Machine Learning - Lecture 1

Introduction

$$
09.04 .2015
$$

Bastian Leibe RWTH Aachen
http://www.vision.rwth-aachen.de/
leibe@vision.rwth-aachen.de

Organization

- Lecturer
, Prof. Bastian Leibe (leibe@vision.rwth-aachen.de)
- Assistants
, Ishrat Badami (badami@vision.rwth-aachen.de)
, Michael Kramp (kramp@vision.rwth-aachen.de)
- Course webpage
, http://www.vision.rwth-aachen.de/teaching/
, Slides will be made available on the webpage
, There is also an L2P electronic repository
- Please subscribe to the lecture on the Campus system!
, Important to get email announcements and L2P access!

Language

- Official course language will be English
, If at least one English-speaking student is present.
, If not... you can choose.
- However...
, Please tell me when I'm talking too fast or when I should repeat something in German for better understanding!
, You may at any time ask questions in German!
, You may turn in your exercises in German.
, You may take the oral exam in German.

Organization

- Structure: 3V (lecture) + 1Ü (exercises)
, 6 EECS credits
, Part of the area "Applied Computer Science"
- Place \& Time
, Lecture:
, Lecture/Exercises:

Tue 14:15-15:45 room UMIC 025
Thu 14:15-15:45 room UMIC 025

Exercises and Supplementary Material

- Exercises
, Typically 1 exercise sheet every 2 weeks.
- Pen \& paper and Matlab based exercises
, Hands-on experience with the algorithms from the lecture.
, Send your solutions the night before the exercise class.
, Need to reach $\geq 50 \%$ of the points to qualify for the exam!
- Teams are encouraged!
, You can form teams of up to 3 people for the exercises.
, Each team should only turn in one solution.
- But list the names of all team members in the submission.

Course Webpage

Tentative Schedule

Date Topic	Content	Stides	Related Material
07.04.15 no class	-	-	-
09.04.15 Introduction	Introduction, Probability Theory, Bayes Decision Theory, Minimizing Expected Loss	pdf, fullpage	$\begin{aligned} & \text { Bishop Ch. 1.1, 1.2.1-1.2.3, } \\ & \text { 1.5.1-1.5.4 } \end{aligned}$
14.04.15 Exercise 0	intro Matiab		-
$\text { 16.04.15 } \begin{aligned} & \text { Prob. Density } \\ & \text { Estimation I } \end{aligned}$	Nonparametric Methods, Histograms, Kernel Density Estimation, Parametric Methods, Gaussian Distribution, Maximum Likelihood, Bayesian Learning, Bias-Variance Problem		Exercise on Tuesday Bishop Ch. 2.5. 1.2.4, 2.3.1-2.3.4
$\text { 21.04.15 } \begin{aligned} & \text { Prob. Density } \\ & \text { Estimation II } \end{aligned}$	Mixture of Gaussians, k-Means Clustering, EM-Clustering, EM, Algorithm		Bishop chapter 9 , original DempsterqLaird E顺 paper, Bilmes' EM, tutorial
Linear 23.04.15 Discriminant Functions	Linear Discriminant Functions, Leastsquares Classification, Generalized Linear Models		Bishop chapter 4.1

http://www.vision.rwth-aachen.de/teaching/
B. Leibe

Textbooks

- Most lecture topics will be covered in Bishop's book.
- Some additional topics can be found in Duda \& Hart.

Christopher M. Bishop

Pattern Recognition and Machine Learning Springer, 2006
(available in the library's "Handapparat")
R.O. Duda, P.E. Hart, D.G. Stork Pattern Classification
$2^{\text {nd }}$ Ed., Wiley-Interscience, 2000

- Research papers will be given out for some topics.
, Tutorials and deeper introductions.
, Application papers

How to Find Us

- Office:
, UMIC Research Centre
, Mies-van-der-Rohe-Strasse 15, room 124
- Office hours
, If you have questions to the lecture, come to Ishrat or Michael.
, My regular office hours will be announced (additional slots are available upon request)
, Send us an email before to confirm a time slot.

