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Course Outline 

• Fundamentals (2 weeks) 

 Bayes Decision Theory 

 Probability Density Estimation 
 

• Discriminative Approaches (5 weeks) 

 Linear Discriminant Functions 

 Statistical Learning Theory & SVMs 

 Ensemble Methods & Boosting 

 Randomized Trees, Forests & Ferns 
 

• Generative Models (4 weeks) 

 Bayesian Networks 

 Markov Random Fields 
 

B. Leibe 
4 
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Topics of This Lecture 

• Support Vector Machines (Recap) 
 Lagrangian (primal) formulation 

 Dual formulation 

 Soft-margin classification 
 

• Nonlinear Support Vector Machines 
 Nonlinear basis functions 

 The Kernel trick 

 Mercer’s condition 

 Popular kernels 
 

• Analysis 
 VC dimensions  

 Error function 
 

• Applications 

5 
B. Leibe 
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Recap: Support Vector Machine (SVM) 

• Basic idea 

 The SVM tries to find a classifier which   

maximizes the margin between pos. and 

neg. data points. 

 Up to now: consider linear classifiers 

 

 

• Formulation as a convex optimization problem 

 Find the hyperplane satisfying 

 

 

 under the constraints 

 
 

 based on training data points xn and target values                     . 

 

 

 

 

 

 

 

 Formulation as a convex optimization problem  

 Possible to find the globally optimal solution! 
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Margin 

wTx+ b = 0

argmin
w;b

1

2
kwk2

tn(w
Txn + b) ¸ 1 8n

tn 2 f¡1;1g
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Recap: SVM – Primal Formulation 

• Lagrangian primal form 

 

 

 

 

 

• The solution of Lp needs to fulfill the KKT conditions 

 Necessary and sufficient conditions  
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Lp =
1

2
kwk2 ¡

NX

n=1

an
©
tn(w

Txn + b)¡ 1
ª

=
1

2
kwk2 ¡

NX

n=1

an ftny(xn)¡ 1g

¸ ¸ 0

f(x) ¸ 0

¸f(x) = 0

KKT: 
an ¸ 0

tny(xn)¡ 1 ¸ 0

an ftny(xn)¡ 1g = 0
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Recap: SVM – Solution 

• Solution for the hyperplane 

 Computed as a linear combination of the training examples 

 

 

 
 

 Sparse solution: an  0 only for some points, the support vectors 

 Only the SVs actually influence the decision boundary! 
 

 Compute b by averaging over all support vectors: 
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w =

NX

n=1

antnxn

b =
1

NS

X

n2S

Ã
tn ¡

X

m2S
amtmx

T
mxn

!
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Recap: SVM – Support Vectors 

• The training points for which an > 0 are called  

“support vectors”. 
 

• Graphical interpretation: 

 The support vectors are the 

points on the margin. 

 They define the margin 

and thus the hyperplane. 

 

 All other data points can 

 be discarded! 

9 
B. Leibe Slide adapted from Bernt Schiele Image source: C. Burges, 1998 
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Recap: SVM – Dual Formulation 

• Maximize 

 

 

 

 under the conditions 

 

 

 

 

• Comparison 

 Ld is equivalent to the primal form Lp, but only depends on an. 

 Lp scales with O(D3). 

 Ld scales with O(N3) – in practice between O(N) and O(N2). 
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Ld(a) =

NX

n=1

an ¡
1

2

NX

n=1

NX

m=1

anamtntm(xTmxn)

NX

n=1

antn = 0

an ¸ 0 8n

Slide adapted from Bernt Schiele 
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»1

»2

»3

»4

Recap: SVM for Non-Separable Data 

• Slack variables 

 One slack variable »n ¸ 0 for each training data point. 
 

• Interpretation 

 »n = 0 for points that are on the correct side of the margin. 

 »n = |tn – y(xn)| for all other points. 

 

 

 

 

 

 
 

 We do not have to set the slack variables ourselves! 

 They are jointly optimized together with w. 
11 

B. Leibe 

w
Point on decision  

boundary: »n = 1 

Misclassified point: 

 »n > 1 
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Recap: SVM – New Dual Formulation 

• New SVM Dual: Maximize 

 

 

 

 under the conditions 

 

 

 

 
 

• This is again a quadratic programming problem 

 Solve as before… 
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Ld(a) =

NX

n=1

an ¡
1

2

NX

n=1

NX

m=1

anamtntm(xTmxn)

NX

n=1

antn = 0

0 · an · C

Slide adapted from Bernt Schiele 

This is all  

that changed! 
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Interpretation of Support Vectors 

• Those are the hard examples! 

