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Many slides adapted from B. Schiele 
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Course Outline 

• Fundamentals (2 weeks) 

 Bayes Decision Theory 

 Probability Density Estimation 
 

• Discriminative Approaches (5 weeks) 

 Linear Discriminant Functions 

 Support Vector Machines 

 Ensemble Methods & Boosting 

 Randomized Trees, Forests & Ferns 
 

• Generative Models (4 weeks) 

 Bayesian Networks 

 Markov Random Fields 
 

B. Leibe 
2 
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Topics of This Lecture 

• Recap: Bayes Decision Theory 
 

• Parametric Methods 
 Recap: Maximum Likelihood approach 

 Bayesian Learning 
 

• Non-Parametric Methods 
 Histograms 

 Kernel density estimation 

 K-Nearest Neighbors 

 k-NN for Classification 

 Bias-Variance tradeoff 
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Recap: Bayes Decision Theory 

• Optimal decision rule 

 Decide for C1 if 

 

 

 This is equivalent to  

 

 

 

 Which is again equivalent to (Likelihood-Ratio test) 

 

4 
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p(C1jx) > p(C2jx)

p(xjC1)p(C1) > p(xjC2)p(C2)

p(xjC1)
p(xjC2)

>
p(C2)
p(C1)

Decision threshold  

Slide credit: Bernt Schiele 
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Recap: Bayes Decision Theory 

• Decision regions: R1, R2, R3, … 

 

5 
B. Leibe Slide credit: Bernt Schiele 
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Recap: Classifying with Loss Functions 

• We can formalize the intuition that different decisions 
have different weights by introducing a loss matrix Lkj 

 

 

 

 

• Example: cancer diagnosis 

6 
B. Leibe 

Decision 
T
ru

th
 

Lcancer diagnosis =

Lkj = loss for decision Cj if truth is Ck:
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Recap: Minimizing the Expected Loss 

• Optimal solution is the one that minimizes the loss. 

 But: loss function depends on the true class, which is unknown. 
 

• Solution: Minimize the expected loss 

 

 
 

• This can be done by choosing the regions      such that 

 

 

 Adapted decision rule: 
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Rj

p(xjC1)
p(xjC2)

>
(L21 ¡L22)

(L12 ¡L11)

p(C2)
p(C1)
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• One-dimensional case 

 Mean ¹ 

 Variance ¾2 

 

 

 

 

• Multi-dimensional case 

 Mean ¹ 

 Covariance § 

 

Recap: Gaussian (or Normal) Distribution 

8 
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N (xj¹; ¾2) =
1p
2¼¾

exp

½
¡(x¡ ¹)2

2¾2

¾

N(xj¹;§) =
1

(2¼)D=2j§j1=2 exp
½
¡1

2
(x¡¹)T§¡1(x¡¹)

¾

Image source: C.M. Bishop, 2006 
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E(µ) = ¡ lnL(µ) = ¡
NX

n=1

ln p(xnjµ)

• Computation of the likelihood 

 Single data point: 
 

 Assumption: all data points                            are independent 

 

 
 

 Log-likelihood 

 
 
 

• Estimation of the parameters µ (Learning) 

 Maximize the likelihood (=minimize the negative log-likelihood) 

 Take the derivative and set it to zero. 

 

Recap: Maximum Likelihood Approach 
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L(µ) = p(Xjµ) =
NY

n=1

p(xnjµ)

p(xnjµ)

Slide credit: Bernt Schiele 

@

@µ
E(µ) = ¡

NX

n=1

@
@µ

p(xnjµ)
p(xnjµ)

!
= 0

X = fx1; : : : ; xng
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Topics of This Lecture 

• Recap: Bayes Decision Theory 
 

• Parametric Methods 
 Recap: Maximum Likelihood approach 

 Bayesian Learning 
 

• Non-Parametric Methods 
 Histograms 

 Kernel density estimation 

 K-Nearest Neighbors 

 k-NN for Classification 

 Bias-Variance tradeoff 
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Recap: Maximum Likelihood – Limitations 

• Maximum Likelihood has several significant limitations 

 It systematically underestimates the variance of the distribution! 

 E.g. consider the case  

 

 

 

 Maximum-likelihood estimate: 

 

 

 

 We say ML overfits to the observed data. 

 We will still often use ML, but it is important to know about this 

effect. 
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x
N = 1;X = fx1g

x

¾̂ = 0 !

¹̂

Slide adapted from Bernt Schiele 
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Deeper Reason 

• Maximum Likelihood is a Frequentist concept 

 In the Frequentist view, probabilities are the frequencies of 

random, repeatable events. 

 These frequencies are fixed, but can be estimated more 

precisely when more data is available. 
 

• This is in contrast to the Bayesian interpretation 

 In the Bayesian view, probabilities quantify the uncertainty 

about certain states or events. 