Questions are welcome!

Machine Learning

- Statistical Machine Learning
- Principles, methods, and algorithms for learning and prediction on the basis of past evidence
- Already everywhere
, Speech recognition (e.g. speed-dialing)
, Computer vision (e.g. face detection)
, Hand-written character recognition (e.g. letter delivery)
> Information retrieval (e.g. image \& video indexing)
, Operation systems (e.g. caching)
, Fraud detection (e.g. credit cards)
, Text filtering (e.g. email spam filters)
, Game playing (e.g. strategy prediction)
, Robotics (e.g. prediction of battery lifetime)

Machine Learning

- Goal
, Machines that learn to perform a task from experience
- Why?
, Crucial component of every intelligent/autonomous system
, Important for a system's adaptability
, Important for a system's generalization capabilities
> Attempt to understand human learning

Machine Learning: Core Questions

- Learning to perform a task from experience
- Learning
, Most important part here!
, We do not want to encode the knowledge ourselves.
, The machine should learn the relevant criteria automatically from past observations and adapt to the given situation.
- Tools
, Statistics
, Probability theory
, Decision theory
- Information theory
, Optimization theory

\section*{s}
 Machine Learning: Core Questions

- Learning to perform a task from experience
- Task
, Can often be expressed through a mathematical function

$$
y=f(x ; w)
$$

, x : Input
> y : Output
, w: Parameters (this is what is "learned")

- Classification vs. Regression
, Regression: continuous y
, Classification: discrete y
- E.g. class membership, sometimes also posterior probability

Example: Regression

- Automatic control of a vehicle

Examples: Classification

- Email filtering $x \in[\mathrm{a}-\mathrm{z}]^{+} \xrightarrow{\longrightarrow} y \in[$ important, spam $]$
- Character recognition

- Speech recognition

Slide credit: Bernt Schiele
B. Leibe

Machine Learning: Core Problems

- Input x :

- Features
, Invariance to irrelevant input variations
, Selecting the "right" features is crucial
, Encoding and use of "domain knowledge"
. Higher-dimensional features are more discriminative.
- Curse of dimensionality
, Complexity increases exponentially with number of dimensions.

\section*{R}
 Machine Learning: Core Questions

- Learning to perform a task from experience
- Performance: "99\% correct classification"
, Of what???
, Characters? Words? Sentences?
, Speaker/writer independent?
, Over what data set?
- "The car drives without human intervention 99% of the time on country roads"

Machine Learning: Core Questions

- Learning to perform a task from experience
- Performance measure: Typically one number
, \% correctly classified letters
> Average driving distance (until crash...)
, \% games won
, \% correctly recognized words, sentences, answers
- Generalization performance
, Training vs. test
, "All" data

Machine Learning: Core Questions

- Learning to perform a task from experience
- Performance measure: more subtle problem
- Also necessary to compare partially correct outputs.
. How do we weight different kinds of errors?
, Example: L2 norm

Machine Learning: Core Questions

- Learning to perform a task from experience
- What data is available?
, Data with labels: supervised learning
- Images / speech with target labels
- Car sensor data with target steering signal
, Data without labels: unsupervised learning
- Automatic clustering of sounds and phonemes
- Automatic clustering of web sites
, Some data with, some without labels: semi-supervised learning
, No examples: learning by doing
, Feedback/rewards: reinforcement learning

\section*{Γ}

Machine Learning: Core Questions

- $y=f(x ; w)$
, w : characterizes the family of functions
> w : indexes the space of hypotheses
> w : vector, connection matrix, graph, ...

