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Announcements 

• Exams 

 Proposed dates 

– 29./30.07. 

– 22./23.09. 

 Please enter your preferences in the Doodle poll I sent around 

 If none of the dates work for you, please contact me. 

 

• Exam Procedure 

 Oral exams 

 Duration 30min 

 I will give you 4 questions and expect you to answer 3 of them. 
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Announcements (2) 

• Lecture Evaluation 

 Please fill out the forms... 
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Announcements (3) 

• Today, I’ll summarize the most important points from 

the lecture. 

 It is an opportunity for you to ask questions… 

 …or get additional explanations about certain topics. 

 So, please do ask. 
 

• Today’s slides are intended as an index for the lecture. 

 But they are not complete, won’t be sufficient as only tool. 

 Also look at the exercises – they often explain algorithms in 

detail. 
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Course Outline 

• Single-Object Tracking 

 Background modeling 

 Template based tracking 

 Color based tracking 

 Contour based tracking 

 Tracking by online classification 

 Tracking-by-detection 
 

• Bayesian Filtering 
 

• Multi-Object Tracking 
 

• Articulated Tracking 

5 
Image source: Tobias Jaeggli 
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Recap: Gaussian Background Model 

• Statistical model 

 Value of a pixel represents a measure- 

ment of the radiance of the first object  

intersected by the pixel’s optical ray. 

 With a static background and static  

lighting, this value will be a constant  

affected by i.i.d. Gaussian noise.  
 

• Idea 

 Model the background distribution of each pixel by a single 

Gaussian centered at the mean pixel value: 

 

 

 Test if a newly observed pixel value has a high likelihood  

under this Gaussian model. 

 Automatic estimation of a sensitivity threshold for each pixel. 
6 
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N(xj¹;§) =
1

(2¼)D=2j§j1=2 exp

½
¡1

2
(x¡¹)T§¡1(x¡¹)

¾

http://doodle.com/w4fbvigkxa9icu2u
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Recap: MoG Background Model 

• Improved statistical model 

 Large jumps between different pixel values 

because different objects are projected onto 

the same pixel at different times. 

 While the same object is projected onto the 

pixel, small local intensity variations due to  

Gaussian noise.  
 

• Idea 

 Model the color distribution of each pixel by a mixture of K 

Gaussians 

 
 

 Evaluate likelihoods of observed pixel values under this model. 

 Or let entire Gaussian components adapt to foreground objects 

and classify components as belonging to object or background. 
7 

B. Leibe Image source: Chris Bischop 
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Recap: Stauffer-Grimson Background Model 

• Idea 

 Model the distribution of each pixel by a mixture of K Gaussians 

 

 
 

 Check every new pixel value against the existing K components 

until a match is found (pixel value within 2.5 ¾k of ¹k). 

 If a match is found, adapt the corresponding component. 

 Else, replace the least probable component by a distribution 

with the new value as its mean and an initially high variance and 

low prior weight. 

 Order the components by the value of wk/¾k and select the best 

B components as the background model, where 

 

 

 
8 

where 

[C. Stauffer, W.E.L. Grimson, CVPR’99] 
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Recap: Stauffer-Grimson Background Model 

• Online adaptation 

 Instead of estimating the MoG using EM, use a simpler online 

adaptation, assigning each new value only to the matching 

component. 

 Let Mk,t = 1 iff component k is the model that matched, else 0. 

 
 

 Adapt only the parameters for the matching component 

 

 

 

    where 

 

    (i.e., the update is weighted by the component likelihood) 
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B. Leibe [C. Stauffer, W.E.L. Grimson, CVPR’99] 
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Recap: Kernel Background Modeling 

10 
B. Leibe 

• Nonparametric density estimation 

 Estimate a pixel’s background distribution using the kernel 

density estimator K(¢) as 

 

 

 

 Choose K to be a Gaussian N(0, §) with § = diag{¾j}. Then 

 

 

 
 

 A pixel is considered foreground if p(x(t)) < µ for a threshold µ. 

– This can be computed very fast using lookup tables for the kernel 

function values, since all inputs are discrete values. 