 We can visualize them, e.g. for face detection 

13 
B. Leibe Image source: E. Osuna, F. Girosi, 1997 
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Topics of This Lecture 

• Support Vector Machines (Recap) 
 Lagrangian (primal) formulation 

 Dual formulation 

 Soft-margin classification 
 

• Nonlinear Support Vector Machines 
 Nonlinear basis functions 

 The Kernel trick 

 Mercer’s condition 

 Popular kernels 
 

• Analysis 
 VC dimensions  

 Error function 
 

• Applications 

14 
B. Leibe 
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So Far… 

• Only looked at linearly separable case… 

 Current problem formulation has no 

solution if the data are not linearly 

separable! 

 Need to introduce some tolerance to 

outlier data points. 

 Slack variables. 

 

• Only looked at linear decision boundaries… 

 This is not sufficient for many applications. 

 Want to generalize the ideas to non-linear  

boundaries. 
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»1

»2

»3

»4

w

Image source: B. Schoelkopf, A. Smola, 2002 
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Nonlinear SVM 

• Linear SVMs 

 Datasets that are linearly separable with some noise work well: 

 

 
 

 But what are we going to do if the dataset is just too hard?  

 

 
 

 How about… mapping data to a higher-dimensional space: 
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0 x 

0 x 

0 

x2 

x 

Slide credit: Raymond Mooney 
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Another Example 

• Non-separable by a hyperplane in 2D 

20 
Slide credit: Bill Freeman 
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Another Example 

• Separable by a surface in 3D 

21 
Slide credit: Bill Freeman 
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Nonlinear SVM – Feature Spaces 

• General idea: The original input space can be mapped to 

some higher-dimensional feature space where the 

training set is separable: 

 

22 

©:  x → Á(x) 

Slide credit: Raymond Mooney 
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Nonlinear SVM 

• General idea 

 Nonlinear transformation Á of the data points xn: 

 

 

 Hyperplane in higher-dim. space H (linear classifier in H) 

 

 
 

 Nonlinear classifier in RD. 

 

 

23 
B. Leibe 

x 2 RD Á : RD !H

wTÁ(x) + b = 0

Slide credit: Bernt Schiele 
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What Could This Look Like? 

• Example: 

 Mapping to polynomial space, x, y 2 R2: 

 

 

 

 

 

 

 

 

 

 Motivation: Easier to separate data in higher-dimensional space. 

 But wait – isn’t there a big problem? 

– How should we evaluate the decision function? 

24 
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Á(x) =

2
4

x21p
2x1x2
x22

3
5

Image source: C. Burges, 1998 
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• Problem 

 In order to apply the SVM, we need to evaluate the function 

 

 

 Using the hyperplane, which is itself defined as 

 

 

 

 

 What happens if we try this for a million-dimensional 

feature space Á(x)? 

 Oh-oh… 

Problem with High-dim. Basis Functions 

25 
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w =

NX

n=1

antnÁ(xn)

y(x) =wTÁ(x) + b
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Solution: The Kernel Trick 

• Important observation 

 Á(x) only appears in the form of dot products Á(x)TÁ(y): 

 

 

 

 
 

 Trick: Define a so-called kernel function k(x,y) = Á(x)TÁ(y). 
 

 Now, in place of the dot product, use the kernel instead: 

 

 

 

 The kernel function implicitly maps the data to the higher-

dimensional space (without having to compute Á(x) explicitly)! 

26 
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y(x) = wTÁ(x) + b

=

NX

n=1

antnÁ(xn)
TÁ(x) + b

y(x) =

NX

n=1

antnk(xn;x) + b
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Back to Our Previous Example… 

• 2nd degree polynomial kernel: 

 

 

 

 

 

 

 

 

 Whenever we evaluate the kernel function k(x,y) = (xTy)2, we 

implicitly compute the dot product in the higher-dimensional 

feature space. 

