Machine Learning - Lecture 9

Nonlinear SVMs

19.05. 2013

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de/
leibe@vision.rwth-aachen.de

Course Outline

- Fundamentals (2 weeks)
- Bayes Decision Theory
- Probability Density Estimation

- Discriminative Approaches (5 weeks)
, Linear Discriminant Functions
, Statistical Learning Theory \& SVMs
- Ensemble Methods \& Boosting
, Randomized Trees, Forests \& Ferns
- Generative Models (4 weeks)
, Bayesian Networks
- Markov Random Fields

Topics of This Lecture

- Support Vector Machines (Recap)
, Lagrangian (primal) formulation
Dual formulation
Soft-margin classification
- Nonlinear Support Vector Machines
- Nonlinear basis functions
, The Kernel trick
- Mercer's condition
, Popular kernels
- Analysis
. VC dimensions
Error function
- Applications

Recap: Support Vector Machine (SVM)

- Basic idea
- The SVM tries to find a classifier which maximizes the margin between pos. and neg. data points.
Up to now: consider linear classifiers

$$
\mathbf{w}^{\mathrm{T}} \mathbf{x}+b=0
$$

- Formulation as a convex optimization problem
, Find the hyperplane satisfying

$$
\underset{\mathbf{w}, b}{\arg \min } \frac{1}{2}\|\mathbf{w}\|^{2}
$$

under the constraints

$$
t_{n}\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b\right) \geq 1 \quad \forall n
$$

based on training data points \mathbf{x}_{n} and target values $t_{n} \in\{-1,1\}$.

- Lagrangian primal form

$$
\begin{aligned}
L_{p} & =\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{n=1}^{N} a_{n}\left\{t_{n}\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b\right)-1\right\} \\
& =\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{n=1}^{N} a_{n}\left\{t_{n} y\left(\mathbf{x}_{n}\right)-1\right\}
\end{aligned}
$$

- The solution of L_{p} needs to fulfill the KKT conditions
- Necessary and sufficient conditions

$$
\begin{aligned}
a_{n} & \geq 0 \\
t_{n} y\left(\mathbf{x}_{n}\right)-1 & \geq 0 \\
a_{n}\left\{t_{n} y\left(\mathbf{x}_{n}\right)-1\right\} & =0
\end{aligned}
$$

KKT:	
λ	≥ 0
$f(\mathbf{x})$	≥ 0
$\lambda f(\mathbf{x})$	$=0$

Recap: SVM - Dual Formulation

- Maximize

$$
L_{d}(\mathbf{a})=\sum_{n=1}^{N} a_{n}-\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_{n} a_{m} t_{n} t_{m}\left(\mathbf{x}_{m}^{\mathrm{T}} \mathbf{x}_{n}\right)
$$

under the conditions

$$
\sum_{n=1}^{N} a_{n} t_{n}=0
$$

- Comparison

, L_{d} is equivalent to the primal form L_{p}, but only depends on a_{n}.

- L_{p} scales with $O\left(D^{3}\right)$.
- L_{d} scales with $\mathrm{O}\left(N^{3}\right)$ - in practice between $\mathrm{O}(N)$ and $\mathrm{O}\left(N^{2}\right)$.

Slide adanted from Bernt_Schiele	B. Leibe	1

RWIHAMCHER

Recap: SVM - New Dual Formulation

UNIVERSTTT

- New SVM Dual: Maximize

$$
L_{d}(\mathbf{a})=\sum_{n=1}^{N} a_{n}-\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_{n} a_{m} t_{n} t_{m}\left(\mathbf{x}_{m}^{\mathrm{T}} \mathbf{x}_{n}\right)
$$

under the conditions

$$
\begin{gathered}
0 \cdot a_{n} \cdot C \quad \begin{array}{c}
\text { This is all } \\
\text { that changed! }
\end{array} \\
\sum_{n=1}^{N} a_{n} t_{n}=0
\end{gathered}
$$

- This is again a quadratic programming problem \Rightarrow Solve as before...
, We do not have to set the slack variables ourselves! \Rightarrow They are jointly optimized together with w .

Interpretation of Support Vectors

- Those are the hard examples!

We can visualize them, e.g. for face detection

Nonlinear SVM

- Linear SVMs
, Datasets that are linearly separable with some noise work well:

- But what are we going to do if the dataset is just too hard?