– Additional speedup: partial evaluation of the sum usually sufficient 

[A. Elgammal, D. Harwood, L. Davis, ECCV’00] 
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Course Outline 

• Single-Object Tracking 

 Background modeling 

 Template based tracking 

 Color based tracking 

 Contour based tracking 

 Tracking by online classification 

 Tracking-by-detection 
 

• Bayesian Filtering 
 

• Multi-Object Tracking 
 

• Articulated Tracking 

14 
Image source: Robert Collins 
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Recap: Estimating Optical Flow 

 

 

 

 

 

• Optical Flow 

 Given two subsequent frames, estimate the apparent motion 
field u(x,y) and v(x,y) between them. 

 

• Key assumptions 

 Brightness constancy:  projection of the same point looks the 

same in every frame. 

 Small motion:  points do not move very far. 

 Spatial coherence: points move like their neighbors. 
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I(x,y,t–1) I(x,y,t) 

Slide credit: Svetlana Lazebnik 
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Recap: Lucas-Kanade Optical Flow 

• Use all pixels in a KK window to get more equations. 

• Least squares problem: 

 

 

 

 

• Minimum least squares solution given by solution of 
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B. Leibe Slide adapted from Svetlana Lazebnik 

Recall the 

Harris detector! 
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Recap: Iterative Refinement 

• Estimate velocity at each 

pixel using one iteration of  

LK estimation. 

• Warp one image toward the  

other using the estimated  

flow field. 

• Refine estimate by repeating  

the process. 

 

• Iterative procedure 

 Results in subpixel accurate localization. 

 Converges for small displacements. 
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B. Leibe Slide adapted from Steve Seitz 

Initial guess:  

Estimate: 

estimate 

update 

x x0 x x0 

estimate 

update 
Initial guess:  

Estimate: 

x x0 

Initial guess:  

Estimate: estimate 

update 

x x0 

x x0 
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Recap: Coarse-to-fine Optical Flow Estimation 

18 
B. Leibe 

Image 2 Image 1 

Gaussian pyramid of image 1 Gaussian pyramid of image 2 

Image 2 Image 1 u=10 pixels 

u=5 pixels 

u=2.5 pixels 

u=1.25 pixels 

Slide credit: Steve Seitz 
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Recap: Coarse-to-fine Optical Flow Estimation 

19 
B. Leibe 

Image 2 Image 1 

Gaussian pyramid of image 1 Gaussian pyramid of image 2 

Image 2 Image 1 

Run iterative LK 

Run iterative LK 

Warp & upsample 

. 

. 

. 

Slide credit: Steve Seitz 
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Recap: Shi-Tomasi Feature Tracker (KLT) 

• Idea 

 Find good features using eigenvalues of second-moment matrix 

 Key idea: “good” features to track are the ones that can be 

tracked reliably. 
 

• Frame-to-frame tracking 

 Track with LK and a pure translation motion model. 

 More robust for small displacements, can be estima- 

ted from smaller neighborhoods (e.g., 5£5 pixels). 
 

• Checking consistency of tracks 

 Affine registration to the first observed feature instance. 

 Affine model is more accurate for larger displacements. 

 Comparing to the first frame helps to minimize drift. 
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J. Shi and C. Tomasi. Good Features to Track. CVPR 1994.  

Slide credit: Svetlana Lazebnik 
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Recap: General LK Image Registration 

• Goal 

 Find the warping parameters p that minimize the sum-of-

squares intensity difference between the template image T(x) 

and the warped input image I(W(x;p)). 

