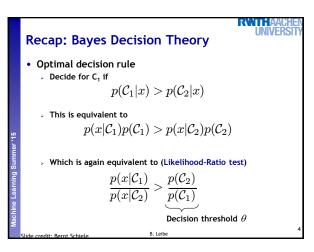
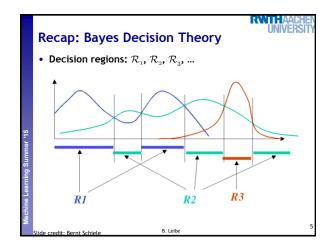
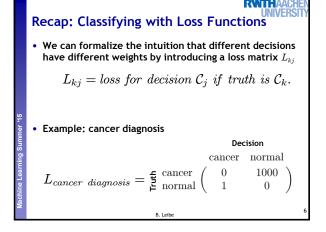


Topics of This Lecture Recap: Bayes Decision Theory Parametric Methods Recap: Maximum Likelihood approach Bayesian Learning Non-Parametric Methods Histograms Kernel density estimation K-Nearest Neighbors R-NN for Classification Bias-Variance tradeoff







Recap: Minimizing the Expected Loss

- · Optimal solution is the one that minimizes the loss.
 - But: loss function depends on the true class, which is unknown.
- · Solution: Minimize the expected loss

$$\mathbb{E}[L] = \sum_{k} \sum_{j} \int_{\mathcal{R}_{j}} L_{kj} p(\mathbf{x}, \mathcal{C}_{k}) \, d\mathbf{x}$$

• This can be done by choosing the regions \mathcal{R}_j such that $\mathbb{E}[L]=\sum_i L_{kj}p(\mathcal{C}_k|\mathbf{x})$

$$\mathbb{E}[L] = \sum_{k} L_{kj} p(\mathcal{C}_k | \mathbf{x})$$

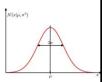
⇒ Adapted decision rule:

$$rac{p(\mathbf{x}|\mathcal{C}_1)}{p(\mathbf{x}|\mathcal{C}_2)} > rac{(L_{21}-L_{22})}{(L_{12}-L_{11})} rac{p(\mathcal{C}_2)}{p(\mathcal{C}_1)}$$

Recap: Gaussian (or Normal) Distribution

- One-dimensional case
 - Mean μ
 - Variance σ²

$$\mathcal{N}(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$$



- · Multi-dimensional case
 - » Mean μ
 - Covariance Σ

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}$$

Recap: Maximum Likelihood Approach

- · Computation of the likelihood
 - > Single data point: $p(x_n|\theta)$
 - Assumption: all data points $X = \{x_1, \dots, x_n\}$ are independent

$$L(\theta) = p(X|\theta) = \prod_{n=1}^{N} p(x_n|\theta)$$

$$L(\theta) = p(X|\theta) = \prod_{n=1}^N p(x_n|\theta)$$
 > Log-likelihood
$$E(\theta) = -\ln L(\theta) = -\sum_{n=1}^N \ln p(x_n|\theta)$$

- Estimation of the parameters θ (Learning)
 - > Maximize the likelihood (=minimize the negative log-likelihood) ⇒ Take the derivative and set it to zero.

$$\frac{\partial}{\partial \theta} E(\theta) = -\sum_{n=1}^{N} \frac{\frac{\partial}{\partial \theta} p(x_n | \theta)}{p(x_n | \theta)} \stackrel{!}{=} 0$$

Topics of This Lecture

- · Recap: Bayes Decision Theory
- · Parametric Methods
 - Recap: Maximum Likelihood approach
 - **Bayesian Learning**
- Non-Parametric Methods
 - Histograms
 - Kernel density estimation K-Nearest Neighbors
 - k-NN for Classification

 - Bias-Variance tradeoff

Recap: Maximum Likelihood - Limitations

- · Maximum Likelihood has several significant limitations
 - > It systematically underestimates the variance of the distribution!
 - E.g. consider the case $N=1, X=\{x_1\}$

 $\hat{\sigma} = 0!$ \overrightarrow{x}

- > We say ML overfits to the observed data.
- We will still often use ML, but it is important to know about this effect.

B. Leibe

Deeper Reason

- · Maximum Likelihood is a Frequentist concept
 - In the Frequentist view, probabilities are the frequencies of random, repeatable events.
 - These frequencies are fixed, but can be estimated more precisely when more data is available.
- · This is in contrast to the Bayesian interpretation
 - In the Bayesian view, probabilities quantify the uncertainty about certain states or events.
 - This uncertainty can be revised in the light of new evidence.
- · Bayesians and Frequentists do not like each other too well...

Bayesian vs. Frequentist View

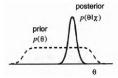
- · To see the difference...
 - Suppose we want to estimate the uncertainty whether the Arctic ice cap will have disappeared by the end of the century.
 - This question makes no sense in a Frequentist view, since the event cannot be repeated numerous times.
 - In the Bayesian view, we generally have a prior, e.g. from calculations how fast the polar ice is melting.
 - If we now get fresh evidence, e.g. from a new satellite, we may revise our opinion and update the uncertainty from the prior.

