Machine Learning - Lecture 3

Probability Density Estimation II

21.04.2015

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de
leibe@vision.rwth-aachen.de

Course Outline

- Fundamentals (2 weeks)
, Bayes Decision Theory
, Probability Density Estimation
- Discriminative Approaches (5 weeks)
, Linear Discriminant Functions
, Support Vector Machines

, Ensemble Methods \& Boosting
> Randomized Trees, Forests \& Ferns
- Generative Models (4 weeks)
, Bayesian Networks
, Markov Random Fields

Topics of This Lecture

- Recap: Bayes Decision Theory
- Parametric Methods
, Recap: Maximum Likelihood approach
, Bayesian Learning
- Non-Parametric Methods
, Histograms
, Kernel density estimation
, K-Nearest Neighbors
, k-NN for Classification
, Bias-Variance tradeoff

Recap: Bayes Decision Theory

- Optimal decision rule
- Decide for C_{1} if

$$
p\left(\mathcal{C}_{1} \mid x\right)>p\left(\mathcal{C}_{2} \mid x\right)
$$

, This is equivalent to

$$
p\left(x \mid \mathcal{C}_{1}\right) p\left(\mathcal{C}_{1}\right)>p\left(x \mid \mathcal{C}_{2}\right) p\left(\mathcal{C}_{2}\right)
$$

, Which is again equivalent to (Likelihood-Ratio test)

$$
\frac{p\left(x \mid \mathcal{C}_{1}\right)}{p\left(x \mid \mathcal{C}_{2}\right)}>\underbrace{\frac{p\left(\mathcal{C}_{2}\right)}{p\left(\mathcal{C}_{1}\right)}}_{\text {Decision threshold } \theta}
$$

B. Leibe

Recap: Bayes Decision Theory

- Decision regions: $\mathcal{R}_{1}, \mathcal{R}_{2}, \mathcal{R}_{3}, \ldots$

B. Leibe

Recap: Classifying with Loss Functions

- We can formalize the intuition that different decisions have different weights by introducing a loss matrix $L_{k j}$

$$
L_{k j}=\text { loss for decision } \mathcal{C}_{j} \text { if truth is } \mathcal{C}_{k}
$$

- Example: cancer diagnosis

Decision

$$
L_{\text {cancer diagnosis }}=\underset{\sim}{\stackrel{\text { n }}{\overrightarrow{2}} \text { cancer }} \text { normal }\left(\begin{array}{cc}
\text { cancer } & \text { normal } \\
0 & 1000 \\
1 & 0
\end{array}\right)
$$

Recap: Minimizing the Expected Loss

- Optimal solution is the one that minimizes the loss.
, But: loss function depends on the true class, which is unknown.
- Solution: Minimize the expected loss

$$
\mathbb{E}[L]=\sum_{k} \sum_{j} \int_{\mathcal{R}_{j}} L_{k j} p\left(\mathbf{x}, \mathcal{C}_{k}\right) \mathrm{d} \mathbf{x}
$$

- This can be done by choosing the regions \mathcal{R}_{j} such that

$$
\mathbb{E}[L]=\sum_{k} L_{k j} p\left(\mathcal{C}_{k} \mid \mathbf{x}\right)
$$

\Rightarrow Adapted decision rule:

$$
\frac{p\left(\mathbf{x} \mid \mathcal{C}_{1}\right)}{p\left(\mathbf{x} \mid \mathcal{C}_{2}\right)}>\frac{\left(L_{21}-L_{22}\right)}{\left(L_{12}-L_{11}\right)} \frac{p\left(\mathcal{C}_{2}\right)}{p\left(\mathcal{C}_{1}\right)}
$$

Recap: Gaussian (or Normal) Distribution

- One-dimensional case
- Mean μ
, Variance σ^{2}

$$
\mathcal{N}\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right\}
$$

- Multi-dimensional case
- Mean μ
, Covariance Σ

$$
\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{(2 \pi)^{D / 2}|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}
$$