 

• LK formulation 

 Formulate this as an optimization problem 

 

 
 

 We assume that an initial estimate of p is known and iteratively 

solve for increments to the parameters ¢p: 

21 
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argmin
p

X

x

£
I(W(x;p))¡ T (x)

¤2

argmin
¢p

X

x

£
I(W(x;p+ ¢p))¡ T(x)

¤2

http://www.ces.clemson.edu/~stb/klt/shi-tomasi-good-features-cvpr1994.pdf


4 

P
e
rc

e
p
tu

a
l 
a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

C
o

m
p

u
te

r 
V

is
io

n
 I
I,
 S

u
m

m
e

r’
1

4
 

Recap: Step-by-Step Derivation 

• Key to the derivation 

 Taylor expansion around ¢p 
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I(W(x;p+ ¢p)) ¼ I(W(x;p)) +rI
@W

@p
¢p+O(¢p2)

Slide credit: Robert Collins 

= I(W([x; y]; p1; : : : ; pn))

+
h
@I
@x

@I
@y

i
2
4
@Wx

@p1

@Wx

@p2
: : : @Wx

@pn

@Wy

@p1

@Wy

@p2
: : :

@Wy

@pn

3
5

2
6664

¢p1
¢p2

...

¢pn

3
7775

Gradient Jacobian Increment  

parameters  

to solve for 
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Recap: General LK Algorithm 

• Iterate 

 Warp I to obtain I(W([x, y]; p)) 
 

 Compute the error image T([x, y]) – I(W([x, y]; p)) 
 

 Warp the gradient rI with W([x, y]; p) 
 

 Evaluate         at ([x, y]; p)        (Jacobian) 
 

 Compute steepest descent images 
 

 Compute Hessian matrix 
 

 Compute 
 

 Compute 
 

 Update the parameters p Ã p + ¢p 
 

• Until ¢p magnitude is negligible 
23 
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H =
P
x

h
rI @W

@p

iTh
rI @W

@p

i

¢p =H¡1
P
x

h
rI @W

@p

iT£
T ([x; y])¡ I(W([x; y];p))

¤

P
x

h
rI @W

@p

iT£
T ([x; y])¡ I(W([x; y];p))

¤

[S. Baker, I. Matthews, IJCV’04] 
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Recap: General LK Algorithm Visualization 
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[S. Baker, I. Matthews, IJCV’04] 
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Course Outline 

• Single-Object Tracking 

 Background modeling 

 Template based tracking 

 Color based tracking 

 Contour based tracking 

 Tracking by online classification 

 Tracking-by-detection 
 

• Bayesian Filtering 
 

• Multi-Object Tracking 
 

• Articulated Tracking 

25 
Image source: Robert Collins 
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Region of 
interest 

Center of 
mass 

Mean Shift 
vector 

Recap: Mean-Shift 

Slide by Y. Ukrainitz & B. Sarel 

Objective: Find the densest region P
e
rc

e
p
tu

a
l 
a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

C
o

m
p

u
te

r 
V

is
io

n
 I
I,
 S

u
m

m
e

r’
1

4
 

Recap: Using Mean-Shift on Color Models 

• Two main approaches 
 

1. Explicit weight images 

– Create a color likelihood image, with pixels  

weighted by the similarity to the desired  

color (best for unicolored objects).  

– Use mean-shift to find spatial modes of the likelihood. 
 

 

 

2. Implicit weight images 

– Represent color distribution by a histogram.  

– Use mean-shift to find the region that has the  

most similar color distribution. 

 

 

27 
B. Leibe Slide credit: Robert Collins 
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Mean-Shift on Weight Images 

• Ideal case 

 Want an indicator function that returns 1 for pixels on the 

tracked object and 0 for all other pixels. 
 

• Instead 

 Compute likelihood maps  

 Value at a pixel is proportional to the likelihood  

that the pixel comes from the tracked object. 
 

• Likelihood can be based on 

 Color 

 Texture 

 Shape (boundary) 

 Predicted location 

28 
B. Leibe Slide credit: Robert Collins 
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Recap: Mean-Shift Tracking 

• Mean-Shift finds the mode of an explicit likelihood image 

 

 

 

 

 

 

 

 

 

 Mean-shift computes the weighted mean of all  

shifts (offsets), weighted by the point likelihood  

and the kernel function centered at x. 
29 
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Sum over all pixels a 

under kernel K 

Weight from the 

likelihood image 

at pixel a 

Kernel  weight 

evaluated at  

offset (a – x) 

Offset of pixel a 

to kernel center x 

Normalization 
term 
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Recap: Explicit Weight Images 

 

 

 

 
 

• Histogram backprojection 

 Histogram is an empirical estimate of p(color | object) = p(c | o) 

 

 Bayes’ rule says: 

 

 Simplistic approximation: assume p(o)/p(c) is constant. 