Machine Learning: Core Questions

- Learning to perform a task from experience
- Learning
, Most often learning = optimization
- Search in hypothesis space
, Search for the "best" function / model parameter w
- I.e. maximize $y=f(x ; w)$ w.r.t. the performance measure

Course Outline

- Fundamentals (2 weeks)
, Bayes Decision Theory
, Probability Density Estimation
- Discriminative Approaches (5 weeks)
, Linear Discriminant Functions
, Support Vector Machines

, Ensemble Methods \& Boosting
> Randomized Trees, Forests \& Ferns
- Generative Models (4 weeks)
, Bayesian Networks
, Markov Random Fields
, Probabilistic Inference

Topics of This Lecture

- (Re-)view: Probability Theory
, Probabilities
- Probability densities
, Expectations and covariances
- Bayes Decision Theory
, Basic concepts
, Minimizing the misclassification rate
> Minimizing the expected loss
, Discriminant functions

Probability Theory

"Probability theory is nothing but common sense reduced to calculation."

Pierre-Simon de Laplace, 1749-1827

Probability Theory

- Example: apples and oranges
, We have two boxes to pick from.
, Each box contains both types of fruit.
, What is the probability of picking an apple?

- Formalization
, Let $B \in\{r, b\}$ be a random variable for the box we pick.
, Let $F \in\{a, o\}$ be a random variable for the type of fruit we get.
, Suppose we pick the red box 40% of the time. We write this as

$$
p(B=r)=0.4 \quad p(B=b)=0.6
$$

, The probability of picking an apple given a choice for the box is

$$
p(F=a \mid B=r)=0.25 \quad p(F=a \mid B=b)=0.75
$$

, What is the probability of picking an apple?

$$
p(F=a)=?
$$

Probability Theory

- More general case
, Consider two random variables $X \in\left\{x_{i}\right\}$ and $Y \in\left\{y_{j}\right\}$
, Consider N trials and let

$$
\begin{aligned}
n_{i j} & =\#\left\{X=x_{i} \wedge Y=y_{j}\right\} \\
c_{i} & =\#\left\{X=x_{i}\right\} \\
r_{j} & =\#\left\{Y=y_{j}\right\}
\end{aligned}
$$

- Then we can derive
, Joint probability
, Marginal probability
, Conditional probability

$$
\begin{array}{r}
p\left(X=x_{i}, Y=y_{j}\right)=\frac{n_{i j}}{N} \\
p\left(X=x_{i}\right)=\frac{c_{i}}{N} \\
p\left(Y=y_{j} \mid X=x_{i}\right)=\frac{n_{i j}}{c_{i}}
\end{array}
$$

Probability Theory

- Rules of probability
, Sum rule

$$
p\left(X=x_{i}\right)=\frac{c_{i}}{N}=\frac{1}{N} \sum_{j=1}^{L} n_{i j}=\sum_{j=1}^{L} p\left(X=x_{i}, Y=y_{j}\right)
$$

, Product rule

$$
\begin{aligned}
p\left(X=x_{i}, Y=y_{j}\right) & =\frac{n_{i j}}{N}=\frac{n_{i j}}{c_{i}} \cdot \frac{c_{i}}{N} \\
& =p\left(Y=y_{j} \mid X=x_{i}\right) p\left(X=x_{i}\right)
\end{aligned}
$$

The Rules of Probability

- Thus we have

Sum Rule

$$
p(X)=\sum_{Y} p(X, Y)
$$

Product Rule

$$
p(X, Y)=p(Y \mid X) p(X)
$$

- From those, we can derive

$$
\begin{aligned}
\text { Bayes' Theorem } & p(Y \mid X) & =\frac{p(X \mid Y) p(Y)}{p(X)} \\
\text { where } & p(X) & =\sum_{Y} p(X \mid Y) p(Y)
\end{aligned}
$$

Probability Densities

- Probabilities over continuous variables are defined over their probability density function (pdf) $p(x)$.