. How about... mapping data to a higher-dimensional space:

RWIHAMCHE
Nonlinear SVM - Feature Spaces
UNIVERSITY

- General idea: The original input space can be mapped to some higher-dimensional feature space where the training set is separable:

RNUHAACHE UNIVERSITY

Nonlinear SVM

- General idea
- Nonlinear transformation ϕ of the data points \mathbf{x}_{n} :

$$
\mathbf{x} \in \mathbb{R}^{D} \quad \phi: \mathbb{R}^{D} \rightarrow \mathcal{H}
$$

, Hyperplane in higher-dim. space \mathcal{H} (linear classifier in \mathcal{H})

$$
\mathbf{w}^{\mathrm{T}} \phi(\mathbf{x})+b=0
$$

\Rightarrow Nonlinear classifier in \mathbb{R}^{D}.

What Could This Look Like?

- Example:
. Mapping to polynomial space, $\mathrm{x}, \mathrm{y} \in \mathbb{R}^{2}$:

- Motivation: Easier to separate data in higher-dimensional space.
- But wait - isn't there a big problem?

How should we evaluate the decision function?

Solution: The Kernel Trick

- Important observation
- $\phi(\mathbf{x})$ only appears in the form of dot products $\phi(\mathbf{x})^{\top} \phi(\mathbf{y})$:

$$
\begin{aligned}
y(\mathbf{x}) & =\mathbf{w}^{\mathrm{T}} \phi(\mathbf{x})+b \\
& =\sum_{n=1}^{N} a_{n} t_{n} \phi\left(\mathbf{x}_{n}\right)^{\mathrm{T}} \phi(\mathbf{x})+b
\end{aligned}
$$

- Trick: Define a so-called kernel function $k(\mathbf{x}, \mathbf{y})=\phi(\mathbf{x})^{\boldsymbol{\top}} \phi(\mathbf{y})$.
. Now, in place of the dot product, use the kernel instead:

$$
y(\mathbf{x})=\sum_{n=1}^{N} a_{n} t_{n} k\left(\mathbf{x}_{n}, \mathbf{x}\right)+b
$$

The kernel function implicitly maps the data to the higherdimensional space (without having to compute $\phi(\mathbf{x})$ explicitly)!

Problem with High-dim. Basis Functions

- Problem
- In order to apply the SVM, we need to evaluate the function

$$
y(\mathbf{x})=\mathbf{w}^{\mathrm{T}} \phi(\mathbf{x})+b
$$

, Using the hyperplane, which is itself defined as

$$
\mathbf{w}=\sum_{n=1}^{N} a_{n} t_{n} \phi\left(\mathbf{x}_{n}\right)
$$

\Rightarrow What happens if we try this for a million-dimensional feature space $\phi(\mathbf{x})$?
, Oh-oh...

Back to Our Previous Example...

- $2^{\text {nd }}$ degree polynomial kernel:

$$
\phi(\mathbf{x})^{\mathrm{T}} \phi(\mathbf{y})=\left[\begin{array}{c}
x_{1}^{2} \\
\sqrt{2} x_{1} x_{2} \\
x_{2}^{2}
\end{array}\right] \cdot\left[\begin{array}{c}
y_{1}^{2} \\
\sqrt{2} y_{1} y_{2} \\
y_{2}^{2}
\end{array}\right]
$$

$$
\begin{aligned}
& \qquad=x_{1}^{2} y_{1}^{2}+2 x_{1} x_{2} y_{1} y_{2}+x_{2}^{2} y_{2}^{2} \\
& \qquad=\left(\mathbf{x}^{\mathrm{T}} \mathbf{y}\right)^{2}=: k(\mathbf{x}, \mathbf{y}) \\
& \text { Whenever we evaluate the kernel function } k(\mathbf{x}, \mathbf{y})=\left(\mathbf{x}^{\top} \mathbf{y}\right)^{2} \text {, we } \\
& \text { implicitly compute the dot product in the higher-dimensional } \\
& \text { feature space. }
\end{aligned}
$$

SVMs with Kernels

- Using kernels
- Applying the kernel trick is easy. Just replace every dot product by a kernel function..

$$
\mathbf{x}^{\mathrm{T}} \mathbf{y} \quad \rightarrow \quad k(\mathbf{x}, \mathbf{y})
$$

. ...and we're done.

- Instead of the raw input space, we're now working in a higherdimensional (potentially infinite dimensional!) space, where the data is more easily separable.
- Wait - does this always work?
, The kernel needs to define an implicit mapping to a higher-dimensional feature space $\phi(\mathbf{x})$.
, When is this the case?

"Sounds like magic..."

RWITMACHE

Which Functions are Valid Kernels?

