Machine Learning - Lecture 8

Linear Support Vector Machines

$$
12.05 .2015
$$

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de/
leibe@vision.rwth-aachen.de

Recap: Generalization and Overfitting

- Goal: predict class labels of new observations
- Train classification model on limited training set.
- The further we optimize the model parameters, the more the training error will decrease.
. However, at some point the test error will go up again.
\Rightarrow Overfitting to the training set!

Course Outline

- Fundamentals (2 weeks)
, Bayes Decision Theory
, Probability Density Estimation

- Discriminative Approaches (5 weeks)
- Linear Discriminant Functions
, Statistical Learning Theory \& SVMs
- Ensemble Methods \& Boosting
, Randomized Trees, Forests \& Ferns
- Generative Models (4 weeks)
, Bayesian Networks
- Markov Random Fields

Recap: Statistical Learning Theory

- Idea

Compute an upper bound on the actual risk based on the empirical risk

$$
R(\alpha) \cdot R_{e m p}(\alpha)+\epsilon\left(N, p^{*}, h\right)
$$

where
N : number of training examples
p^{*} : probability that the bound is correct
h : capacity of the learning machine ("VC-dimension")

RWITAACHER

Recap: VC Dimension

- Vapnik-Chervonenkis dimension
- Measure for the capacity of a learning machine.
- Formal definition:
- If a given set of ℓ points can be labeled in all possible 2^{ℓ} ways, and for each labeling, a member of the set $\{f(\alpha)\}$ can be found which correctly assigns those labels, we say that the set of points is shattered by the set of functions.

The VC dimension for the set of functions $\{f(\alpha)\}$ is defined as the maximum number of training points that can be shattered by $\{f(\alpha)\}$.

Recap: Upper Bound on the Risk

- Important result (Vapnik 1979, 1995)
With probability $(1-\eta)$, the following bound holds

$$
R(\alpha) \cdot R_{e m p}(\alpha)+\underbrace{\sqrt{\frac{h(\log (2 N / h)+1)-\log (\eta / 4)}{N}}}_{\text {"Vc confidence" }}
$$

- This bound is independent of $P_{X, Y}(\mathbf{x}, y)!\quad \begin{gathered}\text { Guarated rike } \\ \text { (bound on generliation }\end{gathered}$
If we know h (the VC dimension), we can easily compute the risk bound

$$
R(\alpha) \cdot R_{e m p}(\alpha)+\epsilon\left(N, p^{*}, h\right)
$$

RWIHAACHE

Recap: Structural Risk Minimization

- How can we implement Structural Risk Minimization?

$$
R(\alpha) \cdot R_{e m p}(\alpha)+\epsilon\left(N, p^{*}, h\right)
$$

- Classic approach
- Keep $\epsilon\left(N, p^{*}, h\right)$ constant and minimize $R_{\text {emp }}(\alpha)$.
$\epsilon\left(N, p^{*}, h\right)$ can be kept constant by controlling the model parameters.
- Support Vector Machines (SVMs)
, Keep $R_{\text {emp }}(\alpha)$ constant and minimize $\epsilon\left(N, p^{*}, h\right)$.
, In fact: $R_{\text {emp }}(\alpha)=0$ for separable data.
- Control $\epsilon\left(N, p^{*}, h\right)$ by adapting the VC dimension (controlling the "capacity" of the classifier).

Topics of This Lecture

- Linear Support Vector Machines
, Lagrangian (primal) formulation
, Dual formulation
- Discussion
- Linearly non-separable case

Soft-margin classification

- Updated formulation
- Nonlinear Support Vector Machines
- Nonlinear basis functions
, The Kernel trick
- Mercer's condition

Popular kernels

- Applications

Support Vector Machine (SVM)

- Let's first consider linearly separable data
, N training data points $\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}_{i=1}^{N} \quad \mathbf{x}_{i} \in \mathbb{R}^{d}$
. Target values $\quad t_{i} \in\{-1,1\}$
- Hyperplane separating the data

Support Vector Machine (SVM)

- Since the data is linearly separable, there exists a hyperplane with

$$
\begin{aligned}
& \mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b \geq+1 \text { for } t_{n}=+1 \\
& \mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b \cdot-1 \text { for } t_{n}=-1
\end{aligned}
$$

- Combined in one equation, this can be written as

$$
t_{n}\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b\right) \geq 1 \quad \forall n
$$

\Rightarrow Canonical representation of the decision hyperplane.