$$
p(x \in(a, b))=\int_{a}^{b} p(x) \mathrm{d} x
$$

- The probability that x lies in the interval $(-\infty, z)$ is given by the cumulative distribution function

$$
P(z)=\int_{-\infty}^{z} p(x) \mathrm{d} x
$$

Expectations

- The average value of some function $f(x)$ under a probability distribution $p(x)$ is called its expectation

$$
\mathbb{E}[f]=\sum_{\substack{x \\ \text { discrete case }}} p(x) f(x) \quad \mathbb{E}[f]=\int p(x) f(x) \mathrm{d} x
$$

- If we have a finite number N of samples drawn from a pdf, then the expectation can be approximated by

$$
\mathbb{E}[f] \simeq \frac{1}{N} \sum_{n=1}^{N} f\left(x_{n}\right)
$$

- We can also consider a conditional expectation

$$
\mathbb{E}_{x}[f \mid y]=\sum_{\hat{B}, x}^{x} p(x \mid y) f(x)
$$

Variances and Covariances

- The variance provides a measure how much variability there is in $f(x)$ around its mean value $\mathbb{E}[f(x)]$.

$$
\operatorname{var}[f]=\mathbb{E}\left[(f(x)-\mathbb{E}[f(x)])^{2}\right]=\mathbb{E}\left[f(x)^{2}\right]-\mathbb{E}[f(x)]^{2}
$$

- For two random variables x and y, the covariance is defined by

$$
\begin{aligned}
\operatorname{cov}[x, y] & =\mathbb{E}_{x, y}[\{x-\mathbb{E}[x]\}\{y-\mathbb{E}[y]\}] \\
& =\mathbb{E}_{x, y}[x y]-\mathbb{E}[x] \mathbb{E}[y]
\end{aligned}
$$

- If \mathbf{x} and \mathbf{y} are vectors, the result is a covariance matrix

$$
\begin{aligned}
\operatorname{cov}[\mathbf{x}, \mathbf{y}] & =\mathbb{E}_{\mathbf{x}, \mathbf{y}}\left[\{\mathbf{x}-\mathbb{E}[\mathbf{x}]\}\left\{\mathbf{y}^{\mathrm{T}}-\mathbb{E}\left[\mathbf{y}^{\mathrm{T}}\right]\right\}\right] \\
& =\mathbb{E}_{\mathbf{x}, \mathbf{y}}\left[\mathbf{x y}^{\mathrm{T}}\right]-\mathbb{E}[\mathbf{x}] \mathbb{E}\left[\mathbf{y}^{\mathrm{T}}\right]
\end{aligned}
$$

Bayes Decision Theory

"The theory of inverse probability is founded upon an error, and must be wholly rejected."
R.A. Fisher, 1925

Bayes Decision Theory

- Example: handwritten character recognition

- Goal:
, Classify a new letter such that the probability of misclassification is minimized.

Bayes Decision Theory

- Concept 1: Priors (a priori probabilities) $p\left(C_{k}\right)$
, What we can tell about the probability before seeing the data.
, Example:

- In general:

$$
\sum_{k} p\left(C_{k}\right)=1
$$

Bayes Decision Theory

- Concept 2: Conditional probabilities
, Let x be a feature vector.
, x measures/describes certain properties of the input.
- E.g. number of black pixels, aspect ratio, ...
» $p\left(x \mid C_{k}\right)$ describes its likelihood for class C_{k}.

$$
p(x \mid a)
$$

$$
p(x \mid b)
$$

Bayes Decision Theory

- Example:

- Question:
, Which class?
- Since $p(x \mid b)$ is much smaller than $p(x \mid a)$, the decision should be ' a ' here.

Bayes Decision Theory

- Example:

$$
x=25
$$

- Question:
, Which class?
- Since $p(x \mid a)$ is much smaller than $p(x \mid b)$, the decision should be ' b ' here.