- Mercer's theorem (modernized version):
, Every positive definite symmetric function is a kernel.
- Positive definite symmetric functions correspond to a positive definite symmetric Gram matrix:

$K=$| $k\left(\mathbf{x}_{1}, \mathbf{x}_{1}\right)$ | $k\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$ | $k\left(\mathbf{x}_{1}, \mathbf{x}_{3}\right)$ | \ldots | $k\left(\mathbf{x}_{1}, \mathbf{x}_{n}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| $k\left(\mathbf{x}_{2}, \mathbf{x}_{1}\right)$ | $k\left(\mathbf{x}_{2}, \mathbf{x}_{2}\right)$ | $k\left(\mathbf{x}_{2}, \mathbf{x}_{3}\right)$ | | $k\left(\mathbf{x}_{2}, \mathbf{x}_{n}\right)$ |
| | | | | |
| \ldots | \ldots | \ldots | \ldots | \ldots |
| $k\left(\mathbf{x}_{n}, \mathbf{x}_{1}\right)$ | $k\left(\mathbf{x}_{n}, \mathbf{x}_{2}\right)$ | $k\left(\mathbf{x}_{n}, \mathbf{x}_{3}\right)$ | \ldots | $k\left(\mathbf{x}_{n}, \mathbf{x}_{n}\right)$ |

(positive definite $=$ all eigenvalues are >0)

Kernels Fulfilling Mercer's Condition

- Polynomial kernel

$$
k(\mathbf{x}, \mathbf{y})=\left(\mathbf{x}^{\mathrm{T}} \mathbf{y}+1\right)^{p}
$$

- Radial Basis Function kernel

$$
k(\mathbf{x}, \mathbf{y})=\exp \left\{-\frac{(\mathbf{x}-\mathbf{y})^{2}}{2 \sigma^{2}}\right\} \quad \text { e.g. Gaussian }
$$

- Hyperbolic tangent kernel

$$
\left.k(\mathbf{x}, \mathbf{y})=\tan \quad{ }^{T}+-\delta\right) \quad \text { e.g. Sigmoid }
$$

Actually, this was wrong in the original SVM paper...
(and many, many more...)

RNIHAMCHE
Untyle:Rs
Example: Bag of Visual Words Representation

- General framework in visual recognition
, Create a codebook (vocabulary) of prototypical image features
, Represent images as histograms over codebook activations
, Compare two images by any histogram kernel, e.g. χ^{2} kernel

$$
k_{\chi^{2}}\left(h, h^{\prime}\right)=\exp \left(-\frac{1}{\gamma} \sum_{j} \frac{\left(h_{j}-h_{j}^{\prime}\right)^{2}}{h_{j}+h_{j}^{\prime}}\right)
$$

RWHAMCHE UNIVERSIT
Nonlinear SVM - Dual Formulation

- SVM Dual: Maximize

$$
L_{d}(\mathbf{a})=\sum_{n=1}^{N} a_{n}-\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_{n} a_{m} t_{n} t_{m} k\left(\mathbf{x}_{m}, \mathbf{x}_{n}\right)
$$

under the conditions

$$
\begin{gathered}
0 \cdot a_{n} \cdot C \\
\sum_{n=1}^{N} a_{n} t_{n}=0
\end{gathered}
$$

- Classify new data points using

$$
y(\mathbf{x})=\sum_{n=1}^{N} a_{n} t_{n} k\left(\mathbf{x}_{n}, \mathbf{x}\right)+b
$$

RIIHAMCHE UNIVERSIT

SVM Demo

Summary: SVMs

- Properties
- Empirically, SVMs work very, very well.
- SVMs are currently among the best performers for a number of classification tasks ranging from text to genomic data.
- SVMs can be applied to complex data types beyond feature vectors (e.g. graphs, sequences, relational data) by designing kernel functions for such data.
- SVM techniques have been applied to a variety of other tasks e.g. SV Regression, One-class SVMs, ...
- The kernel trick has been used for a wide variety of applications. It can be applied wherever dot products are in use
e.g. Kernel PCA, kernel FLD, ...

Good overview, software, and tutorials available on http://www.kernel-machines.org/

Summary: SVMs

- Limitations
- How to select the right kernel?

Best practice guidelines are available for many applications
. How to select the kernel parameters?
(Massive) cross-validation.
Usually, several parameters are optimized together in a grid search.
Solving the quadratic programming problem
Standard QP solvers do not perform too well on SVM task.
Dedicated methods have been developed for this, e.g. SMO.
, Speed of evaluation
Evaluating $y(\mathbf{x})$ scales linearly in the number of SVs.