- The equation will hold exactly for the points on the margin

$$
t_{n}\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b\right)=1
$$

, By definition, there will always be at least one such point.

Support Vector Machine (SVM)

- We can choose w such that

$$
\begin{array}{lll}
\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b=+1 & \text { for one } & t_{n}=+1 \\
\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b=-1 & \text { for one } & t_{n}=-1
\end{array}
$$

- The distance between those two hyperplanes is then the margin

$$
\begin{aligned}
& d_{-}=d_{+}=\frac{1}{\|\mathbf{w}\|} \\
& d_{-}+d_{+}=\frac{2}{\|\mathbf{w}\|}
\end{aligned}
$$

\Rightarrow We can find the hyperplane with maximal margin by minimizing $\|\mathrm{w}\|^{2}$.
B. Leibe

Support Vector Machine (SVM)

- Optimization problem

Find the hyperplane satisfying

$$
\underset{\mathbf{w}, b}{\arg \min } \frac{1}{2}\|\mathbf{w}\|^{2}
$$

under the constraints

$$
t_{n}\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b\right) \geq 1 \quad \forall n
$$

- Quadratic programming problem with linear constraints.
- Can be formulated using Lagrange multipliers.
- Who is already familiar with Lagrange multipliers? - Let's look at a real-life example...

Recap: Lagrange Multipliers

- Problem
, We want to maximize $K(\mathbf{x})$ subject to constraints $f(\mathbf{x})=0$.
, Example: we want to get as close as possible, but there is a fence.
, How should we move?
$f(\mathbf{x})=$

We want to maximize ∇K
But we can only move parallel to the fence, i.e. along
$\nabla_{\|} K=\nabla K+\lambda \nabla f$ with $\lambda \neq 0$.

Fence f
lide adanted from Mario Eritz

RWIIHAMEFE

Recap: Lagrange Multipliers

- Problem
. Now let's look at constraints of the form $f(\mathbf{x}) \geq 0$
, Example: There might be a hill from which we can see better..
, Optimize $\max _{\mathbf{x}, \lambda} L(\mathbf{x}, \lambda)=K(\mathbf{x})+\lambda f(\mathbf{x})$

- Two cases

Solution lies on boundary $\Rightarrow f(\mathbf{x})=0$ for some $\lambda>0$

- Solution lies inside $f(\mathbf{x})>0$ \Rightarrow Constraint inactive: $\lambda=0$
In both cases
$\Rightarrow \lambda f(\mathbf{x})=0$

Recap: Lagrange Multipliers

- Problem
, We want to maximize $K(\mathbf{x})$ subject to constraints $f(\mathbf{x})=0$
Example: we want to get as close as possible, but there is a fence.
, How should we move?
$f(\mathbf{x})=0 \quad f(\mathbf{x})>0$ \Rightarrow Optimize
$\max _{\mathbf{x}, \lambda} L(\mathbf{x}, \lambda)=K(\mathbf{x})+\lambda f(\mathbf{x})$
$\frac{\partial L}{\partial \mathbf{x}}=\nabla_{\|} K \stackrel{!}{=} 0$
$\frac{\partial L}{\partial \lambda}=f(x) \stackrel{!}{=} 0$
Fence f 22

Recap: Lagrange Multipliers

- Problem
- Now let's look at constraints of the form $f(\mathbf{x}) \geq 0$.
, Example: There might be a hill from which we can see better..
Optimize $\max _{\mathbf{x}, \lambda} L(\mathbf{x}, \lambda)=K(\mathbf{x})+\lambda f(\mathbf{x})$
- Two cases
, Solution lies on boundary $\Rightarrow f(\mathbf{x})=0$ for some $\lambda>0$
Solution lies inside $f(\mathbf{x})>0$
\Rightarrow Constraint inactive: $\lambda=0$
In both cases
$\Rightarrow \lambda f(\mathbf{x})=0$
B. Leibe Fence $f \quad 24$

SVM - Lagrangian Formulation

- Find hyperplane minimizing $\|\mathbf{w}\|^{2}$ under the constraints

$$
t_{n}\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b\right)-1 \geq 0 \quad \forall n
$$