Recap: Maximum Likelihood Approach

- Computation of the likelihood
, Single data point: $p\left(x_{n} \mid \theta\right)$
- Assumption: all data points $X=\left\{x_{1}, \ldots, x_{n}\right\}$ are independent

$$
L(\theta)=p(X \mid \theta)=\prod_{n=1}^{N} p\left(x_{n} \mid \theta\right)
$$

, Log-likelihood

$$
E(\theta)=-\ln L(\theta)=-\sum_{n=1}^{N} \ln p\left(x_{n} \mid \theta\right)
$$

- Estimation of the parameters θ (Learning)
, Maximize the likelihood (=minimize the negative log-likelihood)
\Rightarrow Take the derivative and set it to zero.

$$
\frac{\partial}{\partial \theta} E(\theta)=-\sum_{n=1}^{N} \frac{\frac{\partial}{\partial \theta} p\left(x_{n} \mid \theta\right)}{p\left(x_{n} \mid \theta\right)} \stackrel{!}{=} 0
$$

Slide credit: Bernt Schiele
B. Leibe

Topics of This Lecture

- Recap: Bayes Decision Theory
- Parametric Methods
, Recap: Maximum Likelihood approach
, Bayesian Learning
- Non-Parametric Methods

Histograms
Kernel density estimation
K-Nearest Neighbors
k-NN for Classification
Bias-Variance tradeoff

Recap: Maximum Likelihood - Limitations

- Maximum Likelihood has several significant limitations
> It systematically underestimates the variance of the distribution!
> E.g. consider the case

$$
N=1, X=\left\{x_{1}\right\}
$$

\Rightarrow Maximum-likelihood estimate:

, We say ML overfits to the observed data.
, We will still often use ML, but it is important to know about this effect.

Deeper Reason

- Maximum Likelihood is a Frequentist concept
, In the Frequentist view, probabilities are the frequencies of random, repeatable events.
, These frequencies are fixed, but can be estimated more precisely when more data is available.
- This is in contrast to the Bayesian interpretation
, In the Bayesian view, probabilities quantify the uncertainty about certain states or events.
- This uncertainty can be revised in the light of new evidence.
- Bayesians and Frequentists do not like each other too well...

Bayesian vs. Frequentist View

- To see the difference...
> Suppose we want to estimate the uncertainty whether the Arctic ice cap will have disappeared by the end of the century.
, This question makes no sense in a Frequentist view, since the event cannot be repeated numerous times.
, In the Bayesian view, we generally have a prior, e.g. from calculations how fast the polar ice is melting.
- If we now get fresh evidence, e.g. from a new satellite, we may revise our opinion and update the uncertainty from the prior.

$$
\text { Posterior } \propto \text { Likelihood } \times \text { Prior }
$$

, This generally allows to get better uncertainty estimates for many situations.

- Main Frequentist criticism
, The prior has to come from somewhere and if it is wrong, the result will be worse.

Bayesian Approach to Parameter Learning

- Conceptual shift
, Maximum Likelihood views the true parameter vector θ to be unknown, but fixed.
, In Bayesian learning, we consider θ to be a random variable.
- This allows us to use knowledge about the parameters θ
> i.e., to use a prior for θ

θ
, The prior thus encodes knowledge we have about the type of distribution we expect to see for θ.

Bayesian Learning Approach

- Bayesian view:
, Consider the parameter vector θ as a random variable.
, When estimating the parameters from a dataset X, we compute

$$
\begin{aligned}
p(x \mid X)=\int p(x, \theta \mid X) d \theta \quad \begin{array}{c}
\text { Assumption: given } \theta \text {, this } \\
\text { doesn't depend on } \mathrm{X} \text { anymore }
\end{array} \\
p(x, \theta \mid X)=p(x \mid \theta, X) p(\theta \mid X)
\end{aligned} \quad \begin{aligned}
& \underbrace{p(x \mid \theta) p(\theta \mid X) d \theta}_{\begin{array}{l}
\text { This is entirely determined by the parameter } \theta \\
\text { (i.e., by the parametric form of the pdf). }
\end{array}}
\end{aligned}
$$

