

Machine Learning - Lecture 3

Probability Density Estimation II

21.04.2015

Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de

Many slides adapted from B. Schiele

Course Outline

- Fundamentals (2 weeks)
 - Bayes Decision Theory
 - > Probability Density Estimation
- Discriminative Approaches (5 weeks)
 - Linear Discriminant Functions
 - Support Vector Machines
 - Ensemble Methods & Boosting
 - Randomized Trees, Forests & Ferns
- Generative Models (4 weeks)
 - Bayesian Networks
 - Markov Random Fields

Topics of This Lecture

- Recap: Bayes Decision Theory
- Parametric Methods
 - » Recap: Maximum Likelihood approach
 - Bayesian Learning

Non-Parametric Methods

- Histograms
- Kernel density estimation
- K-Nearest Neighbors
- k-NN for Classification
- » Bias-Variance tradeoff

4

Recap: Bayes Decision Theory

- Optimal decision rule
 - Decide for C₁ if

$$p(\mathcal{C}_1|x) > p(\mathcal{C}_2|x)$$

> This is equivalent to

$$p(x|\mathcal{C}_1)p(\mathcal{C}_1) > p(x|\mathcal{C}_2)p(\mathcal{C}_2)$$

Which is again equivalent to (Likelihood-Ratio test)

Decision threshold heta

Slide credit: Bernt Schiele

Recap: Bayes Decision Theory

• Decision regions: \mathcal{R}_1 , \mathcal{R}_2 , \mathcal{R}_3 , ...

Recap: Classifying with Loss Functions

• We can formalize the intuition that different decisions have different weights by introducing a loss matrix L_{kj}

$$L_{kj} = loss for decision C_j if truth is C_k.$$

• Example: cancer diagnosis

 $\begin{aligned} \text{Decision} \\ \text{cancer normal} \\ L_{cancer diagnosis} = \underbrace{\textbf{f}}_{\textbf{p}} \begin{array}{c} \text{cancer} \\ \text{normal} \end{array} \begin{pmatrix} 0 & 1000 \\ 1 & 0 \end{pmatrix} \end{aligned}$

Recap: Minimizing the Expected Loss

- Optimal solution is the one that minimizes the loss.
 - > But: loss function depends on the true class, which is unknown.
- Solution: Minimize the expected loss

$$\mathbb{E}[L] = \sum_{k} \sum_{j} \int_{\mathcal{R}_{j}} L_{kj} p(\mathbf{x}, \mathcal{C}_{k}) \, \mathrm{d}\mathbf{x}$$

- This can be done by choosing the regions $_{\mathcal{R}_j}$ such that $\mathbb{E}[L] = \sum_k L_{kj} p(\mathcal{C}_k | \mathbf{x})$
- \Rightarrow Adapted decision rule:

$$\frac{p(\mathbf{x}|\mathcal{C}_1)}{p(\mathbf{x}|\mathcal{C}_2)} > \frac{(L_{21} - L_{22})}{(L_{12} - L_{11})} \frac{p(\mathcal{C}_2)}{p(\mathcal{C}_1)}$$

RWTHAACHEN UNIVERSITY Recap: Gaussian (or Normal) Distribution

- One-dimensional case
 - > Mean μ
 - > Variance σ^2

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$$

0.16

0.14 0.12 0.1

0.08 0.06 0.04

0.02

- Multi-dimensional case
 - > Mean μ
 - \succ Covariance Σ

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right\}$$

8

Recap: Maximum Likelihood Approach

- Computation of the likelihood
 - \succ Single data point: $p(x_n| heta)$
 - > Assumption: all data points $X = \{x_1, \dots, x_n\}$ are independent

$$L(\theta) = p(X|\theta) = \prod_{n=1}^{N} p(x_n|\theta)$$

Log-likelihood

$$E(\theta) = -\ln L(\theta) = -\sum_{n=1}^{\infty} \ln p(x_n | \theta)$$

- Estimation of the parameters heta (Learning)
 - Maximize the likelihood (=minimize the negative log-likelihood)

N

 \Rightarrow Take the derivative and set it to zero.

$$\frac{\partial}{\partial \theta} E(\theta) = -\sum_{n=1}^{N} \frac{\frac{\partial}{\partial \theta} p(x_n | \theta)}{p(x_n | \theta)} \stackrel{!}{=} 0$$

Slide credit: Bernt Schiele

Machine Learning Summer '15

B. Leibe

Topics of This Lecture

- Recap: Bayes Decision Theory
- Parametric Methods
 - Recap: Maximum Likelihood approach
 - Bayesian Learning
- Non-Parametric Methods
 - Histograms
 - Kernel density estimation
 - K-Nearest Neighbors
 - k-NN for Classification
 - > Bias-Variance tradeoff

RWTHAACHEN UNIVERSITY Recap: Maximum Likelihood - Limitations

- Maximum Likelihood has several significant limitations
 - It systematically underestimates the variance of the distribution!
 - E.g. consider the case

 \Rightarrow Maximum-likelihood estimate:

 $N = 1, X = \{x_1\}$

- We say ML overfits to the observed data.
- We will still often use ML, but it is important to know about this effect.

