a big problem?
- How should we evaluate the decision function?
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Image source: C. Burges, 1998

B. Leibe



0
M
S
@
£
£
S
7]
>
=
c
S
c
)
-
)
=
=
3)
c
=

RWTH
Problem with High-dim. Basis Functions

e Problem
> In order to apply the SVM, we need to evaluate the function

y(x) =w' P(x) + b

> Using the hyperplane, which is itself defined as

N
4 :Z antn¢(xn)
n=1

= What happens if we try this for a million-dimensional
feature space ¢(x)?

> Oh-oh...

B. Leibe
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Solution: The Kernel Trick

e Important observation
> ¢(x) only appears in the form of dot products ¢(x)"¢(y):

y(x) = wio(x)+b

N
— Z antnqb(xn)Tqb(X) - b
n=1

.- Trick: Define a so-called kernel function k(x,y) = ¢(x)To(y).

> Now, in place of the dot product, use the kernel instead:

N
y(x) = Z aptnk(Xn,X) + b
n=1

> The kernel function implicitly maps the data to the higher-
dimensional space (without having to compute ¢(x) explicitly)!
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Back to Our Previous Example...

e 2"d degree polynomial kernel:

-
L7 Y1
(%) o(y) = | V2r172 || V25192

= 2793 + 221 T2Y1 Y0 + T35

= (x'y)? = k(x,y)

- Whenever we evaluate the kernel function k(x,y) = (x'y)?, we
implicitly compute the dot product in the higher-dimensional
feature space.
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Image source: C. Burges, 1998
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SVMs with Kernels

e Using kernels
~ Applying the kernel trick is easy. Just replace every dot product
by a kernel function...
T
x'y — kxy)
> ..and we’re done.

~ Instead of the raw input space, we’re now working in a higher-
dimensional (potentially infinite dimensional!) space, where the
data is more easily separable.

e Wait - does this always work?

> The kernel needs to define an implicit mapping
to a higher-dimensional feature space ¢(x).

> When is this the case?

0
M
S
@
£
£
S
7]
>
=
c
.
c
)
-
)
=
=
3)
c
=

B. Leibe



RWNTH
Which Functions are Valid Kernels?

e Mercer’s theorem (modernized version):
» Every positive definite symmetric function is a kernel.

e Positive definite symmetric functions correspond to a
positive definite symmetric Gram matrix:

Slide credit: Raymond Mooney

B. Leibe

T

;, K(Xp.Xq) | K(XpXp) | K(Xp,X3) K(X1,Xp)
E K(XzX1) | K(X5%5) | K(XpX3) K(X2:X)
7

o

c

c

g

FIJ k(Xnixl) k(Xn’XZ) k(XmXB) k(Xn,Xn)
c

£

CE% (positive definite = all eigenvalues are > 0)

29



RWNTH
Kernels Fulfilling Mercer’s Condition

e Polynomial kernel
k(x,y) = (x'y + 1)

e Radial Basis Function kernel

AN\2
k(X, y) = exXp {— (X Y) } e.g. Gaussian

202
e Hyperbolic tangent kernel

k(X, y);ﬁl —W e.g. Sigmoid

—

Actually, this was wrong in

the original SVM paper...
(and many, many more...)
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RWTH
Example: Bag of Visual Words Representation

e General framework in visual recognition
» Create a codebook (vocabulary) of prototypical image features
» Represent images as histograms over codebook activations
. Compare two images by any histogram kernel, e.g. x? kernel

ky2(h, h') = exp (_} Z (hj = hj) )

g

hi + !
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RWNTH
Nonlinear SVM - Dual Formulation "

¢ SVM Dual: Maximize

N
Ly(a) = Z Y Y U O tntmk (X, X5
n=1 n=1m=1

under the conditions

0- a,- C
N
Zantn = 0
n=1

e Classify new data points using
N

y(x) = Z aptnk(X,,x)+b

n=1

B. Leibe
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SVM Demo

Change |Run| Clear | Save | Load I-t1-d1-r1-c1DDDD

Applet from libsvm
(http://www.csie.ntu.edu.tw/~cjlin/libsvm/)
B. Leibe
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http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Summary: SVMs

e Properties
~ Empirically, SVMs work very, very well.