 Use histogram h as a lookup table to set pixel values in the 

weight image.  

 If pixel maps to histogram bucket i, set weight for pixel to h(i). 
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B. Leibe Image source: Gary Bradski Slide credit: Robert Collins 
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Recap: Scale Adaptation in CAMshift 

 

31 
Image source: http://docs.opencv.org/trunk/doc/py_tutorials/py_video/py_meanshift/py_meanshift.html 
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Recap: Tracking with Implicit Weight Images 
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B. Leibe Slide by Y. Ukrainitz & B. Sarel 
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Recap: Comaniciu’s Mean-Shift 

• Color histogram representation 

 

 

 

 
 

• Measuring distances between histograms 

 Distance as a function of window location y  

 

 
 

 where          is the Bhattacharyya coefficient 

33 
B. Leibe Slide credit: Robert Collins 
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Recap: Comaniciu’s Mean-Shift 

• Compute histograms via Parzen estimation 

 

 

 

 
 

 where k(¢) is some radially symmetric smoothing kernel profile, 

xi is the pixel at location i, and b(xi) is the index of its bin in 

the quantized feature space. 
 

• Consequence of this formulation 

 Gathers a histogram over a neighborhood 

 Also allows interpolation of histograms centered around an  

off-lattice location. 

34 
B. Leibe Slide credit: Robert Collins 
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Recap: Result of Taylor Expansion 

• Simple update procedure: At each iteration, perform 

 

 

 

 

 which is just standard mean-shift on (implicit) weight image wi. 
 

 Let’s look at the weight image more closely. For each pixel xi  

 

 

 
 

 If pixel xi’s value maps to histogram bucket B, then 

35 
B. Leibe Slide credit: Robert Collins 

This is only 1 

once in the 

summation  
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Course Outline 

• Single-Object Tracking 

 Background modeling 

 Template based tracking 

 Color based tracking 

 Contour based tracking 

 Tracking by online classification 

 Tracking-by-detection 
 

• Bayesian Filtering 
 

• Multi-Object Tracking 
 

• Articulated Tracking 

36 
Image source: Yuri Boykov 
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Recap: Deformable Contours 

• Given 

 Initial contour (model) near desired object  

• Goal 

 Evolve the contour to fit the exact object  

boundary 

 

• Main ideas 

 Iteratively adjust the elastic band so as to be near image 

positions with high gradients, and 

 Satisfy shape “preferences” or contour priors 

 Formulation as energy minimization problem. 

 

37 
B. Leibe Image source: Yuri Boykov Slide credit: Kristen Grauman 

M. Kass, A. Witkin, D. Terzopoulos. Snakes: Active Contour Models,  

IJCV1988. 
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Recap: Energy Function 

• Definition 

 Total energy (cost) of the current snake 

 

 

 

• Internal energy 

 Encourage prior shape preferences: e.g., smoothness,  

elasticity, particular known shape. 
 

• External energy 

 Encourage contour to fit on places where image structures  

exist, e.g., edges. 

 

 Good fit between current deformable contour and target shape 

in the image will yield a low value for this cost function. 

 
38 

B. Leibe Slide credit: Kristen Grauman 
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Recap: Energy Formulation 

• Total energy 

 

 
 

 with the component terms 

 

 

 

 

 

 

 
 

Behavior can be controlled by adapting the weights ®, ¯, °. 

 

 

 

 

 

 

 

39 
B. Leibe 
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Slide credit: Kristen Grauman 

http://www.cs.ucla.edu/~dt/papers/ijcv88/ijcv88.pdf
http://www.cs.ucla.edu/~dt/papers/ijcv88/ijcv88.pdf
http://www.cs.ucla.edu/~dt/papers/ijcv88/ijcv88.pdf
http://www.cs.ucla.edu/~dt/papers/ijcv88/ijcv88.pdf
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Recap: Extension with Shape Priors 

• Shape priors 

 If object is some smooth variation on  

a known shape, we can use a term that  

will penalize deviation from that shape: 

 

 

 

 

 

 where           are the points of the known 

 shape. 