- Lagrangian formulation
- Introduce positive Lagrange multipliers: $a_{n} \geq 0 \quad \forall n$
, Minimize Lagrangian ("primal form")

$$
L(\mathbf{w}, b, \mathbf{a})=\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{n=1}^{N} a_{n}\left\{t_{n}\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b\right)-1\right\}
$$

, I.e., find \mathbf{w}, b, and a such that

$$
\frac{\partial L}{\partial b}=0 \Rightarrow \sum_{n=1}^{N} a_{n} t_{n}=0 \quad \frac{\partial L}{\partial \mathbf{w}}=0 \Rightarrow \mathbf{w}=\sum_{n=1}^{N} a_{n} t_{n} \mathbf{x}_{n}
$$

SVM - Lagrangian Formulation

- Lagrangian primal form

$$
\begin{aligned}
L_{p} & =\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{n=1}^{N} a_{n}\left\{t_{n}\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b\right)-1\right\} \\
& =\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{n=1}^{N} a_{n}\left\{t_{n} y\left(\mathbf{x}_{n}\right)-1\right\}
\end{aligned}
$$

- The solution of L_{p} needs to fulfill the KKT conditions
- Necessary and sufficient conditions

$$
\begin{array}{rl|}
a_{n} & \geq 0 \\
a_{n} y\left(\mathbf{x}_{n}\right)-1 & \geq 0 \\
a_{n}\left\{t_{n} y\left(\mathbf{x}_{n}\right)-1\right\} & =0 \\
\text { B. Leibe } & \\
\hline
\end{array}
$$

SVM - Support Vectors

- The training points for which $a_{n}>0$ are called "support vectors".
- Graphical interpretation:
- Graphical interpretation:
, The support vectors are the
points on the margin.
, They define the margin
and thus the hyperplane.
\Rightarrow Robustness to "too correct"
points!

SVM - Discussion (Part 1)

- Linear SVM
, Linear classifier
- Approximative implementation of the SRM principle.
- In case of separable data, the SVM produces an empirical risk of zero with minimal value of the VC confidence
(i.e. a classifier minimizing the upper bound on the actual risk).
, SVMs thus have a "guaranteed" generalization capability.
, Formulation as convex optimization problem.
\Rightarrow Globally optimal solution!

- Primal form formulation

, Solution to quadratic prog. problem in M variables is in $\mathcal{O}\left(M^{3}\right)$.
, Here: D variables $\Rightarrow \mathcal{O}\left(D^{3}\right)$
, Problem: scaling with high-dim. data ("curse of dimensionality")

SVM - Dual Formulation

- Improving the scaling behavior: rewrite L_{p} in a dual form

$$
\begin{aligned}
L_{p} & =\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{n=1}^{N} a_{n}\left\{t_{n}\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b\right)-1\right\} \\
& =\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{n=1}^{N} a_{n} t_{n} \mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}-b \sum_{\neq 1}^{N} a_{n} t_{n}+\sum_{n=1}^{N} a_{n}
\end{aligned}
$$

- Using the constraint $\sum_{n=1}^{N} a_{n} t_{n}=0$, we obtain $\quad \frac{\partial L_{p}}{\partial b}=0$

$$
L_{p}=\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{n=1}^{N} a_{n} t_{n} \mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+\sum_{n=1}^{N} a_{n}
$$

SVM - Dual Formulation

$$
L_{p}=\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{n=1}^{N} a_{n} t_{n} \mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+\sum_{n=1}^{N} a_{n}
$$

Using the constraint $\mathbf{w}=\sum_{n=1}^{N} a_{n} t_{n} \mathbf{x}_{n}$, we obtain $\frac{\partial L_{p}}{\partial \mathbf{w}}=0$

$$
\begin{aligned}
L_{p} & =\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{n=1}^{N} a_{n} t_{n} \sum_{m=1}^{N} a_{m} t_{m} \mathbf{x}_{m}^{\mathrm{T}} \mathbf{x}_{n}+\sum_{n=1}^{N} a_{n} \\
& =\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{n=1}^{N} \sum_{m=1}^{N} a_{n} a_{m} t_{n} t_{m}\left(\mathbf{x}_{m}^{\mathrm{T}} \mathbf{x}_{n}\right)+\sum_{n=1}^{N} a_{n}
\end{aligned}
$$