- SVMs are currently among the best performers for a number of
classification tasks ranging from text to genomic data.

- SVMs can be applied to complex data types beyond feature
vectors (e.g. graphs, sequences, relational data) by designing
kernel functions for such data.

~» SVM techniques have been applied to a variety of other tasks

- e.g. SV Regression, One-class SVMs, ...

» The kernel trick has been used for a wide variety of

applications. It can be applied wherever dot products are in use
- e.g. Kernel PCA, kernel FLD, ...

- Good overview, software, and tutorials available on
http://www.kernel-machines.org/
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http://www.kernel-machines.org/
http://www.kernel-machines.org/
http://www.kernel-machines.org/

Summary: SVMs

e Limitations
> How to select the right kernel?
- Best practice guidelines are available for many applications
> How to select the kernel parameters?
- (Massive) cross-validation.
- Usually, several parameters are optimized together in a grid search.
~ Solving the quadratic programming problem
- Standard QP solvers do not perform too well on SVM task.
- Dedicated methods have been developed for this, e.g. SMO.
» Speed of evaluation
- Evaluating y(x) scales linearly in the number of SVs.
- Too expensive if we have a large number of support vectors.
= There are techniques to reduce the effective SV set.
> Training for very large datasets (millions of data points)
- Stochastic gradient descent and other approximations can be used
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Topics of This Lecture

e Analysis
> VC dimensions
> Error function
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RWNTH
Recap: Kernels Fulfilling Mercer’s Condition

e Polynomial kernel
k(x,y) = (x'y + 1)

e Radial Basis Function kernel

AN\2
k(X, y) = exXp {— (X Y) } e.g. Gaussian

202
e Hyperbolic tangent kernel

k(X, y);ﬁl —W e.g. Sigmoid

——

Actually, that was wrong in

the original SVM paper...
(and many, many more...)

: 37
Slide credit: Bernt Schiele B. Leibe
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RWNTH
VC Dimension for Polynomial Kernel

e Polynomial kernel of degree p:
k(x,y) = (x"y)

D —1
» Dimensionality of 7{: ( +£ )

> Example: D = 16 x 16 = 256
p =4
dim(#H) = 183.181.376

» The hyperplane in H then has VC-dimension
dim(H) +1

B. Leibe
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RWNTH
VC Dimension for Gaussian RBF Kernel

e Radial Basis Function:

k(x,y) = exp {— (x_y) }

202

> In this case, H is infinite dimensional!
2 x™

X X
eXp(X)zl—Fi—l—?—l—...—l—F—i—...

> Since only the kernel function is used by the SVM, this is no
problem.

» The hyperplane in H then has VC-dimension
dim(H) +1 =00

B. Leibe

39



RWNTH
VC Dimension for Gaussian RBF Kernel

e [ntuitively

~ If we make the radius of the RBF kernel sufficiently small, then
each data point can be associated with its own kernel.

NN
A s
\ A [\
//E\ ~n /O /N
A
JANILN

- However, this also means that we can get finite VC-dimension if
we set a lower limit to the RBF radius.
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Image source: C. Burges
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Example: RBF Kernels

e Decision boundary on toy problem

RBF Kernel width (o)
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Image source: B. Schoelkopf, A. Smola, 2002
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But... but... but...

e Don’t we risk overfitting with those enormously high-
dimensional feature spaces?

- No matter what the basis functions are, there are really only up
to N parameters: a, a,,..., a,y and most of them are usually set
to zero by the maximum margin criterion.

» The data effectively lives in a low-dimensional subspace of H.

e What about the VC dimension? | thought low VC-dim was
good (in the sense of the risk bound)?
> Yes, but the maximum margin classifier “magically” solves this.

> Reason (Vapnik): by maximizing the margin, we can reduce the
VC-dimension.