 $Posterior \propto Likelihood \times Prior$

- This generally allows to get better uncertainty estimates for many situations.
- · Main Frequentist criticism
 - The prior has to come from somewhere and if it is wrong, the result will be worse.

Bayesian Approach to Parameter Learning

- Conceptual shift
 - Maximum Likelihood views the true parameter vector $\boldsymbol{\theta}$ to be unknown, but fixed.
 - In Bayesian learning, we consider $\boldsymbol{\theta}$ to be a random variable.
- This allows us to use knowledge about the parameters $\boldsymbol{\theta}$
 - $\,\,$ i.e., to use a prior for θ
 - Training data then converts this prior distribution on $\boldsymbol{\theta}$ into a posterior probability density.



The prior thus encodes knowledge we have about the type of distribution we expect to see for θ .

Bayesian Learning Approach · Bayesian view: \succ Consider the parameter vector θ as a random variable. \triangleright When estimating the parameters from a dataset X, we compute

 $p(x|X) = \int p(x,\theta|X) d\theta \qquad \begin{array}{|ll} & \text{Assumption: given θ, this} \\ & \text{doesn't depend on X anymore} \end{array}$ $p(x,\theta|X) = p(x|\theta,X)p(\theta|X)$

 $p(x|X) = \int p(x|\theta)p(\theta|X)d\theta$

This is entirely determined by the parameter $\boldsymbol{\theta}$ (i.e., by the parametric form of the pdf).

Bayesian Learning Approach

 $p(x|X) = \int p(x|\theta)p(\theta|X)d\theta$ $p(\theta|X) = \underbrace{\frac{p(X|\theta)p(\theta)}{p(X)}}_{p(X)} = \underbrace{\frac{p(\theta)}{p(X)}}_{p(X)}L(\theta)$ $p(X) = \int p(X|\theta)p(\theta)d\theta = \int L(\theta)p(\theta)d\theta$

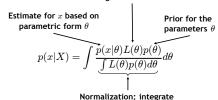
· Inserting this above, we obtain

$$p(x|X) = \int \frac{p(x|\theta)L(\theta)p(\theta)}{p(X)}d\theta = \int \frac{p(x|\theta)L(\theta)p(\theta)}{\int L(\theta)p(\theta)d\theta}d\theta$$

Bayesian Learning Approach

Discussion

Likelihood of the parametric form θ given the data set X.



over all possible values of θ

> If we now plug in a (suitable) prior $p(\theta)$, we can estimate p(x|X)from the data set X.

Bayesian Density Estimation

Discussion

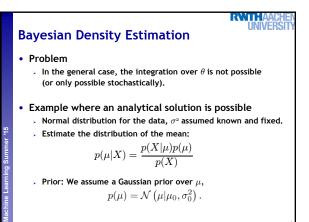
$$p(x|X) = \int p(x|\theta)p(\theta|X)d\theta = \int \frac{p(x|\theta)L(\theta)p(\theta)}{\int L(\theta)p(\theta)d\theta}d\theta$$

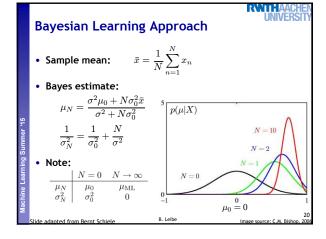
- The probability $p(\boldsymbol{\theta}|\boldsymbol{X})$ makes the dependency of the estimate on the data explicit.
- > If p(heta|X) is very small everywhere, but is large for one $\hat{ heta}$, then

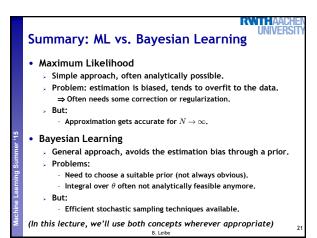
 $p(x|X) \approx p(x|\hat{\theta})$

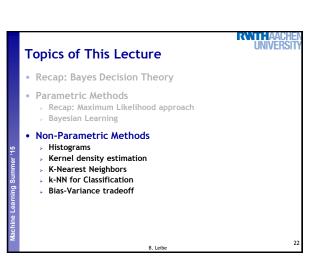
- \Rightarrow In this case, the estimate is determined entirely by $\hat{\theta}$.
- \Rightarrow The more uncertain we are about θ , the more we average over all parameter values.