 This uncertainty can be revised in the light of new evidence. 

 

• Bayesians and Frequentists do not like 

each other too well… 

12 
B. Leibe 
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Bayesian vs. Frequentist View 

• To see the difference… 

 Suppose we want to estimate the uncertainty whether the Arctic 

ice cap will have disappeared by the end of the century. 

 This question makes no sense in a Frequentist view, since the 

event cannot be repeated numerous times. 

 In the Bayesian view, we generally have a prior, e.g. from 

calculations how fast the polar ice is melting. 

 If we now get fresh evidence, e.g. from a new satellite, we may 

revise our opinion and update the uncertainty from the prior. 

 
 

 This generally allows to get better uncertainty estimates for 

many situations. 
 

• Main Frequentist criticism 

 The prior has to come from somewhere and if it is wrong, the 

result will be worse. 
13 

B. Leibe 

Posterior / Likelihood £Prior
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Bayesian Approach to Parameter Learning 

• Conceptual shift 

 Maximum Likelihood views the true parameter vector µ to be 

unknown, but fixed. 

 In Bayesian learning, we consider µ to be a random variable. 
 

• This allows us to use knowledge about the parameters µ  

 i.e., to use a prior for µ 

 Training data then converts this 

prior distribution on µ into  

a posterior probability density. 

 

 
 

 The prior thus encodes knowledge we have about the type of 

distribution we expect to see for µ. 
14 

B. Leibe Slide adapted from Bernt Schiele 
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Bayesian Learning Approach 

• Bayesian view:  

 Consider the parameter vector µ as a random variable. 

 When estimating the parameters from a dataset X, we compute 

15 
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p(xjX) =

Z
p(x; µjX)dµ

p(x; µjX) = p(xjµ;X)p(µjX)

p(xjX) =

Z
p(xjµ)p(µjX)dµ

This is entirely determined by the parameter µ 
(i.e., by the parametric form of the pdf). 

Slide adapted from Bernt Schiele 

Assumption: given µ, this 

doesn’t depend on X anymore 
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Bayesian Learning Approach 

 

 

 

 

 

 

 

 

• Inserting this above, we obtain 
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p(xjX) =

Z
p(xjµ)p(µjX)dµ

p(µjX) =
p(Xjµ)p(µ)

p(X)
=

p(µ)

p(X)
L(µ)

p(X) =

Z
p(Xjµ)p(µ)dµ =

Z
L(µ)p(µ)dµ

p(xjX) =

Z
p(xjµ)L(µ)p(µ)

p(X)
dµ =

Z
p(xjµ)L(µ)p(µ)R

L(µ)p(µ)dµ
dµ

Slide credit: Bernt Schiele 
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Bayesian Learning Approach 

• Discussion 

 

 

 

 

 

 

 

 

 
 

 If we now plug in a (suitable) prior p(µ), we can estimate  

from the data set X. 
17 
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p(xjX) =

Z
p(xjµ)L(µ)p(µ)R

L(µ)p(µ)dµ
dµ

Normalization: integrate  

over all possible values of µ 

Likelihood of the parametric  

form µ given the data set X. 

Prior for the  

parameters µ 

Estimate for x based on 

parametric form µ 

p(xjX)
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Bayesian Density Estimation 

• Discussion 

 

 

 

 The probability             makes the dependency of the estimate 

on the data explicit. 
 

 If             is very small everywhere, but is large for one   , then 

 

 

 In this case, the estimate is determined entirely by    . 

 The more uncertain we are about µ, the more we average over 

all parameter values. 

18 
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p(xjX) =

Z
p(xjµ)p(µjX)dµ =

Z
p(xjµ)L(µ)p(µ)R

L(µ)p(µ)dµ
dµ

p(µjX)

p(µjX) µ̂

p(xjX) ¼ p(xjµ̂)

Slide credit: Bernt Schiele 

µ̂
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Bayesian Density Estimation 

• Problem 

 In the general case, the integration over µ is not possible  

(or only possible stochastically). 

 

• Example where an analytical solution is possible 

 Normal distribution for the data, ¾2 assumed known and fixed. 

 Estimate the distribution of the mean: 

 

 

 

 Prior: We assume a Gaussian prior over ¹,  

19 
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p(¹jX) =
p(Xj¹)p(¹)

p(X)

Slide credit: Bernt Schiele 
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Bayesian Learning Approach 

 

• Sample mean: 

 

• Bayes estimate: 

 

 

 

 
 

• Note:  

20 
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¹x =
1

N

NX

n=1

xn

¹N =
¾2¹0 +N¾20¹x

¾2 +N¾20

1

¾2N
=

1

¾20
+

N

¾2

p(¹jX)

¹0 = 0

Slide adapted from Bernt Schiele Image source: C.M. Bishop, 2006 
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Summary: ML vs. Bayesian Learning 

• Maximum Likelihood 

 Simple approach, often analytically possible. 