Bayes Decision Theory

- Example:

$$
x=20
$$

- Question:
, Which class?
, Remember that $p(a)=0.75$ and $p(b)=0.25$...
, l.e., the decision should be again ' a '.
\Rightarrow How can we formalize this?
B. Leibe

Bayes Decision Theory

- Concept 3: Posterior probabilities
, We are typically interested in the a posteriori probability, i.e. the probability of class C_{k} given the measurement vector x.
- Bayes' Theorem:

$$
p\left(C_{k} \mid x\right)=\frac{p\left(x \mid C_{k}\right) p\left(C_{k}\right)}{p(x)}=\frac{p\left(x \mid C_{k}\right) p\left(C_{k}\right)}{\sum_{i} p\left(x \mid C_{i}\right) p\left(C_{i}\right)}
$$

- Interpretation

$$
\text { Posterior }=\frac{\text { Likelihood } \times \text { Prior }}{\text { Normalization Factor }}
$$

Bayes Decision Theory

Bayesian Decision Theory

- Goal: Minimize the probability of a misclassification

$$
\begin{aligned}
p(\text { mistake }) & =p\left(\mathbf{x} \in \mathcal{R}_{1}, \mathcal{C}_{2}\right)+p\left(\mathbf{x} \in \mathcal{R}_{2}, \mathcal{C}_{1}\right) \\
& =\int_{\mathcal{R}_{1}} p\left(\mathbf{x}, \mathcal{C}_{2}\right) \mathrm{d} \mathbf{x}+\int_{\mathcal{R}_{2}} p\left(\mathbf{x}, \mathcal{C}_{1}\right) \mathrm{d} \mathbf{x} \\
& =\int_{\mathcal{R}_{1}} p\left(\mathcal{C}_{2} \mid \mathbf{x}\right) p(\mathbf{x}) d \mathbf{x}+\int_{\mathcal{R}_{2}} p\left(\mathcal{C}_{1} \mid \mathbf{x}\right) p(\mathbf{x}) d \mathbf{x}
\end{aligned}
$$

Bayes Decision Theory

- Optimal decision rule
, Decide for C_{1} if

$$
p\left(\mathcal{C}_{1} \mid x\right)>p\left(\mathcal{C}_{2} \mid x\right)
$$

, This is equivalent to

$$
p\left(x \mid \mathcal{C}_{1}\right) p\left(\mathcal{C}_{1}\right)>p\left(x \mid \mathcal{C}_{2}\right) p\left(\mathcal{C}_{2}\right)
$$

, Which is again equivalent to (Likelihood-Ratio test)

$$
\frac{p\left(x \mid \mathcal{C}_{1}\right)}{p\left(x \mid \mathcal{C}_{2}\right)}>\underbrace{\frac{p\left(\mathcal{C}_{2}\right)}{p\left(\mathcal{C}_{1}\right)}}_{\text {Decision threshold } \theta}
$$

Generalization to More Than 2 Classes

- Decide for class k whenever it has the greatest posterior probability of all classes:

$$
\begin{gathered}
p\left(\mathcal{C}_{k} \mid x\right)>p\left(\mathcal{C}_{j} \mid x\right) \quad \forall j \neq k \\
p\left(x \mid \mathcal{C}_{k}\right) p\left(\mathcal{C}_{k}\right)>p\left(x \mid \mathcal{C}_{j}\right) p\left(\mathcal{C}_{j}\right) \quad \forall j \neq k
\end{gathered}
$$

- Likelihood-ratio test

$$
\frac{p\left(x \mid \mathcal{C}_{k}\right)}{p\left(x \mid \mathcal{C}_{j}\right)}>\frac{p\left(\mathcal{C}_{j}\right)}{p\left(\mathcal{C}_{k}\right)} \forall j \neq k
$$