SVM - Dual Formulation

- Maximize

$$
L_{d}(\mathbf{a})=\sum_{n=1}^{N} a_{n}-\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_{n} a_{m} t_{n} t_{m}\left(\mathbf{x}_{m}^{\mathrm{T}} \mathbf{x}_{n}\right)
$$

under the conditions

$$
\begin{aligned}
a_{n} & \geq 0 \quad \forall n \\
\sum_{n=1}^{N} a_{n} t_{n} & =0
\end{aligned}
$$

- The hyperplane is given by the N_{S} support vectors:

$$
\mathbf{w}=\sum_{n=1}^{N_{\mathcal{S}}} a_{n} t_{n} \mathbf{x}_{n}
$$

SVM - Discussion (Part 2)

- Dual form formulation
- In going to the dual, we now have a problem in N variables $\left(a_{n}\right)$.
, Isn't this worse??? We penalize large training sets!
- However...

1. SVMs have sparse solutions: $a_{n} \neq 0$ only for support vectors!
\Rightarrow This makes it possible to construct efficient algorithms

> e.g. Sequential Minimal Optimization (SMO)

Effective runtime between $\mathcal{O}(N)$ and $\mathcal{O}\left(N^{2}\right)$.
2. We have avoided the dependency on the dimensionality.
\Rightarrow This makes it possible to work with infinite-dimensional feature spaces by using suitable basis functions $\phi(\mathbf{x})$.
\Rightarrow We'll see that in a few minutes...

SVM - Non-Separable Data

- Non-separable data
, I.e. the following inequalities cannot be satisfied for all data points

$$
\begin{array}{ll}
\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b \geq+1 & \text { for } t_{n}=+1 \\
\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b \cdot-1 & \text { for } \quad t_{n}=-1
\end{array}
$$

Instead use

$$
\begin{array}{ll}
\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b \geq+1-\xi_{n} & \text { for } \\
t_{n}=+1 \\
\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b \cdot-1+\xi_{n} & \text { for } \\
t_{n}=-1
\end{array}
$$

with "slack variables" $\xi_{n} \geq 0 \quad \forall n$

SVM - Soft-Margin Classification

- Slack variables
- One slack variable $\xi_{n} \geq 0$ for each training data point.
- Interpretation
- $\xi_{n}=0$ for points that are on the correct side of the margin.
, $\xi_{n}=\left|t_{n}-y\left(\mathbf{x}_{n}\right)\right|$ for all other points (linear penalty).

Point on decision boundary: $\xi_{n}=1$

Misclassified point:
$\xi_{n}>1$

We do not have to set the slack variables ourselves!
\Rightarrow They are jointly optimized together with w .
How that?

RWITMACHE

SVM - Non-Separable Data

- Separable data
- Minimize
- Non-separable data
- Minimize

$\frac{1}{2}\|\mathbf{w}\|^{2} \quad$| Trade-off |
| :---: |
| parameter! |

RNIHAACHE
UNIVERSITY

SVM - New Dual Formulation

- New SVM Dual: Maximize

$$
L_{d}(\mathbf{a})=\sum_{n=1}^{N} a_{n}-\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_{n} a_{m} t_{n} t_{m}\left(\mathbf{x}_{m}^{\mathrm{T}} \mathbf{x}_{n}\right)
$$

under the conditions
This is all that changed!

$$
\sum_{n=1}^{N} a_{n} t_{n}=0
$$

- This is again a quadratic programming problem \Rightarrow Solve as before... (more on that later)

SVM - New Solution

- Solution for the hyperplane
. Computed as a linear combination of the training examples

$$
\mathbf{w}=\sum_{n=1}^{N} a_{n} t_{n} \mathbf{x}_{n}
$$

- Again sparse solution: $a_{n}=0$ for points outside the margin.
\Rightarrow The slack points with $\xi_{n}>0$ are now also support vectors!
, Compute b by averaging over all $N_{\mathcal{M}}$ points with $0<a_{n}<C$:

$$
b=\frac{1}{N_{\mathcal{M}}} \sum_{n \in \mathcal{M}}\left(t_{n}-\sum_{m \in \mathcal{M}} a_{m} t_{m} \mathbf{x}_{m}^{\mathrm{T}} \mathbf{x}_{n}\right)
$$

So Far...