27 
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Á(x)TÁ(y) =

2
4

x21p
2x1x2
x22

3
5¢

2
4

y21p
2y1y2
y22

3
5

Image source: C. Burges, 1998 

= x21y
2
1 + 2x1x2y1y2 + x22y

2
2

= (xTy)2 =: k(x;y)
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• Using kernels 

 Applying the kernel trick is easy. Just replace every dot product 

by a kernel function… 

 
 …and we’re done.  

 Instead of the raw input space, we’re now working in a higher-

dimensional (potentially infinite dimensional!) space, where the 

data is more easily separable. 

 
 

• Wait – does this always work? 

 The kernel needs to define an implicit mapping  

to a higher-dimensional feature space Á(x). 

 When is this the case? 

SVMs with Kernels 

28 
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xTy ! k(x;y)

“Sounds like magic…” 
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Which Functions are Valid Kernels? 

•  Mercer’s theorem (modernized version):   

 Every positive definite symmetric function is a kernel. 

 

• Positive definite symmetric functions correspond to a 

positive definite symmetric Gram matrix: 

 

 

 

 

 

 
 

(positive definite = all eigenvalues are > 0) 
29 
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k(x1,x1) k(x1,x2) k(x1,x3) …  k(x1,xn) 

k(x2,x1) k(x2,x2) k(x2,x3) k(x2,xn) 

…  …  …  …  …  

k(xn,x1) k(xn,x2) k(xn,x3) …  k(xn,xn) 

K = 

Slide credit: Raymond Mooney 
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Kernels Fulfilling Mercer’s Condition 

• Polynomial kernel 

 

 

• Radial Basis Function kernel 

 

 
 

• Hyperbolic tangent kernel 

 

 

 

 (and many, many more…) 
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k(x;y) = (xTy+ 1)p

k(x;y) = exp

½
¡(x¡ y)2

2¾2

¾

k(x;y) = tanh(·xTy+ ±)

Slide credit: Bernt Schiele 

e.g. Sigmoid 

e.g. Gaussian 

Actually, this was wrong in 

the original SVM paper... 
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Example: Bag of Visual Words Representation 

• General framework in visual recognition 

 Create a codebook (vocabulary) of prototypical image features 

 Represent images as histograms over codebook activations 

 Compare two images by any histogram kernel, e.g. Â2 kernel 

31 
B. Leibe Slide adapted from Christoph Lampert 
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Nonlinear SVM – Dual Formulation 

• SVM Dual: Maximize 

 

 
 

 under the conditions 

 

 

 

 
 

• Classify new data points using  
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NX

n=1

antn = 0

0 · an · C
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SVM Demo 

 

33 
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Applet from libsvm  

(http://www.csie.ntu.edu.tw/~cjlin/libsvm/) 

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Summary: SVMs 

• Properties 

 Empirically, SVMs work very, very well. 

 SVMs are currently among the best performers for a number of 

classification tasks ranging from text to genomic data. 

 SVMs can be applied to complex data types beyond feature 

vectors (e.g. graphs, sequences, relational data) by designing 

kernel functions for such data. 

 SVM techniques have been applied to a variety of other tasks 

– e.g. SV Regression, One-class SVMs, … 

 The kernel trick has been used for a wide variety of 

applications. It can be applied wherever dot products are in use 

– e.g. Kernel PCA, kernel FLD, … 

– Good overview, software, and tutorials available on 

http://www.kernel-machines.org/ 
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http://www.kernel-machines.org/
http://www.kernel-machines.org/
http://www.kernel-machines.org/
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Summary: SVMs 

• Limitations 

 How to select the right kernel? 

– Best practice guidelines are available for many applications 

 How to select the kernel parameters? 

– (Massive) cross-validation.  

– Usually, several parameters are optimized together in a grid search. 

 Solving the quadratic programming problem 

– Standard QP solvers do not perform too well on SVM task. 

– Dedicated methods have been developed for this, e.g. SMO. 

 Speed of evaluation 

– Evaluating y(x) scales linearly in the number of SVs. 

– Too expensive if we have a large number of support vectors. 

 There are techniques to reduce the effective SV set. 