Bayesian Learning Approach

$$
\begin{aligned}
& p(x \mid X)= \int p(x \mid \theta) \underbrace{}_{\substack{p(X \mid \theta) p(\theta) \\
p(\theta \mid X)}} d \theta \\
& p(\theta \mid X)=\frac{\overbrace{p(X)}^{\frac{p(\theta)}{p(X)}} L(\theta)}{\underbrace{p(X)}} \\
&=\int p(X \mid \theta) p(\theta) d \theta=\int L(\theta) p(\theta) d \theta
\end{aligned}
$$

- Inserting this above, we obtain

$$
p(x \mid X)=\int \frac{p(x \mid \theta) L(\theta) p(\theta)}{p(X)} d \theta=\int \frac{p(x \mid \theta) L(\theta) p(\theta)}{\int L(\theta) p(\theta) d \theta} d \theta
$$

Slide credit: Bernt Schiele

Bayesian Learning Approach

- Discussion

Likelihood of the parametric form θ given the data set X.

, If we now plug in a (suitable) prior $p(\theta)$, we can estimate $p(x \mid X)$ from the data set X.

Bayesian Density Estimation

- Discussion

$$
p(x \mid X)=\int p(x \mid \theta) p(\theta \mid X) d \theta=\int \frac{p(x \mid \theta) L(\theta) p(\theta)}{\int L(\theta) p(\theta) d \theta} d \theta
$$

, The probability $p(\theta \mid X)$ makes the dependency of the estimate on the data explicit.
, If $p(\theta \mid X)$ is very small everywhere, but is large for one $\hat{\theta}$, then

$$
p(x \mid X) \approx p(x \mid \hat{\theta})
$$

\Rightarrow In this case, the estimate is determined entirely by $\hat{\theta}$.
\Rightarrow The more uncertain we are about θ, the more we average over all parameter values.

Bayesian Density Estimation

- Problem
, In the general case, the integration over θ is not possible (or only possible stochastically).
- Example where an analytical solution is possible
, Normal distribution for the data, σ^{2} assumed known and fixed.
, Estimate the distribution of the mean:

$$
p(\mu \mid X)=\frac{p(X \mid \mu) p(\mu)}{p(X)}
$$

, Prior: We assume a Gaussian prior over μ,

$$
p(\mu)=\mathcal{N}\left(\mu \mid \mu_{0}, \sigma_{0}^{2}\right)
$$

Bayesian Learning Approach

- Sample mean: $\bar{x}=\frac{1}{N} \sum_{n=1}^{N} x_{n}$
- Bayes estimate:

$$
\begin{aligned}
\mu_{N} & =\frac{\sigma^{2} \mu_{0}+N \sigma_{0}^{2} \bar{x}}{\sigma^{2}+N \sigma_{0}^{2}} \\
\frac{1}{\sigma_{N}^{2}} & =\frac{1}{\sigma_{0}^{2}}+\frac{N}{\sigma^{2}}
\end{aligned}
$$

- Note:

	$N=0$	$N \rightarrow \infty$
μ_{N}	μ_{0}	μ_{ML}
σ_{N}^{2}	σ_{0}^{2}	0

Summary: ML vs. Bayesian Learning

- Maximum Likelihood
, Simple approach, often analytically possible.
, Problem: estimation is biased, tends to overfit to the data.
\Rightarrow Often needs some correction or regularization.
, But:
- Approximation gets accurate for $N \rightarrow \infty$.
- Bayesian Learning
, General approach, avoids the estimation bias through a prior.
, Problems:
- Need to choose a suitable prior (not always obvious).
- Integral over θ often not analytically feasible anymore.
, But:
- Efficient stochastic sampling techniques available.
(In this lecture, we'll use both concepts wherever appropriate)

Topics of This Lecture

- Recap: Bayes Decision Theory
- Parametric Methods
, Recap: Maximum Likelihood approach
, Bayesian Learning
- Non-Parametric Methods
, Histograms
, Kernel density estimation
, K-Nearest Neighbors
, k-NN for Classification
, Bias-Variance tradeoff

Non-Parametric Methods

- Non-parametric representations
, Often the functional form of the distribution is unknown

- Estimate probability density from data
, Histograms
, Kernel density estimation (Parzen window / Gaussian kernels)
, k-Nearest-Neighbor

Histograms

- Basic idea:
, Partition the data space into distinct bins with widths Δ_{i} and count the number of observations, n_{i}, in each bin.

$$
p_{i}=\frac{n_{i}}{N \Delta_{i}}
$$

, Often, the same width is used for all bins, $\Delta_{i}=\Delta$.
, This can be done, in principle, for any dimensionality D...