- Only looked at linearly separable case Current problem formulation has no solution if the data are not linearly separable!
Need to introduce some tolerance to outlier data points.
\Rightarrow Slack variables.

- Only looked at linear decision boundaries..
- This is not sufficient for many applications.

Want to generalize the ideas to non-linear boundaries.

Interpretation of Support Vectors

- Those are the hard examples!

We can visualize them, e.g. for face detection

RWIIHAMEHE
UNIVERSITY
Another Example

- Separable by a surface in 3D

Nonlinear SVM - Feature Spaces

- General idea: The original input space can be mapped to some higher-dimensional feature space where the training set is separable:

Nonlinear SVM

- General idea
, Nonlinear transformation ϕ of the data points \mathbf{x}_{n} :

$$
\mathbf{x} \in \mathbb{R}^{D} \quad \phi: \mathbb{R}^{D} \rightarrow \mathcal{H}
$$

, Hyperplane in higher-dim. space \mathcal{H} (linear classifier in \mathcal{H})

$$
\mathbf{w}^{\mathrm{T}} \phi(\mathbf{x})+b=0
$$

\Rightarrow Nonlinear classifier in \mathbb{R}^{D}.

What Could This Look Like?

- Example:
- Mapping to polynomial space, $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{2}$:
$\phi(\mathbf{x})=\left[\begin{array}{cc}x_{1}^{2} \\ \sqrt{2} x_{1} x_{2} \\ x_{2}^{2}\end{array}\right]$
. Motivation: Easier to separate data in higher-dimensional space.
, But wait - isn't there a big problem?
How should we evaluate the decision function?

Solution: The Kernel Trick

- Important observation
- $\phi(\mathbf{x})$ only appears in the form of dot products $\phi(\mathbf{x})^{\top} \phi(\mathbf{y})$:

$$
\begin{aligned}
y(\mathbf{x}) & =\mathbf{w}^{\mathrm{T}} \phi(\mathbf{x})+b \\
& =\sum_{n=1}^{N} a_{n} t_{n} \phi\left(\mathbf{x}_{n}\right)^{\mathrm{T}} \phi(\mathbf{x})+b
\end{aligned}
$$

- Trick: Define a so-called kernel function $k(\mathbf{x}, \mathbf{y})=\phi(\mathbf{x})^{\top} \phi(\mathbf{y})$.
, Now, in place of the dot product, use the kernel instead:

$$
y(\mathbf{x})=\sum_{n=1}^{N} a_{n} t_{n} k\left(\mathbf{x}_{n}, \mathbf{x}\right)+b
$$

- The kernel function implicitly maps the data to the higherdimensional space (without having to compute $\phi(\mathbf{x})$ explicitly)!

Back to Our Previous Example...

Problem with High-dim. Basis Functions

- Problem
- In order to apply the SVM, we need to evaluate the function

$$
y(\mathbf{x})=\mathbf{w}^{\mathrm{T}} \phi(\mathbf{x})+b
$$

, Using the hyperplane, which is itself defined as

$$
\mathbf{w}=\sum_{n=1}^{N} a_{n} t_{n} \phi\left(\mathbf{x}_{n}\right)
$$

\Rightarrow What happens if we try this for a million-dimensional feature space $\phi(\mathbf{x})$?
, Oh-oh...

- $2^{\text {nd }}$ degree polynomial kernel:

$$
\begin{aligned}
\phi(\mathbf{x})^{\mathrm{T}} \phi(\mathbf{y}) & =\left[\begin{array}{c}
x_{1}^{2} \\
\sqrt{2} x_{1} x_{2} \\
x_{2}^{2}
\end{array}\right] \cdot\left[\begin{array}{c}
y_{1}^{2} \\
\sqrt{2} y_{1} y_{2} \\
y_{2}^{2}
\end{array}\right] \substack{\begin{subarray}{c}{1 \\
0.8 \\
0.6 \\
0.2} }} \\
{0} \\
& =x_{1}^{2} y_{1}^{2}+2 x_{1} x_{2} y_{1} y_{2}+x_{2}^{2} y_{2}^{2} \\
& =\left(\mathbf{x}^{\mathrm{T}} \mathbf{y}\right)^{2}=: k(\mathbf{x}, \mathbf{y})
\end{aligned}
$$

Whenever we evaluate the kernel function $k(\mathbf{x}, \mathbf{y})=\left(\mathbf{x}^{\top} \mathbf{y}\right)^{2}$, we implicitly compute the dot product in the higher-dimensional feature space.