- Too expensive if we have a large number of support vectors.
\Rightarrow There are techniques to reduce the effective SV set.
- Training for very large datasets (millions of data points)

Stochastic gradient descent and other approximations can be used

Topics of This Lecture

- Support Vector Machines (Recap)

Lagrangian (primal) formulation
Dual formulation
Soft-margin classification

- Nonlinear Support Vector Machines

Nonlinear basis functions
The Kernel trick
Mercer's condition
Popular kernels

- Analysis

VC dimensions
Error function

- Applications

VC Dimension for Polynomial Kernel

- Polynomial kernel of degree p :

$$
\begin{array}{r}
k(\mathbf{x}, \mathbf{y})=\left(\mathbf{x}^{\mathrm{T}} \mathbf{y}\right)^{p} \\
\text {, Dimensionality of } \mathcal{H}:\binom{D+p-1}{p}
\end{array}
$$

, Example:

$$
\begin{aligned}
D & =16 \times 16=256 \\
p & =4 \\
\operatorname{dim}(\mathcal{H}) & =183.181 .376
\end{aligned}
$$

- The hyperplane in \mathcal{H} then has VC-dimension

$$
\operatorname{dim}(\mathcal{H})+1
$$

RWIHAMCHE
Recap: Kernels Fulfilling Mercer's Condition

- Polynomial kernel

$$
k(\mathbf{x}, \mathbf{y})=\left(\mathbf{x}^{\mathrm{T}} \mathbf{y}+1\right)^{p}
$$

- Radial Basis Function kernel

$$
k(\mathbf{x}, \mathbf{y})=\exp \left\{-\frac{(\mathbf{x}-\mathbf{y})^{2}}{2 \sigma^{2}}\right\} \quad \text { e.g. Gaussian }
$$

- Hyperbolic tangent kernel

$$
k(\mathbf{x}, \mathbf{y})=\tan \quad \text { e.g. Sigmoid }
$$

Actually, that was wrong in the original SVM paper...
(and many, many more...)
B. Leibe

VC Dimension for Gaussian RBF Kernel

- Radial Basis Function:

$$
k(\mathbf{x}, \mathbf{y})=\exp \left\{-\frac{(\mathbf{x}-\mathbf{y})^{2}}{2 \sigma^{2}}\right\}
$$

- In this case, \mathcal{H} is infinite dimensional!

$$
\exp (\mathbf{x})=1+\frac{\mathbf{x}}{1!}+\frac{\mathbf{x}^{2}}{2!}+\ldots+\frac{\mathbf{x}^{n}}{n!}+\ldots
$$

Since only the kernel function is used by the SVM, this is no problem.

- The hyperplane in \mathcal{H} then has VC-dimension

$$
\operatorname{dim}(\mathcal{H})+1=\infty
$$

B. Leibe

Example: RBF Kernels

- Decision boundary on toy problem

- Intuitively
- If we make the radius of the RBF kernel sufficiently small, then each data point can be associated with its own kernel.
\cdot

However, this also means that we can get finite VC-dimension if we set a lower limit to the RBF radius.

But... but... but...

- Don't we risk overfitting with those enormously highdimensional feature spaces?
. No matter what the basis functions are, there are really only up to N parameters: $a_{1}, a_{2}, \ldots, a_{N}$ and most of them are usually set to zero by the maximum margin criterion.
, The data effectively lives in a low-dimensional subspace of \mathcal{H}.
- What about the VC dimension? I thought low VC-dim was good (in the sense of the risk bound)?

Yes, but the maximum margin classifier "magically" solves this.
. Reason (Vapnik): by maximizing the margin, we can reduce the VC-dimension

- Empirically, SVMs have very good generalization performance.
- For the general case, Vapnik has proven the following:

The class of optimal linear separators has VC dimension h bounded from above as

$$
h \leq \min \left\{\left[\frac{D^{2}}{\rho^{2}}\right\rceil, m_{0}\right\}+1
$$

where ρ is the margin, D is the diameter of the smallest sphere that can enclose all of the training examples, and m_{0} is the dimensionality.

- Intuitively, this implies that regardless of dimensionality m_{o} we can minimize the VC dimension by maximizing the margin ρ.
- Thus, complexity of the classifier is kept small regardless of dimensionality.

Theoretical Justification for Maximum Margins

- Gap Tolerant Classifier

Classifier is defined by a ball in \mathbb{R}^{d} with diameter D enclosing all points and two parallel hyperplanes with distance M (the margin).
Points in the ball are assigned class $\{-1,1\}$ depending on which side of the margin they fall.