 Training for very large datasets (millions of data points) 

– Stochastic gradient descent and other approximations can be used 
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Topics of This Lecture 

• Support Vector Machines (Recap) 
 Lagrangian (primal) formulation 

 Dual formulation 

 Soft-margin classification 
 

• Nonlinear Support Vector Machines 
 Nonlinear basis functions 

 The Kernel trick 

 Mercer’s condition 

 Popular kernels 
 

• Analysis 
 VC dimensions  

 Error function 
 

• Applications 
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Recap: Kernels Fulfilling Mercer’s Condition 

• Polynomial kernel 

 

 

• Radial Basis Function kernel 

 

 
 

• Hyperbolic tangent kernel 

 

 

 

 (and many, many more…) 
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k(x;y) = (xTy+ 1)p

k(x;y) = exp

½
¡(x¡ y)2

2¾2

¾

k(x;y) = tanh(·xTy+ ±)

Slide credit: Bernt Schiele 

e.g. Sigmoid 

e.g. Gaussian 

Actually, that was wrong in 

the original SVM paper... 
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VC Dimension for Polynomial Kernel 

• Polynomial kernel of degree p: 

 

 

 Dimensionality of H: 

 
 

 Example: 

 

 

 

 

 The hyperplane in H then has VC-dimension  
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k(x;y) = (xTy)p

µ
D + p¡ 1

p

¶

D = 16£ 16 = 256

p = 4

dim(H) = 183:181:376

dim(H) + 1
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VC Dimension for Gaussian RBF Kernel 

• Radial Basis Function: 

 

 
 

 In this case, H is infinite dimensional! 

 
 

 

 Since only the kernel function is used by the SVM, this is no 

problem. 

 

 The hyperplane in H then has VC-dimension  
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k(x;y) = exp

½
¡(x¡ y)2

2¾2

¾

exp(x) = 1 +
x

1!
+
x2

2!
+ : : : +

xn

n!
+ : : :

dim(H) + 1 =1
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VC Dimension for Gaussian RBF Kernel 

• Intuitively 

 If we make the radius of the RBF kernel sufficiently small, then 

each data point can be associated with its own kernel.  

 

 

 

 

 

 

 

 

 However, this also means that we can get finite VC-dimension if 

we set a lower limit to the RBF radius. 

40 
B. Leibe Image source: C. Burges 
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Example: RBF Kernels 

• Decision boundary on toy problem  

41 
B. Leibe Image source: B. Schoelkopf, A. Smola, 2002 

RBF Kernel width (¾) 
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But… but… but… 

• Don’t we risk overfitting with those enormously high-

dimensional feature spaces? 

 No matter what the basis functions are, there are really only up 

to N parameters: a1, a2,…, aN and most of them are usually set 

to zero by the maximum margin criterion. 

 The data effectively lives in a low-dimensional subspace of H.  
 

• What about the VC dimension? I thought low VC-dim was 

good (in the sense of the risk bound)? 

 Yes, but the maximum margin classifier “magically” solves this.  

 Reason (Vapnik): by maximizing the margin, we can reduce the 

VC-dimension. 

 Empirically, SVMs have very good generalization performance. 
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Theoretical Justification for Maximum Margins 

• Gap Tolerant Classifier 

 Classifier is defined by a ball in  
Rd with diameter D enclosing all 

points and two parallel hyperplanes 

with distance M (the margin). 

 Points in the ball are assigned  

class {-1,1} depending on which 

side of the margin they fall. 
 

• VC dimension of this classifier depends on the margin 

 M · 3/4 D    3 points can be shattered 

 3/4 D < M < D   2 points can be shattered 

 M ¸ D   1 point can be shattered 

 By maximizing the margin, we can minimize the VC dimension 

43 
B. Leibe Image source: C. Burges 
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Theoretical Justification for Maximum Margins 

• For the general case, Vapnik has proven the following: 

 The class of optimal linear separators has VC dimension h 

bounded from above as  

 
 

 where ρ is the margin, D is the diameter of the smallest sphere 

that can enclose all of the training examples, and m0 is the 

dimensionality. 
 

• Intuitively, this implies that regardless of dimensionality 

m0 we can minimize the VC dimension by maximizing the 

margin ρ. 
 

• Thus, complexity of the classifier is kept small 

regardless of dimensionality. 