SVMs with Kernels

- Using kernels
, Applying the kernel trick is easy. Just replace every dot product by a kernel function..

$$
\mathbf{x}^{\mathrm{T}} \mathbf{y} \quad \rightarrow \quad k(\mathbf{x}, \mathbf{y})
$$

- ...and we're done.
- Instead of the raw input space, we're now working in a higherdimensional (potentially infinite dimensional!) space, where the data is more easily separable.
"Sounds like magic..."
- Wait - does this always work?
- The kernel needs to define an implicit mapping to a higher-dimensional feature space $\phi(\mathbf{x})$.
When is this the case?
B. Leibe

RWIHAACHE

Recap: Kernels Fulfilling Mercer's Condition

- Polynomial kernel

$$
k(\mathbf{x}, \mathbf{y})=\left(\mathbf{x}^{\mathrm{T}} \mathbf{y}+1\right)^{p}
$$

- Radial Basis Function kernel

$$
k(\mathbf{x}, \mathbf{y})=\exp \left\{-\frac{(\mathbf{x}-\mathbf{y})^{2}}{2 \sigma^{2}}\right\}
$$

e.g. Gaussian

- Hyperbolic tangent kernel

Actually, this was wrong in the original SVM paper...
(and many, many more...)
Slide credit: Bernt Schiele

Which Functions are Valid Kernels?

- Mercer's theorem (modernized version):
, Every positive definite symmetric function is a kernel.
- Positive definite symmetric functions correspond to a positive definite symmetric Gram matrix:

$K=$| $k\left(\mathbf{x}_{1}, \mathbf{x}_{1}\right)$ | $k\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$ | $k\left(\mathbf{x}_{1}, \mathbf{x}_{3}\right)$ | \ldots | $k\left(\mathbf{x}_{1}, \mathbf{x}_{n}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| $k\left(\mathbf{x}_{2}, \mathbf{x}_{1}\right)$ | $k\left(\mathbf{x}_{2}, \mathbf{x}_{2}\right)$ | $k\left(\mathbf{x}_{2}, \mathbf{x}_{3}\right)$ | | $k\left(\mathbf{x}_{2}, \mathbf{x}_{n}\right)$ |
| | | | | |
| \ldots | \ldots | \ldots | \ldots | \ldots |
| $k\left(\mathbf{x}_{n}, \mathbf{x}_{1}\right)$ | $k\left(\mathbf{x}_{n}, \mathbf{x}_{2}\right)$ | $k\left(\mathbf{x}_{n}, \mathbf{x}_{3}\right)$ | \ldots | $k\left(\mathbf{x}_{n}, \mathbf{x}_{n}\right)$ |

(positive definite $=$ all eigenvalues are >0)

Example: Bag of Visual Words Representation

- General framework in visual recognition
, Create a codebook (vocabulary) of prototypical image features
, Represent images as histograms over codebook activations
, Compare two images by any histogram kernel, e.g. χ^{2} kernel

$$
k_{\chi^{2}}\left(h, h^{\prime}\right)=\exp \left(-\frac{1}{\gamma} \sum_{j} \frac{\left(h_{j}-h_{j}^{\prime}\right)^{2}}{h_{j}+h_{j}^{\prime}}\right)
$$

\downarrow

\downarrow

Slide adapted from Christoon ampert
B. Leibe

Nonlinear SVM - Dual Formulation

- SVM Dual: Maximize

$$
L_{d}(\mathbf{a})=\sum_{n=1}^{N} a_{n}-\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_{n} a_{m} t_{n} t_{m} k\left(\mathbf{x}_{m}, \mathbf{x}_{n}\right)
$$

under the conditions

$$
\begin{gathered}
0 \cdot a_{n} \cdot C \\
\sum_{n=1}^{N} a_{n} t_{n}=0
\end{gathered}
$$

- Classify new data points using

$$
y(\mathbf{x})=\sum_{n=1}^{N} a_{n} t_{n} k\left(\mathbf{x}_{n}, \mathbf{x}\right)+b
$$