 Problem: estimation is biased, tends to overfit to the data. 

 Often needs some correction or regularization. 

 But:  

– Approximation gets accurate for             . 
 

• Bayesian Learning 

 General approach, avoids the estimation bias through a prior. 

 Problems: 

– Need to choose a suitable prior (not always obvious). 

– Integral over µ often not analytically feasible anymore. 

 But: 

– Efficient stochastic sampling techniques available. 
 

(In this lecture, we’ll use both concepts wherever appropriate) 
21 

B. Leibe 

N !1
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Topics of This Lecture 

• Recap: Bayes Decision Theory 
 

• Parametric Methods 
 Recap: Maximum Likelihood approach 

 Bayesian Learning 
 

• Non-Parametric Methods 
 Histograms 

 Kernel density estimation 

 K-Nearest Neighbors 

 k-NN for Classification 

 Bias-Variance tradeoff 

 
 

 

22 
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Non-Parametric Methods 

• Non-parametric representations 

 Often the functional form of the distribution is unknown 

 

 

 

 

 

 

 

• Estimate probability density from data 

 Histograms 

 Kernel density estimation (Parzen window / Gaussian kernels) 

 k-Nearest-Neighbor 

23 
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x

Slide credit: Bernt Schiele 
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Histograms 

• Basic idea: 

 Partition the data space into distinct  
bins with widths ¢i and count the  

number of observations, ni, in each  

bin. 

 

 
 

 Often, the same width is used for all bins, ¢i = ¢. 
 

 This can be done, in principle, for any dimensionality D…  

24 
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N = 1 0

0 0.5 1
0

1

2

3

…but the required 

number of bins 

grows exponen- 
tially with D! 

Image source: C.M. Bishop, 2006 
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Histograms 

• The bin width M acts as a smoothing factor. 

25 
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not smooth enough 

about OK 

too smooth 

Image source: C.M. Bishop, 2006 
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Summary: Histograms 

• Properties 

 Very general. In the limit (N!1), every probability density can 

be represented. 

 No need to store the data points once histogram is computed. 

 Rather brute-force 
 

• Problems 

 High-dimensional feature spaces 

– D-dimensional space with M bins/dimension will require MD bins! 

 Requires an exponentially growing number of data points 

“Curse of dimensionality” 

 Discontinuities at bin edges 

 Bin size? 

– too large: too much smoothing 

– too small: too much noise 

 26 
B. Leibe Slide credit: Bernt Schiele 
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P =

Z

R
p(y)dy

Statistically Better-Founded Approach 

• Data point x comes from pdf p(x) 
 Probability that x falls into small region R 

 

 

• If R is sufficiently small, p(x) is roughly constant 

 Let V  be the volume of R 
 

 

 

• If the number N of samples is sufficiently large, we can 

estimate P as 

27 
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P =

Z

R
p(y)dy ¼ p(x)V

P =
K

N
) p(x) ¼ K

NV

Slide credit: Bernt Schiele 
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Statistically Better-Founded Approach 

 

 

 

 

 

 

 

 

• Kernel methods 

 Example: Determine  
the number K of data  

points inside a fixed  

window… 
28 
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p(x) ¼ K

NV

fixed V 

determine K 

fixed K 

determine V 

Kernel Methods K-Nearest Neighbor 

Slide credit: Bernt Schiele 
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Kernel Methods 

• Parzen Window 

 Hypercube of dimension D with edge length h: 

 

 

 

 

 

 

 

 

 Probability density estimate: 

29 
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k(u) =

½
1; jui · 1

2
; i = 1; : : : ; D

0; else

K =

NX

n=1

k(
x¡ xn

h
) V =

Z
k(u)du = hd

p(x) ¼ K

NV
=

1

NhD

NX

n=1

k(
x¡ xn

h
)

“Kernel function” 

Slide credit: Bernt Schiele 
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Kernel Methods: Parzen Window 

• Interpretations 

1. We place a kernel window k at 

location x and count how many  

data points fall inside it. 

 

2. We place a kernel window k around 

each data point xn and sum up 

their influences at location x. 

   Direct visualization of the density. 

 

• Still, we have artificial discontinuities at the cube 

boundaries… 

 We can obtain a smoother density model if we choose a 

smoother kernel function, e.g. a Gaussian 

30 
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k(u) =
1

(2¼h2)1=2
exp

½
¡ u

2

2h2

¾

Kernel Methods: Gaussian Kernel 

• Gaussian kernel 

 Kernel function 

 

 

 

 

 

 

 

 Probability density estimate 
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p(x) ¼ K

NV
=

1

N

NX

n=1

1

(2¼)D=2h
exp

½
¡jjx¡ xnjj

2

2h2

¾

K =

NX

n=1

k(x¡ xn) V =

Z
k(u)du = 1

Slide credit: Bernt Schiele 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

M
a
c
h

in
e
 L

e
a
rn

in
g

 S
u

m
m

e
r 

‘1
5

 

 

Gauss Kernel: Examples 
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not smooth enough 

about OK 

too smooth 

h acts as a smoother. 