 44 
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Slide credit: Raymond Mooney 
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Topics of This Lecture 

• Support Vector Machines (Recap) 
 Lagrangian (primal) formulation 

 Dual formulation 

 Soft-margin classification 
 

• Nonlinear Support Vector Machines 
 Nonlinear basis functions 

 The Kernel trick 

 Mercer’s condition 

 Popular kernels 
 

• Analysis 
 VC dimensions  

 Error function 
 

• Applications 

46 
B. Leibe 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

M
a
c
h

in
e
 L

e
a
rn

in
g

, 
S

u
m

m
e
r 

‘1
5

 

SVM – Analysis 

• Traditional soft-margin formulation 

 

 
 

subject to the constraints 

 

 

• Different way of looking at it 

 We can reformulate the constraints into the objective function. 

 

 

 

 
 

where [x]+ := max{0,x}. 
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“Hinge loss” L2 regularizer 

“Most points should  

be on the correct 

side of the margin” 

“Maximize  

the margin” 
min

w2RD; »n2R+
1

2
kwk2 + C

NX

n=1

»n

min
w2RD

1

2
kwk2 + C

NX

n=1

[1¡ tny(xn)]+

Slide adapted from Christoph Lampert 
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Recap: Error Functions 

 

 

 

 

 

 

 

 
 

• Ideal misclassification error function (black) 

 This is what we want to approximate,  

 Unfortunately, it is not differentiable. 

 The gradient is zero for misclassified points. 

 We cannot minimize it by gradient descent. 48 
Image source: Bishop, 2006 

Ideal misclassification error 

Not differentiable! 

zn = tny(xn)
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Recap: Error Functions 

 

 

 

 

 

 

 

 
 

• Squared error used in Least-Squares Classification 

 Very popular, leads to closed-form solutions. 

 However, sensitive to outliers due to squared penalty. 

 Penalizes “too correct” data points 

 Generally does not lead to good classifiers. 49 
Image source: Bishop, 2006 

Ideal misclassification error 

Squared error 

Penalizes “too correct” 

 data points! 

Sensitive to outliers! 

zn = tny(xn)
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Error Functions (Loss Functions) 

 

 

 

 

 

 

 

 
 

• “Hinge error” used in SVMs 

 Zero error for points outside the margin (zn > 1)      

sparsity 

 Linear penalty for misclassified points (zn < 1)   robustness 

 Not differentiable around zn = 1  Cannot be optimized directly. 

 

50 
Image source: Bishop, 2006 

Ideal misclassification error 

Hinge error 

Squared error 

Not differentiable! Favors sparse  

solutions! 

Robust to outliers! 

zn = tny(xn)

B. Leibe 
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SVM – Discussion 

• SVM optimization function 

 

 

 

 

• Hinge loss enforces sparsity 

 Only a subset of training data points actually influences the 

decision boundary. 

 This is different from sparsity obtained through the regularizer! 

There, only a subset of input dimensions are used. 
 

 Unconstrained optimization, but non-differentiable function. 

 Solve, e.g. by subgradient descent 

 Currently most efficient: stochastic gradient descent 
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min
w2RD

1

2
kwk2 + C

NX

n=1

[1¡ tny(xn)]+

Hinge loss L2 regularizer 

Slide adapted from Christoph Lampert 
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Topics of This Lecture 

• Support Vector Machines (Recap) 
 Lagrangian (primal) formulation 

 Dual formulation 

 Soft-margin classification 
 

• Nonlinear Support Vector Machines 
 Nonlinear basis functions 

 The Kernel trick 

 Mercer’s condition 

 Popular kernels 
 

• Analysis 
 VC dimensions  

 Error function 
 

• Applications 
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Example Application: Text Classification 

• Problem:  

 Classify a document in a number of categories 
 

 

 
 

• Representation: 

 “Bag-of-words” approach 

 Histogram of word counts (on learned dictionary) 

– Very high-dimensional feature space (~10.000 dimensions) 

– Few irrelevant features 
 

• This was one of the first applications of SVMs  

 T. Joachims (1997) 
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Example Application: Text Classification 

• Results: 
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Example Application: Text Classification 

• This is also how you could implement a simple spam 

filter… 

55 
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Incoming email Word activations 

Dictionary 

SVM 
Mailbox 

Trash 
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Example Application: OCR 

• Handwritten digit 

recognition 

 US Postal Service Database 

 Standard benchmark task  

for many learning algorithms 
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Historical Importance 

• USPS benchmark 

 2.5% error: human performance 

 

• Different learning algorithms 

 16.2% error: Decision tree (C4.5) 

   5.9% error: (best) 2-layer Neural Network 

   5.1% error: LeNet 1 – (massively hand-tuned) 5-layer network 

 

• Different SVMs  

   4.0% error: Polynomial kernel (p=3, 274 support vectors) 

   4.1% error: Gaussian kernel    (¾=0.3, 291 support vectors) 
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Example Application: OCR 

• Results 

 Almost no overfitting with higher-degree kernels. 
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• Sliding-window approach 

 

 

 

 

 

 

 

• E.g. histogram representation (HOG) 

 Map each grid cell in the input window to a  

histogram of gradient orientations. 