VC Dimension for Gaussian RBF Kernel

- Radial Basis Function:

$$
k(\mathbf{x}, \mathbf{y})=\exp \left\{-\frac{(\mathbf{x}-\mathbf{y})^{2}}{2 \sigma^{2}}\right\}
$$

- In this case, \mathcal{H} is infinite dimensional!

$$
\exp (\mathbf{x})=1+\frac{\mathbf{x}}{1!}+\frac{\mathbf{x}^{2}}{2!}+\ldots+\frac{\mathbf{x}^{n}}{n!}+\ldots
$$

- Since only the kernel function is used by the SVM, this is no problem.
, The hyperplane in \mathcal{H} then has VC-dimension

$$
\operatorname{dim}(\mathcal{H})+1=\infty
$$

VC Dimension for Gaussian RBF Kernel

- Intuitively
- If we make the radius of the RBF kernel sufficiently small, then each data point can be associated with its own kernel.
. However, this also means that we can get finite VC-dimension if we set a lower limit to the RBF radius.

Example: RBF Kernels

- Decision boundary on toy problem

RBF Kernel width (σ)

- Vapnik has proven the following:
- The class of optimal linear separators has VC dimension h bounded from above as

$$
\begin{aligned}
& \text { bove as } \\
& h \leq \min
\end{aligned}\left\{\left[\frac{D^{2}}{\rho^{2}}\right], m_{0}\right\}+1
$$

where ρ is the margin, D is the diameter of the smallest sphere that can enclose all of the training examples, and m_{0} is the dimensionality.

- Intuitively, this implies that regardless of dimensionality m_{0} we can minimize the VC dimension by maximizing the margin ρ.
- Thus, complexity of the classifier is kept small regardless of dimensionality.

Summary: SVMs

- Properties

- Empirically, SVMs work very, very well.
- SVMs are currently among the best performers for a number of classification tasks ranging from text to genomic data.
- SVMs can be applied to complex data types beyond feature vectors (e.g. graphs, sequences, relational data) by designing kernel functions for such data.
- SVM techniques have been applied to a variety of other tasks e.g. SV Regression, One-class SVMs, ...

The kernel trick has been used for a wide variety of applications. It can be applied wherever dot products are in use e.g. Kernel PCA, kernel FLD, ...

Good overview, software, and tutorials available on http://www.kernel-machines.org/

Topics of This Lecture

- Linear Support Vector Machines (Recap)

Lagrangian (primal) formulation
Dual formulation
Discussion

- Linearly non-separable case

Soft-margin classification
Updated formulation

- Nonlinear Support Vector Machines

Nonlinear basis functions
The Kernel trick
Mercer's condition
Popular kernels

- Applications

Summary: SVMs

- Limitations
- How to select the right kernel? Still something of a black art...
, How to select the kernel parameters?
(Massive) cross-validation.
Usually, several parameters are optimized together in a grid search.
. Solving the quadratic programming problem
Standard QP solvers do not perform too well on SVM task.
Dedicated methods have been developed for this, e.g. SMO.
- Speed of evaluation

Evaluating $y(\mathbf{x})$ scales linearly in the number of SVs.

- Too expensive if we have a large number of support vectors.
\Rightarrow There are techniques to reduce the effective SV set.
, Training for very large datasets (millions of data points)
Stochastic gradient descent and other approximations can be used B. Leibe

- Results:

	Bayes	Rocchio	C4.5	k-NN	SVM (poly)$\text { degree } d=$					SVM (rbf) width $\gamma=$			
					1	2	3	4	5	0.6	0.8	1.0	1.2
earn	95.9	96.1	96.1	97.3	98.2	98.4	98.5	98.4	98.3	98.5	98.5	98.4	98.3
acq	91.5	92.1	85.3	92.0	92.6	94.6	95.2	95.2	95.3	95.0	95.3	95.3	95.4
money-fx	62.9	67.6	69.4	78.2	66.9	72.5	75.4	74.9	76.2	74.0	75.4	76.3	75.9
grain	72.5	79.5	89.1	82.2	91.3	93.1	92.4	91.3	89.9	93.1	91.9	91.9	90.6
crude	81.0	81.5	75.5	85.7	86.0	87.3	88.6	88.9	87.8	88.9	89.0	88.9	88.2
trade	50.0	77.4	59.2	77.4	69.2	75.5	76.6	77.3	77.1	76.9	78.0	77.8	76.8
interest	58.0	72.5	49.1	74.0	69.8	63.3	67.9	73.1	76.2	74.4	75.0	76.2	76.1
ship	78.7	83.1	80.9	79.2	82.0	85.4	86.0	86.5	86.0	85.4	86.5	87.6	87.1
wheat	60.6	79.4	85.5	76.6	83.1	84.5	85.2	85.9	83.8	85.2	85.9	85.9	85.9
corn	47.3	62.2	87.7	77.9	86.0	86.5	85.3	85.7	83.9	85.1	85.7	85.7	84.5
microavg.	72.0	79.9	79.4	82.3	84.2	$\begin{aligned} & \|85.1\| \\ & \text { comb } \end{aligned}$	$\begin{aligned} & 185.9 \\ & \text { bined: } \end{aligned}$	$\begin{array}{\|l\|} \hline 86.2 \mid \\ \mathbf{8 6 . 0} \\ \hline \end{array}$	85.9	$\begin{array}{\|r\|r\|} \hline 86.4 \\ \text { con } \end{array}$	$\|86.5\|$ mbine	$\begin{aligned} & \mid 86.3 \\ & \text { ed: } 86 \end{aligned}$	$\begin{aligned} & \hline 86.2 \\ & 6.4 \end{aligned}$

Example Application: OCR

- Handwritten digit recognition
, US Postal Service Database
Standard benchmark task for many learning algorithms

2601496757146371037314497 11027120 330193301029603510029012 $940525067240124 \leq 50299855$ $51012401832-70124 \times 24064$ $1161,1685712960015870189$. 11575 7.212579648327499516 99505200453622203242320 351211273133905388311 $13191419129192 \$ 1912014$ $1011915457368.2326414,8,4$

 (0, 4, $1.103047,3,2009979965$ $891042985 \geq 101422955460$
 01097075233197201351985 1075318518254389096 $12,25 \times 655605.54035405$ 1425510

Historical Importance

- USPS benchmark
, 2.5\% error: human performance
- Different learning algorithms
, 16.2\% error: Decision tree (C4.5)
. 5.9\% error: (best) 2-layer Neural Network
- 5.1\% error: LeNet 1 - (massively hand-tuned) 5-layer network

- Different SVMs

. 4.0% error: Polynomial kernel ($p=3,274$ support vectors)
, 4.1\% error: Gaussian kernel ($\sigma=0.3,291$ support vectors)

Example Application: OCR

- Results
. Almost no overfitting with higher-degree kernels.

degree of polynomial	dimensionality of feature space	support vectors	raw error
1	256	282	8.9
2	≈ 33000	227	4.7
3	$\approx 1 \times 10^{6}$	274	4.0
4	$\approx 1 \times 10^{9}$	321	4.2
5	$\approx 1 \times 10^{12}$	374	4.3
6	$\approx 1 \times 10^{14}$	377	4.5
7	$\approx 1 \times 10^{16}$	422	4.5

Example Application: Pedestrian Detection

N. Dalal, B. Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 2005

Many Other Applications

- Lots of other applications in all fields of technology
- OCR
, Text classification
Computer vision

You Can Try It At Home...

- Lots of SVM software available, e.g.
, svmlight (http://svmlight.joachims.org/)
Command-line based interface
Source code available (in C)
Interfaces to Python, MATLAB, Perl, Java, DLL,...
- libsvm (http://www.csie.ntu.edu.tw/~cjlin/libsvm/)

Library for inclusion with own code
C++ and Java sources
Interfaces to Python, R, MATLAB, Perl, Ruby, Weka, C+ .NET,...

- Both include fast training and evaluation algorithms, support for multi-class SVMs, automated training and cross-validation, ..
\Rightarrow Easy to apply to your own problems!

RWIHAACHE
UNIVERSIT

References and Further Reading

- More information on SVMs can be found in Chapter 7.1 of Bishop's book. You can also look at Schölkopf \& Smola (some chapters available online).

	Christopher M. Bishop Pattern Recognition and Machine Learning Springer, 2006	
	B. Schölkopf, A. Smola	
	Learning with Kernels MIT Press, 2002	
	http://www.learning-with-kernels.org/	

- A more in-depth introduction to SVMs is available in the following tutorial:
C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, Vol. 2(2), pp. 121-167 1998.