Image source: C.M. Bishop, 2006 
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Kernel Methods 

• In general 

 Any kernel such that 

 

 

 

can be used. Then 

 

 

 

 

 And we get the probability density estimate 
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K =

NX

n=1

k(x¡ xn)

p(x) ¼ K

NV
=

1

N

NX

n=1

k(x¡ xn)

Slide adapted from Bernt Schiele 
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Statistically Better-Founded Approach 
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p(x) ¼ K

NV

fixed V 

determine K 

fixed K 

determine V 

Kernel Methods K-Nearest Neighbor 

• K-Nearest Neighbor 

 Increase the volume V 

until the K next data 

points are found. 

 

Slide credit: Bernt Schiele 
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K-Nearest Neighbor 

• Nearest-Neighbor density estimation 

 Fix K, estimate V from the data.  

 Consider a hypersphere centred  
on x and let it grow to a volume V ?  

that includes K of the given N             data  

points.  

 Then 

 

 

 

• Side note  

 Strictly speaking, the model produced by K-NN is not a true 

density model, because the integral over all space diverges. 

 E.g. consider K = 1 and a sample exactly on a data point x = xj. 
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K = 3
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k-Nearest Neighbor: Examples 

36 
B. Leibe 

not smooth enough 

about OK 

too smooth 

K acts as a smoother. 

Image source: C.M. Bishop, 2006 
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Summary: Kernel and k-NN Density Estimation 

• Properties 

 Very general. In the limit (N!1), every probability density can 

be represented. 

 No computation involved in the training phase 

 Simply storage of the training set  
 

• Problems 

 Requires storing and computing with the entire dataset. 

 Computational cost linear in the number of data points. 

 This can be improved, at the expense of some computation 

during training, by constructing efficient tree-based search 

structures. 

 Kernel size / K in K-NN? 

– Too large: too much smoothing 

– Too small: too much noise 
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K-Nearest Neighbor Classification 

• Bayesian Classification 

 

 

• Here we have 
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p(x) ¼ K

NV

p(Cjjx) =
p(xjCj)p(Cj)

p(x)

p(xjCj) ¼
Kj

NjV
p(Cjjx) ¼

Kj

NjV

Nj

N

NV

K
=

Kj

K

p(Cj) ¼
Nj

N

k-Nearest Neighbor 

classification 

Slide credit: Bernt Schiele 
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K-Nearest Neighbors for Classification 

 

39 
B. Leibe 

K = 1 K = 3 

Image source: C.M. Bishop, 2006 
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K-Nearest Neighbors for Classification 

• Results on an example data set 

 

 

 

 

 

 

 

• K acts as a smoothing parameter. 

• Theoretical guarantee 

 For N!1, the error rate of the 1-NN classifier is never more 

than twice the optimal error (obtained from the true conditional 

class distributions). 
40 

B. Leibe Image source: C.M. Bishop, 2006 
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Bias-Variance Tradeoff 

• Probability density estimation 

 Histograms: bin size? 

–  M too large: too smooth 

–  M too small: not smooth enough 

 Kernel methods: kernel size? 

– h too large: too smooth 

– h too small: not smooth enough 

 K-Nearest Neighbor: K? 

– K too large: too smooth 

– K too small: not smooth enough 

 

• This is a general problem of many probability density 

estimation methods 

 Including parametric methods and mixture models 
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Too much bias 

Too much variance 

Slide credit: Bernt Schiele 
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Discussion 

• The methods discussed so far are all simple and easy to 

apply. They are used in many practical applications. 

• However… 

 Histograms scale poorly with increasing dimensionality. 

 Only suitable for relatively low-dimensional data. 
 

 Both k-NN and kernel density estimation require the entire data 

set to be stored. 

 Too expensive if the data set is large. 
 

 Simple parametric models are very restricted in what forms of 

distributions they can represent. 

 Only suitable if the data has the same general form. 
 

• We need density models that are efficient and flexible! 

 Next lecture… 
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References and Further Reading 

• More information in Bishop’s book 

 Gaussian distribution and ML:  Ch. 1.2.4 and 2.3.1-2.3.4. 

 Bayesian Learning:   Ch. 1.2.3 and 2.3.6.  

 Nonparametric methods:  Ch. 2.5. 

• Additional information can be found in Duda & Hart 

 ML estimation:   Ch. 3.2 

 Bayesian Learning:  Ch. 3.3-3.5 

 Nonparametric methods: Ch. 4.1-4.5 
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