Classifying with Loss Functions

- Generalization to decisions with a loss function
, Differentiate between the possible decisions and the possible true classes.
, Example: medical diagnosis
- Decisions: sick or healthy (or: further examination necessary)
- Classes: patient is sick or healthy
, The cost may be asymmetric:

$$
\begin{aligned}
& \operatorname{loss}(\text { decision }=\text { healthy } \mid \text { patient }=\text { sick }) \gg \\
& \quad \operatorname{loss}(\text { decision }=\text { sick } \mid \text { patient }=\text { healthy })
\end{aligned}
$$

Classifying with Loss Functions

- In general, we can formalize this by introducing a loss matrix $L_{k j}$

$$
L_{k j}=\text { loss for decision } \mathcal{C}_{j} \text { if truth is } \mathcal{C}_{k}
$$

- Example: cancer diagnosis

Decision
cancer normal
$L_{\text {cancer diagnosis }}=\underset{\underset{\downarrow}{\underset{\sim}{2}} \text { cancer }}{\stackrel{\text { normal }}{ }}\left(\begin{array}{cc}0 & 1000 \\ 1 & 0\end{array}\right)$

Classifying with Loss Functions

- Loss functions may be different for different actors.
, Example:

$$
L_{\text {stocktrader }}(\text { subprime })=\left(\begin{array}{cc}
-\frac{1}{2} c_{\text {gain }} & 0 \\
0 & 0
\end{array}\right)
$$

$$
L_{\text {bank }}(\text { subprime })=\left(\begin{array}{cc}
-\frac{1}{2} c_{g a i n} & 0 \\
& 0
\end{array}\right)
$$

\Rightarrow Different loss functions may lead to different Bayes optimal strategies.

Minimizing the Expected Loss

- Optimal solution is the one that minimizes the loss.
, But: loss function depends on the true class, which is unknown.
- Solution: Minimize the expected loss

$$
\mathbb{E}[L]=\sum_{k} \sum_{j} \int_{\mathcal{R}_{j}} L_{k j} p\left(\mathbf{x}, \mathcal{C}_{k}\right) \mathrm{d} \mathbf{x}
$$

- This can be done by choosing the regions \mathcal{R}_{j} such that

$$
\mathbb{E}[L]=\sum_{k} L_{k j} p\left(\mathcal{C}_{k} \mid \mathbf{x}\right)
$$

which is easy to do once we know the posterior class probabilities $p\left(\mathcal{C}_{k} \mid \mathbf{x}\right)$.

Minimizing the Expected Loss

- Example:
- 2 Classes: C_{1}, C_{2}
> 2 Decision: α_{1}, α_{2}
, Loss function: $L\left(\alpha_{j} \mid \mathcal{C}_{k}\right)=L_{k j}$
- Expected loss (= risk R) for the two decisions:

$$
\begin{aligned}
& \mathbb{E}_{\alpha_{1}}[L]=R\left(\alpha_{1} \mid \mathbf{x}\right)=L_{11} p\left(\mathcal{C}_{1} \mid \mathbf{x}\right)+L_{21} p\left(\mathcal{C}_{2} \mid \mathbf{x}\right) \\
& \mathbb{E}_{\alpha_{2}}[L]=R\left(\alpha_{2} \mid \mathbf{x}\right)=L_{12} p\left(\mathcal{C}_{1} \mid \mathbf{x}\right)+L_{22} p\left(\mathcal{C}_{2} \mid \mathbf{x}\right)
\end{aligned}
$$

- Goal: Decide such that expected loss is minimized
, I.e. decide α_{1} if $R\left(\alpha_{2} \mid \mathbf{x}\right)>R\left(\alpha_{1} \mid \mathbf{x}\right)$