 

 

40 
B. Leibe 
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Slide credit: Kristen Grauman 
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Recap: Greedy Energy Minimization 

• Greedy optimization 

 For each point, search window around it  

and move to where energy function is  

minimal. 

 Typical window size, e.g., 5£5 pixels 
 

• Stopping criterion 

 Stop when predefined number of points  

have not changed in last iteration,  

or after max number of iterations. 
 

• Note: 

 Local optimization – need decent initialization! 

 Convergence not guaranteed 

 
41 

B. Leibe Slide credit: Kristen Grauman 
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Recap: Energy Min. by Dynamic Programming 

 

 

 

 

 

 

 

• Dynamic Programming solution 

 Limit possible moves to neighboring pixels (discrete states). 

 Find the best joint move of all points using Viterbi algorithm. 

 Iterate until optimal position for each point is the center of  

the box, i.e., the snake is optimal in the local search space 

constrained by boxes. 

 
42 

Slide credit: Kristen Grauman 

1v

2v
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4v
6v

5v

Figure  source: Yuri Boykov [Amini, Weymouth, Jain, 1990] 
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Recap: Viterbi Algorithm 

• Main idea:  

 Determine optimal state of predecessor, for each possible state  

 Then backtrack from best state for last vertex 

43 
Slide credit: Kristen Grauman, adapted from Yuri Boykov 
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Recap: Tracking via Deformable Contours 

• Idea 

1. Use final contour/model extracted at frame  t  as an initial 

solution for frame t+1 

2. Evolve initial contour to fit exact object boundary at frame t+1 

3. Repeat, initializing with most recent frame. 

 

44 
B. Leibe Slide credit: Kristen Grauman 

Tracking Heart Ventricles  

(multiple frames) 
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Course Outline 

• Single-Object Tracking 

 Background modeling 

 Template based tracking 

 Color based tracking 

 Contour based tracking 

 Tracking by online classification 

 Tracking-by-detection 
 

• Bayesian Filtering 
 

• Multi-Object Tracking 
 

• Articulated Tracking 

45 
Image source: Helmut Grabner, Disney/Pixar 
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Recap: Tracking as Online Classification 

• Tracking as binary classification problem 

 

46 
B. Leibe Slide credit: Helmut Grabner Image source: Disney /Pixar 
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Recap: Tracking as Online Classification 

• Tracking as binary classification problem 

 

 

 

 

 

 

 

 

 

 

 Handle object and background changes by online updating 

 47 
B. Leibe Slide credit: Helmut Grabner Image source: Disney /Pixar 
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Recap: AdaBoost – “Adaptive Boosting”  

• Main idea             [Freund & Schapire, 1996] 

 Iteratively select an ensemble of classifiers 

 Reweight misclassified training examples after each iteration 

to focus training on difficult cases. 
 

• Components 

 hm(x): “weak” or base classifier 

– Condition: <50% training error over any distribution 

 H(x): “strong” or final classifier 
 

• AdaBoost:  

 Construct a strong classifier as a thresholded linear combination 

of the weighted weak classifiers: 

 

48 
B. Leibe 

H(x) = sign

Ã
MX

m=1

®mhm(x)

!
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1. Initialization: Set                 for n = 1,…,N. 
 

2. For m = 1,…,M iterations 

a) Train a new weak classifier hm(x) using the current weighting 

coefficients W(m) by minimizing the weighted error function  

 

 

b) Estimate the weighted error of this classifier on X: 

 

 

c) Calculate a weighting coefficient for hm(x): 

 
 

d) Update the weighting coefficients: 

 
 

®m = ln

½
1¡ ²m

²m

¾

Jm =

NX

n=1

w(m)
n I(hm(x) 6= tn)

Recap: AdaBoost – Algorithm 

49 
B. Leibe 
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n expf®mI(hm(xn) 6= tn)g
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Recap: From Offline to Online Boosting 

• Main issue 

 Computing the weight distribution for the samples. 