Deeper Reason

- Maximum Likelihood is a Frequentist concept
 - In the Frequentist view, probabilities are the frequencies of random, repeatable events.
 - These frequencies are fixed, but can be estimated more precisely when more data is available.
- This is in contrast to the **Bayesian** interpretation
 - In the Bayesian view, probabilities quantify the uncertainty about certain states or events.
 - > This uncertainty can be revised in the light of new evidence.
- Bayesians and Frequentists do not like each other too well...

12

Bayesian vs. Frequentist View

- To see the difference...
 - Suppose we want to estimate the uncertainty whether the Arctic ice cap will have disappeared by the end of the century.
 - This question makes no sense in a Frequentist view, since the event cannot be repeated numerous times.
 - In the Bayesian view, we generally have a prior, e.g. from calculations how fast the polar ice is melting.
 - If we now get fresh evidence, e.g. from a new satellite, we may revise our opinion and update the uncertainty from the prior.

 $\textit{Posterior} \propto \textit{Likelihood} \times \textit{Prior}$

- This generally allows to get better uncertainty estimates for many situations.
- Main Frequentist criticism
 - The prior has to come from somewhere and if it is wrong, the result will be worse.

Bayesian Approach to Parameter Learning

- Conceptual shift
 - > Maximum Likelihood views the true parameter vector θ to be unknown, but fixed.
 - > In Bayesian learning, we consider θ to be a random variable.
- This allows us to use knowledge about the parameters heta
 - $\succ\,$ i.e., to use a prior for θ
 - Training data then converts this prior distribution on θ into a posterior probability density.

> The prior thus encodes knowledge we have about the type of distribution we expect to see for θ .

Machine Learning Summer '15

- Bayesian view:
 - > Consider the parameter vector θ as a random variable.
 - > When estimating the parameters from a dataset X, we compute

$$p(x|X) = \int p(x,\theta|X)d\theta$$
Assumption: given θ , this doesn't depend on X anymore
$$p(x,\theta|X) = p(x|\theta,X)p(\theta|X)$$

$$p(x|X) = \int p(x|\theta)p(\theta|X)d\theta$$

This is entirely determined by the parameter θ (i.e., by the parametric form of the pdf).

$$p(x|X) = \int p(x|\theta)p(\theta|X)d\theta$$

$$p(\theta|X) = \frac{p(X|\theta)p(\theta)}{p(X)} = \frac{p(\theta)}{p(X)}L(\theta)$$

$$p(X) = \int p(X|\theta)p(\theta)d\theta = \int L(\theta)p(\theta)d\theta$$

• Inserting this above, we obtain

$$p(x|X) = \int \frac{p(x|\theta)L(\theta)p(\theta)}{p(X)}d\theta = \int \frac{p(x|\theta)L(\theta)p(\theta)}{\int L(\theta)p(\theta)d\theta}d\theta$$

> If we now plug in a (suitable) prior $p(\theta)$, we can estimate p(x|X) from the data set X.

Bayesian Density Estimation

• Discussion

$$p(x|X) = \int p(x|\theta)p(\theta|X)d\theta = \int \frac{p(x|\theta)L(\theta)p(\theta)}{\int L(\theta)p(\theta)d\theta}d\theta$$

- > The probability $p(\theta|X)$ makes the dependency of the estimate on the data explicit.
- > If $p(\theta|X)$ is very small everywhere, but is large for one $\hat{\theta}$, then $p(x|X) \approx p(x|\hat{\theta})$
- \Rightarrow In this case, the estimate is determined entirely by $\hat{ heta}$.
- \Rightarrow The more uncertain we are about θ , the more we average over all parameter values.

Machine Learning Summer '15

Bayesian Density Estimation

- Problem
 - > In the general case, the integration over θ is not possible (or only possible stochastically).
- Example where an analytical solution is possible
 - > Normal distribution for the data, σ^2 assumed known and fixed.
 - Estimate the distribution of the mean:

$$p(\mu|X) = \frac{p(X|\mu)p(\mu)}{p(X)}$$

> Prior: We assume a Gaussian prior over μ ,

$$p(\mu) = \mathcal{N}\left(\mu|\mu_0, \sigma_0^2\right).$$

• Sample mean:

$$\bar{x} = \frac{1}{N} \sum_{n=1}^{N} x_n$$

λT

• Bayes estimate:

Image source: C.M. Bishop, 2006

Summary: ML vs. Bayesian Learning

- Maximum Likelihood
 - Simple approach, often analytically possible. \geq
 - Problem: estimation is biased, tends to overfit to the data.
 - \Rightarrow Often needs some correction or regularization.
 - **But:**
 - Approximation gets accurate for $N \to \infty$.