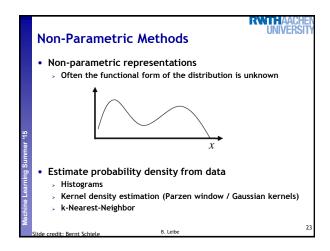
3

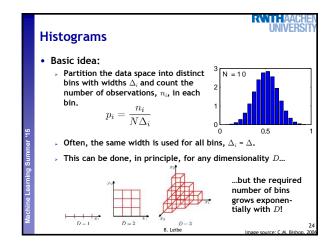




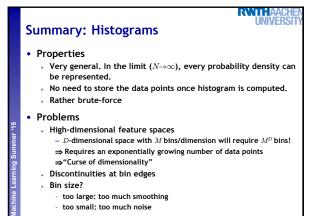




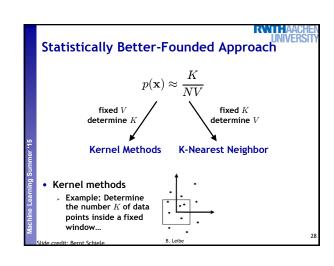


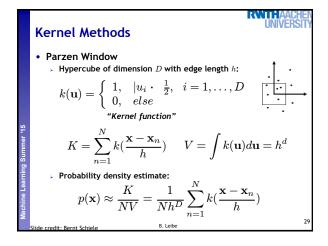


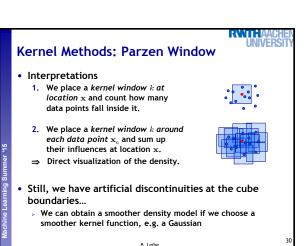
Histograms $\text{ • The bin width } \Delta \text{ acts as a smoothing factor.}$

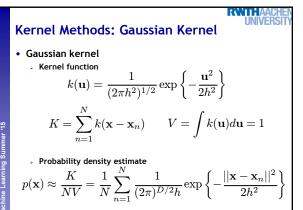


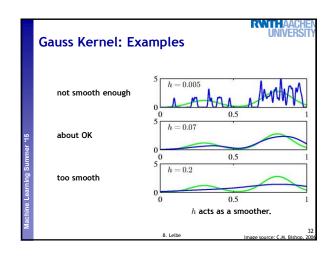
Statistically Better-Founded Approach • Data point \mathbf{x} comes from pdf $p(\mathbf{x})$ • Probability that x falls into small region \mathcal{R} $P = \int_{\mathcal{R}} p(y) dy$ • If \mathcal{R} is sufficiently small, $p(\mathbf{x})$ is roughly constant • Let V be the volume of \mathcal{R} $P = \int_{\mathcal{R}} p(y) dy \approx p(\mathbf{x}) V$ • If the number N of samples is sufficiently large, we can estimate P as $P = \frac{K}{N} \qquad \Rightarrow p(\mathbf{x}) \approx \frac{K}{NV}$

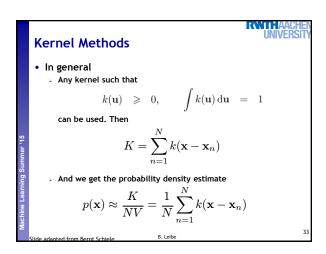


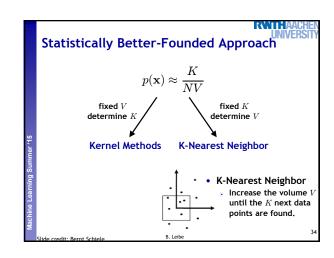


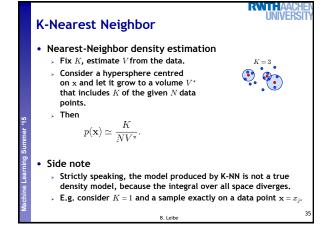


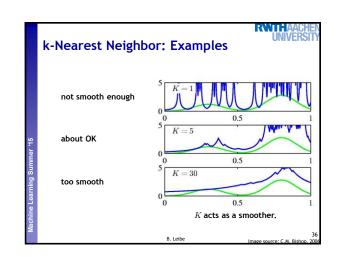












Summary: Kernel and k-NN Density Estimation • Properties > Very general. In the limit (N→∞), every probability density can be represented. > No computation involved in the training phase ⇒ Simply storage of the training set • Problems > Requires storing and computing with the entire dataset. ⇒ Computational cost linear in the number of data points. ⇒ This can be improved, at the expense of some computation during training, by constructing efficient tree-based search structures. > Kernel size / K in K-NN?

Too large: too much smoothing
Too small: too much noise

K-Nearest Neighbor Classification • Bayesian Classification $p(\mathcal{C}_j|\mathbf{x}) = \frac{p(\mathbf{x}|\mathcal{C}_j)p(\mathcal{C}_j)}{p(\mathbf{x})}$ • Here we have $p(\mathbf{x}) \approx \frac{K}{NV}$ $p(\mathbf{x}|\mathcal{C}_j) \approx \frac{K_j}{N_j V} \longrightarrow p(\mathcal{C}_j|\mathbf{x}) \approx \frac{K_j}{N_j V} \frac{N_j}{N} \frac{NV}{K} = \frac{K_j}{K}$ $p(\mathcal{C}_j) \approx \frac{N_j}{N}$ k-Nearest Neighbor classification