...but the required number of bins grows exponentially with D !

Histograms

- The bin width Δ acts as a smoothing factor.

Summary: Histograms

- Properties
, Very general. In the limit ($N \rightarrow \infty$), every probability density can be represented.
, No need to store the data points once histogram is computed.
, Rather brute-force
- Problems
, High-dimensional feature spaces
- D-dimensional space with M bins/dimension will require M^{D} bins!
\Rightarrow Requires an exponentially growing number of data points
\Rightarrow "Curse of dimensionality"
, Discontinuities at bin edges
> Bin size?
- too large: too much smoothing
- too small: too much noise

Statistically Better-Founded Approach

- Data point x comes from pdf $p(\mathbf{x})$
, Probability that x falls into small region \mathcal{R}

$$
P=\int_{\mathcal{R}} p(y) d y
$$

- If \mathcal{R} is sufficiently small, $p(\mathbf{x})$ is roughly constant
, Let V be the volume of \mathcal{R}

$$
P=\int_{\mathcal{R}} p(y) d y \approx p(\mathbf{x}) V
$$

- If the number N of samples is sufficiently large, we can estimate P as

$$
P=\frac{K}{N} \quad \Rightarrow p(\mathbf{x}) \approx \frac{K}{N V}
$$

Statistically Better-Founded Approach

- Kernel methods
, Example: Determine the number K of data points inside a fixed window...

Kernel Methods

- Parzen Window
, Hypercube of dimension D with edge length h :

$$
\begin{aligned}
& k(\mathbf{u})=\left\{\begin{array}{lll}
1, & \mid u_{i} \cdot & \frac{1}{2}, \\
0, & \text { else }
\end{array}\right. \\
& \text { "Kernel function" }
\end{aligned}
$$

, Probability density estimate:

$$
p(\mathbf{x}) \approx \frac{K}{N V}=\frac{1}{N h^{D}} \sum_{n=1}^{N} k\left(\frac{\mathbf{x}-\mathbf{x}_{n}}{h}\right)
$$

Slide credit: Bernt Schiele

Kernel Methods: Parzen Window

- Interpretations

1. We place a kernel window k at location x and count how many data points fall inside it.

2. We place a kernel window k around each data point x_{n} and sum up their influences at location x.
\Rightarrow Direct visualization of the density.

- Still, we have artificial discontinuities at the cube boundaries...
, We can obtain a smoother density model if we choose a smoother kernel function, e.g. a Gaussian

Kernel Methods: Gaussian Kernel

- Gaussian kernel
, Kernel function

$$
\begin{gathered}
k(\mathbf{u})=\frac{1}{\left(2 \pi h^{2}\right)^{1 / 2}} \exp \left\{-\frac{\mathbf{u}^{2}}{2 h^{2}}\right\} \\
K=\sum_{n=1}^{N} k\left(\mathbf{x}-\mathbf{x}_{n}\right) \quad V=\int k(\mathbf{u}) d \mathbf{u}=1
\end{gathered}
$$

, Probability density estimate
$p(\mathbf{x}) \approx \frac{K}{N V}=\frac{1}{N} \sum_{n=1}^{N} \frac{1}{(2 \pi)^{D / 2} h} \exp \left\{-\frac{\left\|\mathbf{x}-\mathbf{x}_{n}\right\|^{2}}{2 h^{2}}\right\}$

Gauss Kernel: Examples

Kernel Methods

- In general
> Any kernel such that

$$
k(\mathbf{u}) \geqslant 0, \quad \int k(\mathbf{u}) \mathrm{d} \mathbf{u}=1
$$

can be used. Then

$$
K=\sum_{n=1}^{N} k\left(\mathbf{x}-\mathbf{x}_{n}\right)
$$

> And we get the probability density estimate

$$
p(\mathbf{x}) \approx \frac{K}{N V}=\frac{1}{N} \sum_{n=1}^{N} k\left(\mathbf{x}-\mathbf{x}_{n}\right)
$$