- VC dimension of this classifier depends on the margin

. $M \leq 3 / 4 D$	$\Rightarrow \mathbf{3}$ points can be shattered
又 $3 / 4 D<M<D$	$\Rightarrow \mathbf{2}$ points can be shattered
> $M \geq D$	$\Rightarrow \mathbf{1}$ point can be shattered

\Rightarrow By maximizing the margin, we can minimize the VC dimension

SVM - Analysis

- Traditional soft-margin formulation

$$
\min _{\mathbf{w} \in \mathbb{R}^{D}, \xi_{n} \in \mathbb{R}^{+}} \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{n=1}^{N} \xi_{n} \quad \begin{gathered}
\text { "Maximize } \\
\text { the margin" }
\end{gathered}
$$

subject to the constraints

$$
t_{n} y\left(\mathbf{x}_{n}\right) \geq 1-\xi_{n}
$$

"Most points should be on the correct side of the margin"

- Different way of looking at it

We can reformulate the constraints into the objective function.

$$
\min _{\mathbf{w} \in \mathbb{R}^{D}} \underbrace{\frac{1}{2}\|\mathbf{w}\|^{2}}_{\mathbf{L}_{2} \text { regularizer }}+\underbrace{C \sum_{n=1}^{N}\left[1-t_{n} y\left(\mathbf{x}_{n}\right)\right]_{+}}_{\text {"Hinge loss" }}
$$

where $[x]_{+}:=\max \{0, x\}$.

$$
\begin{aligned}
& \text { SVM - Discussion } \\
& \text { - SVM optimization function } \\
& \min _{\mathbf{w} \in \mathbb{R}^{D}}^{\operatorname{L}_{2}} \underbrace{\frac{1}{2}\|\mathbf{w}\|^{2}}_{\text {regularizer }}+\underbrace{C \sum_{n=1}^{N}\left[1-t_{n} y\left(\mathbf{x}_{n}\right)\right]_{+}}_{\text {Hinge loss }}
\end{aligned}
$$

- Hinge loss enforces sparsity
- Only a subset of training data points actually influences the decision boundary.
, This is different from sparsity obtained through the regularizer! There, only a subset of input dimensions are used.
, Unconstrained optimization, but non-differentiable function.
, Solve, e.g. by subgradient descent
- Currently most efficient: stochastic gradient descent

Slide adapted from Christoph Lampert B. Leibe 51

Example Application: Text Classification

- Problem:

Classify a document in a number of categories

- Representation:
, "Bag-of-words" approach
. Histogram of word counts (on learned dictionary) _ . . . Very high-dimensional feature space (~ 10.000 dimensions) Few irrelevant features
- This was one of the first applications of SVMs - T. Joachims (1997)

	Example Application: OCR - Results . Almost no overfitting with higher-degree kernels.			
	degree of polynomial	dimensionality of feature space	support vectors	$\begin{aligned} & \text { raw } \\ & \text { error } \end{aligned}$
	plo	256	282	8.9
	- 2	≈ 33000	227	4.7
	3	$\approx 1 \times 10^{6}$	274	4.0
	4	$\approx 1 \times 10^{9}$	321	4.2
	5	$\approx 1 \times 10^{12}$	374	4.3
	6	$\approx 1 \times 10^{14}$	377	4.5
	7	$\approx 1 \times 10^{16}$	422	4.5

Many Other Applications

- Lots of other applications in all fields of technology
, OCR
- Text classification
, Computer vision
- High-energy physics
- Monitoring of household appliances
, Protein secondary structure prediction
- Design on decision feedback equalizers (DFE) in telephony
(Detailed references in Schoelkopf \& Smola, 2002, pp. 221)

Summary: SVMs

- Properties
- Empirically, SVMs work very, very well.
- SVMs are currently among the best performers for a number of classification tasks ranging from text to genomic data.
SVMs can be applied to complex data types beyond feature vectors (e.g. graphs, sequences, relational data) by designing kernel functions for such data.
SVM techniques have been applied to a variety of other tasks e.g. SV Regression, One-class SVMs, ...
- The kernel trick has been used for a wide variety of applications. It can be applied wherever dot products are in use
e.g. Kernel PCA, kernel FLD, ...

Good overview, software, and tutorials available on http://www.kernel-machines.org/

Topics of This Lecture

- Support Vector Machines (Recap)

- Lagrangian (primal) formulation

Dual formulation
Soft-margin classification
Nonlinear Support Vector Machines

- Analysis

VC dimensions
Error function

- Applications
- Extensions
, One-class SVMs
\qquad

References and Further Reading

- More information on SVMs can be found in Chapter 7.1 of Bishop's book. You can also look at Schölkopf \& Smola (some chapters available online).

- Both include fast training and evaluation algorithms, support for multi-class SVMs, automated training and cross-validation, ... \Rightarrow Easy to apply to your own problems!