Bayesian Learning

- General approach, avoids the estimation bias through a prior.
- Problems:
 - Need to choose a suitable prior (not always obvious).
 - Integral over θ often not analytically feasible anymore.
- **But:**
 - Efficient stochastic sampling techniques available.

(In this lecture, we'll use both concepts wherever appropriate)

Topics of This Lecture

- Recap: Bayes Decision Theory
- Parametric Methods
 - » Recap: Maximum Likelihood approach
 - Bayesian Learning

Non-Parametric Methods

- Histograms
- Kernel density estimation
- K-Nearest Neighbors
- k-NN for Classification
- » Bias-Variance tradeoff

Non-Parametric Methods

- Non-parametric representations
 - Often the functional form of the distribution is unknown

Estimate probability density from data

- Histograms
- Kernel density estimation (Parzen window / Gaussian kernels)
- k-Nearest-Neighbor

Histograms

- Basic idea:
 - > Partition the data space into distinct bins with widths Δ_i and count the number of observations, n_i , in each bin.

$$p_i = \frac{n_i}{N\Delta_i}$$

- > Often, the same width is used for all bins, $\Delta_i = \Delta$.
- This can be done, in principle, for any dimensionality D...

...but the required number of bins grows exponentially with D!

Histograms

The bin width △ acts as a smoothing factor.

RWTHAACHEN UNIVERSITY

Summary: Histograms

Properties

- > Very general. In the limit ($N \rightarrow \infty$), every probability density can be represented.
- > No need to store the data points once histogram is computed.
- Rather brute-force

• Problems

- High-dimensional feature spaces
 - D-dimensional space with M bins/dimension will require M^D bins!
 - \Rightarrow Requires an exponentially growing number of data points
 - \Rightarrow "Curse of dimensionality"
- Discontinuities at bin edges
- Bin size?
 - too large: too much smoothing
 - too small: too much noise

Statistically Better-Founded Approach

- Data point x comes from pdf $p(\mathbf{x})$
 - > Probability that x falls into small region $\mathcal R$

$$P = \int_{\mathcal{R}} p(y) dy$$

A

- If \mathcal{R} is sufficiently small, $p(\mathbf{x})$ is roughly constant
 - > Let V be the volume of $\mathcal R$

$$P = \int_{\mathcal{R}} p(y) dy \approx p(\mathbf{x}) V$$

 If the number N of samples is sufficiently large, we can estimate P as

$$P = \frac{K}{N} \qquad \Rightarrow p(\mathbf{x}) \approx \frac{K}{NV}$$

Machine Learning Summer '15

B. Leibe

Statistically Better-Founded Approach

- Kernel methods
 - Example: Determine the number K of data points inside a fixed window...

Slide credit: Bernt Schiele

RWTHAACHEN UNIVERSITY

Kernel Methods

- Parzen Window
 - > Hypercube of dimension D with edge length h:

$$k(\mathbf{u}) = \begin{cases} 1, & |u_i \cdot \frac{1}{2}, & i = 1, \dots, D \\ 0, & else \end{cases}$$

"Kernel function"

$$K = \sum_{n=1}^{N} k(\frac{\mathbf{x} - \mathbf{x}_n}{h}) \qquad V = \int k(\mathbf{u}) d\mathbf{u} = h^d$$

> Probability density estimate:

$$p(\mathbf{x}) \approx \frac{K}{NV} = \frac{1}{Nh^D} \sum_{n=1}^{N} k(\frac{\mathbf{x} - \mathbf{x}_n}{h})$$

B. Leibe

Machine Learning Summer '15

Kernel Methods: Parzen Window

Interpretations

- 1. We place a kernel window k at location x and count how many data points fall inside it.
- 2. We place a kernel window k around each data point x_n and sum up their influences at location x.