Minimizing the Expected Loss

$$
\begin{aligned}
R\left(\alpha_{2} \mid \mathbf{x}\right) & >R\left(\alpha_{1} \mid \mathbf{x}\right) \\
L_{12} p\left(\mathcal{C}_{1} \mid \mathbf{x}\right)+L_{22} p\left(\mathcal{C}_{2} \mid \mathbf{x}\right) & >L_{11} p\left(\mathcal{C}_{1} \mid \mathbf{x}\right)+L_{21} p\left(\mathcal{C}_{2} \mid \mathbf{x}\right) \\
\left(L_{12}-L_{11}\right) p\left(\mathcal{C}_{1} \mid \mathbf{x}\right) & >\left(L_{21}-L_{22}\right) p\left(\mathcal{C}_{2} \mid \mathbf{x}\right) \\
\frac{\left(L_{12}-L_{11}\right)}{\left(L_{21}-L_{22}\right)} & >\frac{p\left(\mathcal{C}_{2} \mid \mathbf{x}\right)}{p\left(\mathcal{C}_{1} \mid \mathbf{x}\right)}=\frac{p\left(\mathbf{x} \mid \mathcal{C}_{2}\right) p\left(\mathcal{C}_{2}\right)}{p\left(\mathbf{x} \mid \mathcal{C}_{1}\right) p\left(\mathcal{C}_{1}\right)} \\
\frac{p\left(\mathbf{x} \mid \mathcal{C}_{1}\right)}{p\left(\mathbf{x} \mid \mathcal{C}_{2}\right)} & >\frac{\left(L_{21}-L_{22}\right)}{\left(L_{12}-L_{11}\right)} \frac{p\left(\mathcal{C}_{2}\right)}{p\left(\mathcal{C}_{1}\right)}
\end{aligned}
$$

\Rightarrow Adapted decision rule taking into account the loss.

The Reject Option

- Classification errors arise from regions where the largest posterior probability $p\left(\mathcal{C}_{k} \mid \mathbf{x}\right)$ is significantly less than 1.
, These are the regions where we are relatively uncertain about class membership.
, For some applications, it may be better to reject the automatic decision entirely in such a case and e.g. consult a human expert.

Discriminant Functions

- Formulate classification in terms of comparisons
, Discriminant functions

$$
y_{1}(x), \ldots, y_{K}(x)
$$

, Classify x as class C_{k} if

$$
y_{k}(x)>y_{j}(x) \quad \forall j \neq k
$$

- Examples (Bayes Decision Theory)

$$
\begin{aligned}
& y_{k}(x)=p\left(\mathcal{C}_{k} \mid x\right) \\
& y_{k}(x)=p\left(x \mid \mathcal{C}_{k}\right) p\left(\mathcal{C}_{k}\right) \\
& y_{k}(x)=\log p\left(x \mid \mathcal{C}_{k}\right)+\log p\left(\mathcal{C}_{k}\right)
\end{aligned}
$$

Different Views on the Decision Problem

- $y_{k}(x) \propto p\left(x \mid \mathcal{C}_{k}\right) p\left(\mathcal{C}_{k}\right)$
, First determine the class-conditional densities for each class individually and separately infer the prior class probabilities.
, Then use Bayes' theorem to determine class membership.
\Rightarrow Generative methods
- $y_{k}(x)=p\left(\mathcal{C}_{k} \mid x\right)$
, First solve the inference problem of determining the posterior class probabilities.
, Then use decision theory to assign each new x to its class.
\Rightarrow Discriminative methods
- Alternative
, Directly find a discriminant function $y_{k}(x)$ which maps each input x directly onto a class label.

Next Lectures...

- Ways how to estimate the probability densities $p\left(x \mid \mathcal{C}_{k}\right)$
, Non-parametric methods
- Histograms
- k-Nearest Neighbor
- Kernel Density Estimation

, Parametric methods
- Gaussian distribution
- Mixtures of Gaussians

- Discriminant functions
, Linear discriminants
, Support vector machines
\Rightarrow Next lectures...

References and Further Reading

- More information, including a short review of Probability theory and a good introduction in Bayes Decision Theory can be found in Chapters 1.1, 1.2 and 1.5 of

Christopher M. Bishop
Pattern Recognition and Machine Learning Springer, 2006