 Train a linear SVM using training set of  

pedestrian vs. non-pedestrian windows. 
[Dalal & Triggs, CVPR 2005] 

Example Application: Object Detection 

Obj./non-obj. 

Classifier 
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Example Application: Pedestrian Detection 

N. Dalal, B. Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 2005  

B. Leibe 
60 

http://lear.inrialpes.fr/people/dalal
http://lear.inrialpes.fr/people/triggs
http://lear.inrialpes.fr/pubs/2005/DT05/
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Many Other Applications 

• Lots of other applications in all fields of technology 

 OCR 

 Text classification 

 Computer vision 

 

 … 

 

 High-energy physics 

 Monitoring of household appliances 

 Protein secondary structure prediction 

 Design on decision feedback equalizers (DFE) in telephony 

 

 (Detailed references in Schoelkopf & Smola, 2002, pp. 221) 
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http://www.learning-with-kernels.org/
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Topics of This Lecture 

• Support Vector Machines (Recap) 
 Lagrangian (primal) formulation 

 Dual formulation 

 Soft-margin classification 

 Nonlinear Support Vector Machines 
 

• Analysis 
 VC dimensions 

 Error function 
 

• Applications 
 

• Extensions 
 One-class SVMs 
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Summary: SVMs 

• Properties 

 Empirically, SVMs work very, very well. 

 SVMs are currently among the best performers for a number of 

classification tasks ranging from text to genomic data. 

 SVMs can be applied to complex data types beyond feature 

vectors (e.g. graphs, sequences, relational data) by designing 

kernel functions for such data. 

 SVM techniques have been applied to a variety of other tasks 

– e.g. SV Regression, One-class SVMs, … 

 The kernel trick has been used for a wide variety of 

applications. It can be applied wherever dot products are in use 

– e.g. Kernel PCA, kernel FLD, … 

– Good overview, software, and tutorials available on 

http://www.kernel-machines.org/ 
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Summary: SVMs 

• Limitations 

 How to select the right kernel? 

– Requires domain knowledge and experiments… 

 How to select the kernel parameters? 

– (Massive) cross-validation.  

– Usually, several parameters are optimized together in a grid search. 

 Solving the quadratic programming problem 

– Standard QP solvers do not perform too well on SVM task. 

– Dedicated methods have been developed for this, e.g. SMO. 

 Speed of evaluation 

– Evaluating y(x) scales linearly in the number of SVs. 

– Too expensive if we have a large number of support vectors. 

 There are techniques to reduce the effective SV set. 

 Training for very large datasets (millions of data points) 

– Stochastic gradient descent and other approximations can be used 
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You Can Try It At Home… 

• Lots of SVM software available, e.g.  

 svmlight (http://svmlight.joachims.org/) 

– Command-line based interface 

– Source code available (in C) 

– Interfaces to Python, MATLAB, Perl, Java, DLL,… 

 

 libsvm (http://www.csie.ntu.edu.tw/~cjlin/libsvm/) 

– Library for inclusion with own code 

– C++ and Java sources 

– Interfaces to Python, R, MATLAB, Perl, Ruby, Weka, C+ .NET,… 

 

 Both include fast training and evaluation algorithms, support for 

multi-class SVMs, automated training and cross-validation, … 

 Easy to apply to your own problems! 
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References and Further Reading 

• More information on SVMs can be found in Chapter 7.1 

of Bishop’s book. You can also look at Schölkopf & Smola 

(some chapters available online). 

 

 

 

 

 
 

• A more in-depth introduction to SVMs is available in the 

following tutorial: 

 C. Burges, A Tutorial on Support Vector Machines for Pattern 

Recognition, Data Mining and Knowledge Discovery, Vol. 2(2), 

pp. 121-167 1998. 
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