- \Rightarrow Direct visualization of the density.
- Still, we have artificial discontinuities at the cube boundaries...
 - We can obtain a smoother density model if we choose a smoother kernel function, e.g. a Gaussian

Kernel Methods: Gaussian Kernel

- Gaussian kernel
 - Kernel function

$$k(\mathbf{u}) = \frac{1}{(2\pi h^2)^{1/2}} \exp\left\{-\frac{\mathbf{u}^2}{2h^2}\right\}$$

$$K = \sum_{n=1}^{N} k(\mathbf{x} - \mathbf{x}_n) \qquad V = \int k(\mathbf{u}) d\mathbf{u} = 1$$

> Probability density estimate $p(\mathbf{x}) \approx \frac{K}{NV} = \frac{1}{N} \sum_{n=1}^{N} \frac{1}{(2\pi)^{D/2}h} \exp\left\{-\frac{||\mathbf{x} - \mathbf{x}_n||^2}{2h^2}\right\}$

Machine Learning Summer 15

Gauss Kernel: Examples

not smooth enough

about OK

too smooth

Kernel Methods

- In general
 - Any kernel such that

$$k(\mathbf{u}) \ge 0, \qquad \int k(\mathbf{u}) \, \mathrm{d}\mathbf{u} = 1$$

can be used. Then

$$K = \sum_{n=1}^{N} k(\mathbf{x} - \mathbf{x}_n)$$

> And we get the probability density estimate

$$p(\mathbf{x}) \approx \frac{K}{NV} = \frac{1}{N} \sum_{n=1}^{N} k(\mathbf{x} - \mathbf{x}_n)$$

B. Leibe

Statistically Better-Founded Approach

Slide credit: Bernt Schiele

K-Nearest Neighbor

- Nearest-Neighbor density estimation
 - **Fix** *K*, estimate *V* from the data.
 - Consider a hypersphere centred on x and let it grow to a volume V* that includes K of the given N data points.

> Then

$$p(\mathbf{x}) \simeq \frac{K}{NV^{\star}}.$$

- Side note
 - Strictly speaking, the model produced by K-NN is not a true density model, because the integral over all space diverges.
 - > E.g. consider K = 1 and a sample exactly on a data point $\mathbf{x} = x_j$.

k-Nearest Neighbor: Examples

not smooth enough

about OK

too smooth

Summary: Kernel and k-NN Density Estimation

Properties

- > Very general. In the limit ($N \rightarrow \infty$), every probability density can be represented.
- > No computation involved in the training phase
- \Rightarrow Simply storage of the training set

Problems

- Requires storing and computing with the entire dataset.
- \Rightarrow Computational cost linear in the number of data points.
- ⇒ This can be improved, at the expense of some computation during training, by constructing efficient tree-based search structures.
- Kernel size / K in K-NN?
 - Too large: too much smoothing
 - Too small: too much noise

K-Nearest Neighbor Classification

• Bayesian Classification

$$p(\mathcal{C}_j | \mathbf{x}) = \frac{p(\mathbf{x} | \mathcal{C}_j) p(\mathcal{C}_j)}{p(\mathbf{x})}$$

• Here we have

Machine Learning Summer '15

RWTHAACHEN UNIVERSITY K-Nearest Neighbors for Classification

K-Nearest Neighbors for Classification

Results on an example data set

- K acts as a smoothing parameter.
- Theoretical guarantee
 - > For $N \rightarrow \infty$, the error rate of the 1-NN classifier is never more than twice the optimal error (obtained from the true conditional class distributions).

Bias-Variance Tradeoff

- Probability density estimation
 - Histograms: bin size?
 - \triangle too large: too smooth
 - \triangle too small: not smooth enough
 - Kernel methods: kernel size?
 - h too large: too smooth
 - -h too small: not smooth enough
 - K-Nearest Neighbor: K?
 - K too large: too smooth
 - K too small: not smooth enough
- This is a general problem of many probability density estimation methods
 - Including parametric methods and mixture models

Too much bias Too much variance

Discussion

- The methods discussed so far are all simple and easy to apply. They are used in many practical applications.
- However...
 - Histograms scale poorly with increasing dimensionality.
 - \Rightarrow Only suitable for relatively low-dimensional data.
 - Both k-NN and kernel density estimation require the entire data set to be stored.
 - \Rightarrow Too expensive if the data set is large.
 - Simple parametric models are very restricted in what forms of distributions they can represent.
 - \Rightarrow Only suitable if the data has the same general form.
- We need density models that are efficient and flexible!
 ⇒ Next lecture...

RWTHAACHEN UNIVERSITY

References and Further Reading

- More information in Bishop's book
 - Gaussian distribution and ML: Ch. 1.2.4 and 2.3.1-2.3.4.
 - Bayesian Learning: Ch. 1.2.3 and 2.3.6.
 - Nonparametric methods: Ch. 2.5.
- Additional information can be found in Duda & Hart
 - ML estimation: Ch. 3.2
 Bayesian Learning: Ch. 3.3-3.5
 - Nonparametric methods: Ch. 4.1-4.5

Machine Learning Summer '15

Christopher M. Bishop Pattern Recognition and Machine Learning Springer, 2006

> R.O. Duda, P.E. Hart, D.G. Stork Pattern Classification 2nd Ed., Wiley-Interscience, 2000

B. Leibe