~ Empirically, SVMs have very good generalization performance.
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RWTH
Theoretical Justification for Maximum Margins

e Gap Tolerant Classifier D=0
» Classifier is defined by a ball in

R? with diameter D enclosing all !
points and two parallel hyperplanes /
with distance M (the margin). M
~ Points in the ball are assighed d=0 |
“—‘+.I—.f~f’

class {-1,1} depending on which

il

n

i side of the margin they fall. D=1

aE: D=0

S . . . .po .
=8 ¢ VC dimension of this classifier depends on the margin
g > M<3/4D = 3 points can be shattered

% > 3/4D < M< D = 2points can be shattered

o > M>D = 1 point can be shattered

= = By maximizing the margin, we can minimize the VC dimension
]

=

43

B. Leibe Image source: C. Burges



RWTH
Theoretical Justification for Maximum Margins

e For the general case, Vapnik has proven the following:
» The class of optimal linear separators has VC dimension h
bounded from above as 5
. 1|1 D
h< mmﬂ—], m0}+1

2

Jo,

where p is the margin, D is the diameter of the smallest sphere
that can enclose all of the training examples, and m, is the
dimensionality.

e Intuitively, this implies that regardless of dimensionality
m,we can minimize the VC dimension by maximizing the
margin p.

e Thus, complexity of the classifier is kept small
regardless of dimensionality.
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Topics of This Lecture

e Analysis
> VC dimensions
> Error function
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SVM - Analysis

e Traditional soft-margin formulation

N
. 1 2 “Maximize
m — W C
. g WO

weRD | ¢ cR+ the margin”

subject to the constraints
J “Most points should

tny(xn) > 1-¢, be on the correct
side of the margin”

e Different way of looking at it
» We can reformulate the constraints into the objective function.

N
1 2
] - C ]. tn n
IIEI%RI}) 5 [w|* - ,,;:1:[ y(x )]+

- J - J
Y~ Y

L, regularizer “Hinge loss”
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where [z], := max{0,z}.
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Slide adapted from Christoph Lampert B. Leibe
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Recap: Error Functions

E (Zn) Ideal misclassification error

tn € {—1,1}

Not differentiable! S

=2 y N\ 1 7™ #n = tnl(%n)

e |deal misclassification error function (black)
> This is what we want to approximate,
> Unfortunately, it is not differentiable.
» The gradient is zero for misclassified points.
= We cannot minimize it by gradient descent. 48

Image source: Bishop, 2006
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Recap: Error Functions

E (Zn) Ideal misclassification error
Squared error

tn € {—1,1}

Sensitive to outliers!

Penalizes “too correct”
data points!

", #

—2 1 0 1

e Squared error used in Least-Squares Classification
~ Very popular, leads to closed-form solutions.
» However, sensitive to outliers due to squared penalty.
» Penalizes “too correct” data points
= Generally does not lead to good classifiers. 49

Image source: Bishop, 2006

2"' Zn = tny(xn)
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RWNTH
Error Functions (Loss Functions)

A
E (Zn) Ideal misclassification error

Squared error
Hinge error

Robust to outliers!

Favors sparse
/ solutions!
e “Hinge error” used in SVMs

- Lero error for points outside the margin (z, > 1) =
sparsity
> Linear penalty for misclassified points (:, < 1) = robustness

~ Not differentiable around 2 = 1 = Cannot be optimized directlyo
B.Leibe Image source: Bishop, 2006

Not differentiable! \

—2 -1 0
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Slide adapted from Christoph Lampert

SVM - Discussion

e SVM optimization function

N
1,
min o Wwl[* +C ) [1—tay(xa)l,

- J -
Yo Yo

L, regularizer Hinge loss

n=1 ,

e Hinge loss enforces sparsity

Only a subset of training data points actually influences the
decision boundary.

This is different from sparsity obtained through the regularizer!
There, only a subset of input dimensions are used.

Unconstrained optimization, but non-differentiable function.
Solve, e.g. by subgradient descent

Currently most efficient: stochastic gradient descent

51
B. Leibe
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Topics of This Lecture

Support Vector Machines (Recap)
- Lagrangian (primal) formulation
> Dual formulation
> Soft-margin classification

Nonlinear Support Vector Machines
> Nonlinear basis functions
> The Kernel trick
» Mercer’s condition

Popular kernels

\

Analysis
> VC dimensions
> Error function

Applications

B. Leibe

CHEN
UNIVERSITY
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RWTH
Example Application: Text Classification

e Problem:
» Classify a document in a number of categories

d<
e Representation:

~ “Bag-of-words” approach

~ Histogram of word counts (on learned dictionary) u_.l..J_._,

- Very high-dimensional feature space (~10.000 dimensions)
- Few irrelevant features

e This was one of the first applications of SVMs
> T. Joachims (1997)
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RWTH
Example Application: Text Classification

e Results:

SVM (poly) SVM (rbf)
degree d = width v =
Bayes|Rocchio{C4.5(k-NN{l 1 | 2 3 4 5 06 (08110112
earn 95.9 96.1 [96.1197.3 [198.2]98.4/98.5/98.4198.3/198.5]|08.5/98.4|98.3
lacq 91.5 | 92.1 |85.3192.0|]92.6/94.6{95.2/95.2195.3((95.0}95.3/95.3/95.4
money-fx || 62.9 67.6 |69.4]78.2 1|166,9172.5175.4174.9176.2]174.0|75.4/76.3] 75.9
0 grain 72.5 79.5 [189.1]82.2 [191.3(93.1]92.4/91.3]189.91{93.1/91.9/91.9190.6
- crude 81.0 1 81.5 |75.5]185.7 ||86.0]87.3|88.6(88.9187.8{|88.9[R9.0/88.9/88.2
GE, trade 50.0 77.4 [59.2177.4 1169.2175.5176.6|77.3177.11176.9178.0|77.8/76.8
;E; mterest 58.0 72.5 149.1]74.0 |169.8{63.3/67.9{73.1(76.2|174.4175.0176.2|76.1
"’_ ship 787 | 83.1 [80.9]79.2 |I182.0/85.4]86.0/86.5]/86.01[85.4/86.5/87.6[87.1
=4 wheat 60.6 79.4 |85.5]76.6 {|83.1|84.5/85.285.9/83.81185.2|85.9/85.9/85.9
§ corn 47.3 | 62.2 |87.7|77.9 ||86.0|86.5|85.3 [85.7]/83.9 ||85.1{85.7/85.784.5
o . 84.2[85.1185.9[86.2[85.9|[86.4 [86.5|86.3 [ 86.2
FCIJ microavg.)| 72.0 | 79.9 |79.4/82.3 combined: 86.0 combined: 86.4
%
=
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Example Application: Text Classification

e This is also how you could implement a simple spam

*

filter...

Dictionary

Incoming email

o—

—

el .

Word activations

B. Leibe

/4

SVM

Mailbox

ei
L

Trash
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RWTH
Example Application: OCR

S
. .. E)r_(e"ci:eez
e Handwritten digit 24621 8ALBSELEDILOR 0 2
recognition LLesz Ll b&a2 8l Ligl 6002388

5010330 103304288100270.02
> US Postal Service Database “{ﬁ%aigkligu’%g&%g%g?%i%gg%
Vol 1700 003257013 I 4RkREY
- Standard benchmark task 0y 9e0g7 1 7Y e 00159701827
for many learning algorithms )" <7%5'c 73 1 257008 822157 4004
e Er5 129015362 ]23033 43379
350121 1272808515053880319
1331 a 111 aL8719284)8)08LY
T T 1s12673600izusb L Lok
(35972029929 27228 0004640 )
SABAATAS L) D%l S EREl ORIl
o LE1030475262000119964
59 ABEkIRESSELALYRTIES 460
Lol 130187 11299108 1110781
G 1897075513319730) 551085
157 SS 1855122503 5800.0343
73 EmL 88 e0sst60aste08s
L8255 | PESAIRES A0 A1k L
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Historical Importance

e USPS benchmark

> 2.5% error: human performance

e Different learning algorithms
> 16.2% error: Decision tree (C4.5)
> 95.9% error: (best) 2-layer Neural Network
> 5.1% error: LeNet 1 - (massively hand-tuned) 5-layer network

e Different SVMs

> 4.0% error: Polynomial kernel (p=3, 274 support vectors)
> 4.1% error: Gaussian kernel (0=0.3, 291 support vectors)

B. Leibe
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Example Application: OCR

e Results

> Almost no overfitting with higher-degree kernels.

degree of || dimensionality of | support | raw
polynomial feature space vectors | error
1 256 282 8.9

2 ~ 33000 227 4.7

3 ~ 1 x 10° 274 4.0)

4 ~ 1 x 10% 321 4.2

5! 2 1 x 1012 374 4.3

6 ~ 1 x 10 377 4.5

7 ~ 1 x 1018 422 4.5

B. Leibe
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UNIVERSITY
Example Application: Object Detection ‘

o Sliding-window approach gf;;time
Obj./non-obj.
Classifier
q y

e E.g. histogram representation (HOG)

> Map each grid cell in the input window to a
histogram of gradient orientations.