Statistically Better-Founded Approach

K-Nearest Neighbor

- Nearest-Neighbor density estimation
, Fix K, estimate V from the data.
, Consider a hypersphere centred on x and let it grow to a volume V^{\star} that includes K of the given N data
 points.
, Then

$$
p(\mathbf{x}) \simeq \frac{K}{N V^{\star}}
$$

- Side note
, Strictly speaking, the model produced by K-NN is not a true density model, because the integral over all space diverges.
- E.g. consider $K=1$ and a sample exactly on a data point $\mathbf{x}=x_{j}$.

k-Nearest Neighbor: Examples

Summary: Kernel and k-NN Density Estimation

- Properties
, Very general. In the limit ($N \rightarrow \infty$), every probability density can be represented.
. No computation involved in the training phase
\Rightarrow Simply storage of the training set
- Problems
, Requires storing and computing with the entire dataset.
\Rightarrow Computational cost linear in the number of data points.
\Rightarrow This can be improved, at the expense of some computation during training, by constructing efficient tree-based search structures.
, Kernel size / K in K-NN?
- Too large: too much smoothing
- Too small: too much noise

K-Nearest Neighbor Classification

- Bayesian Classification

$$
p\left(\mathcal{C}_{j} \mid \mathbf{x}\right)=\frac{p\left(\mathbf{x} \mid \mathcal{C}_{j}\right) p\left(\mathcal{C}_{j}\right)}{p(\mathbf{x})}
$$

- Here we have

$$
\begin{aligned}
p(\mathbf{x}) & \approx \frac{K}{N V} \\
p\left(\mathbf{x} \mid \mathcal{C}_{j}\right) & \approx \frac{K_{j}}{N_{j} V} \longrightarrow p\left(\mathcal{C}_{j} \mid \mathbf{x}\right) \approx \frac{K_{j}}{N_{j} V} \frac{N_{j}}{N} \frac{N V}{K}=\frac{K_{j}}{K} \\
p\left(\mathcal{C}_{j}\right) & \approx \frac{N_{j}}{N}
\end{aligned} \begin{gathered}
\text { k-Nearest } \begin{array}{c}
\text { Neighbor } \\
\text { classification }
\end{array}
\end{gathered}
$$

K-Nearest Neighbors for Classification

K-Nearest Neighbors for Classification

- Results on an example data set

- K acts as a smoothing parameter.
- Theoretical guarantee
, For $N \rightarrow \infty$, the error rate of the $1-\mathrm{NN}$ classifier is never more than twice the optimal error (obtained from the true conditional class distributions).

Bias-Variance Tradeoff

- Probability density estimation
, Histograms: bin size?
- Δ too large: too smooth
- Δ too small: not smooth enough

Too much bias
Too much variance
, Kernel methods: kernel size?
$-h$ too large: too smooth

- h too small: not smooth enough
, K-Nearest Neighbor: K?
- K too large: too smooth
- K too small: not smooth enough
- This is a general problem of many probability density estimation methods
, Including parametric methods and mixture models

Discussion

- The methods discussed so far are all simple and easy to apply. They are used in many practical applications.
- However...
, Histograms scale poorly with increasing dimensionality.
\Rightarrow Only suitable for relatively low-dimensional data.
- Both k-NN and kernel density estimation require the entire data set to be stored.
\Rightarrow Too expensive if the data set is large.
, Simple parametric models are very restricted in what forms of distributions they can represent.
\Rightarrow Only suitable if the data has the same general form.
- We need density models that are efficient and flexible!
\Rightarrow Next lecture...

References and Further Reading

- More information in Bishop's book
, Gaussian distribution and ML: Ch. 1.2.4 and 2.3.1-2.3.4.
, Bayesian Learning:
, Nonparametric methods: Ch. 2.5.
- Additional information can be found in Duda \& Hart
, ML estimation:
Ch. 3.2
, Bayesian Learning:
Ch. 3.3-3.5
, Nonparametric methods:
Ch. 4.1-4.5

Christopher M. Bishop
Pattern Recognition and Machine Learning Springer, 2006