> Train a linear SVM using training set of
pedestrian vs. non-pedestrian windows.
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[Dalal & Triggs, CVPR 2005]
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Example Application: Pedestrian Detection

N. Dalal, B. Triggs, Hi rams of Oriented Gradients for Human Detection, CVPR 2005

Machine Learning, Summer ‘15

60
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http://lear.inrialpes.fr/people/dalal
http://lear.inrialpes.fr/people/triggs
http://lear.inrialpes.fr/pubs/2005/DT05/

Many Other Applications

e Lots of other applications in all fields of technology
> OCR
> Text classification
> Computer vision

» High-energy physics

> Monitoring of household appliances

~ Protein secondary structure prediction

» Design on decision feedback equalizers (DFE) in telephony

(Detailed references in Schoelkopf & Smola, 2002, pp. 221)
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http://www.learning-with-kernels.org/

RWTHAACHEN
. . UNIVERSITY
Topics of This Lecture

e Extensions
> One-class SVMs
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Summary: SVMs

e Properties
~ Empirically, SVMs work very, very well.

- SVMs are currently among the best performers for a number of
classification tasks ranging from text to genomic data.

- SVMs can be applied to complex data types beyond feature
vectors (e.g. graphs, sequences, relational data) by designing
kernel functions for such data.

~» SVM techniques have been applied to a variety of other tasks

- e.g. SV Regression, One-class SVMs, ...

» The kernel trick has been used for a wide variety of

applications. It can be applied wherever dot products are in use
- e.g. Kernel PCA, kernel FLD, ...

- Good overview, software, and tutorials available on
http://www.kernel-machines.org/
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http://www.kernel-machines.org/
http://www.kernel-machines.org/
http://www.kernel-machines.org/

Summary: SVMs

e Limitations
> How to select the right kernel?
- Requires domain knowledge and experiments...
> How to select the kernel parameters?
- (Massive) cross-validation.
- Usually, several parameters are optimized together in a grid search.
~ Solving the quadratic programming problem
- Standard QP solvers do not perform too well on SVM task.
- Dedicated methods have been developed for this, e.g. SMO.
» Speed of evaluation
- Evaluating y(x) scales linearly in the number of SVs.
- Too expensive if we have a large number of support vectors.
= There are techniques to reduce the effective SV set.
> Training for very large datasets (millions of data points)
- Stochastic gradient descent and other approximations can be used
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You Can Try It At Home...

e Lots of SVM software available, e.g.

> svmlight (http://svmlight.joachims.org/)
- Command-line based interface

- Source code available (in C)
- Interfaces to Python, MATLAB, Perl, Java, DLL,...

> libsvm (http://www.csie.ntu.edu.tw/~cjlin/libsvm/)
- Library for inclusion with own code
- C++ and Java sources
- Interfaces to Python, R, MATLAB, Perl, Ruby, Weka, C+ .NET,...

> Both include fast training and evaluation algorithms, support for
multi-class SVMs, automated training and cross-validation, ...

= Easy to apply to your own problems!
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http://svmlight.joachims.org/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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RWTH
References and Further Reading

* More information on SVMs can be found in Chapter 7.1
of Bishop’s book. You can also look at Scholkopf & Smola
(some chapters available online).

Christopher M. Bishop
Pattern Recognition and Machine Learning
Learning with Kernels Springer, 2006

B. Scholkopf, A. Smola

Learning with Kernels

MIT Press, 2002
http://www.learning-with-kernels.org/

e A more in-depth introduction to SVMs is available in the
following tutorial:
> C. Burges, A Tutorial on Support Vector Machines for Pattern

Recognition, Data Mining and Knowledge Discovery, Vol. 2(2),
pp. 121-167 1998.
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