 We do not know a priori the difficulty of a sample!  

(Could already have seen the same sample before...) 
 

• Idea of Online Boosting 

 Estimate the importance of a sample by propagating it through  

a set of weak classifiers. 

 This can be thought of as modeling the information gain w.r.t. 

the first n classifiers and code it by the importance weight ¸ for 

the n+1 classifier. 

 Proven [Oza]: Given the same training set, Online Boosting 

converges to the same weak classifiers as Offline Boosting in the 

limit of N ! 1 iterations. 

50 
B. Leibe 

N. Oza and S. Russell. Online Bagging and Boosting. 

Artificial Intelligence and Statistics, 2001. P
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Recap: From Offline to Online Boosting 

51 
B. Leibe Slide credit: Helmut Grabner 

Given: 

 - ONE labeled training sample 

 

 - strong classifier to update 

 

- initial importance 

for n = 1 to N 

 - update the weak classifier using  

samples and importance 

 

 - update error estimation 

 - update weight 

 - update importance weight 

next 

Given: 

 - set of labeled training samples 

 

 - weight distribution over them 

 

 

for n = 1 to N 

 - train a weak classifier using 

samples and weight dist. 

 

 - calculate error 

 - calculate weight 

 - update weight dist. 

next 

off-line on-line 

http://ti.arc.nasa.gov/m/profile/oza/files/ozru01a.pdf
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Recap: Online Boosting for Feature Selection 

• Introducing “Selector” 

 Selects one feature from its local  

feature pool 

 

 

52 
B. Leibe Slide credit: Helmut Grabner 

h1

h2

hM

.

.

.

hSelector

 

On-line boosting is performed on 

the Selectors and not on the 

weak classifiers directly. 
 

H. Grabner and H. Bischof.  

On-line boosting and vision. 

CVPR, 2006. P
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Recap: Direct Feature Selection 

 

 

 

 

 

 

 

 

 

 

 

• Shared feature pool for all selectors to save computation 
53 

B. Leibe Slide credit: Helmut Grabner 
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Recap: Tracking by Online Classification 

54 
B. Leibe Slide credit: Helmut Grabner 

- 

+ 

- - 

- 

Search  

region 

Actual  

object position 

from time t to t+1 

Create  

confidence map 

Analyze map and set 

new object position  

Update classifier 

(tracker)  

Evaluate classifier  

on sub-patches 

Image source: Disney /Pixar 
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• Drift 

 Major problem in all adaptive or self-learning  

trackers. 

 Difficulty: distinguish “allowed” appearance  

changes due to lighting or viewpoint variation  

from “unwanted” appearance change due to  

drifting. 

 Cannot be decided based on the tracker  

confidence! 
 

• Several approaches to address this 

 Comparison with initialization 

 Semi-supervised learning (additional data) 

 Additional information sources 

55 
B. Leibe 

Recap: Self-Learning and Drift 

Tracked Patches 

Confidence 
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Course Outline 

• Single-Object Tracking 

 Background modeling 

 Template based tracking 

 Color based tracking 

 Contour based tracking 

 Tracking by online classification 

 Tracking-by-detection 
 

• Bayesian Filtering 
 

• Multi-Object Tracking 
 

• Articulated Tracking 

56 
Image source: Helmut Grabner, Disney/Pixar 
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Recap: Tracking-by-Detection 

 

 

 

 

 

 

• Main ideas 

 Apply a generic object detector to find objects of a certain class 

 Based on the detections, extract object appearance models 

 Link detections into trajectories 

57 
B. Leibe 

http://dx.doi.org/10.1109/CVPR.2006.215
http://dx.doi.org/10.1109/CVPR.2006.215
http://dx.doi.org/10.1109/CVPR.2006.215
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Elements of Tracking 

 

 

 

 

 
 

• Detection 

 Where are candidate objects? 
 

• Data association 

 Which detection corresponds to which object? 
 

• Prediction 

 Where will the tracked object be in the next time step? 
58 

B. Leibe 

Detection Data association Prediction 
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Recap: Sliding-Window Object Detection 

59 

Car/non-car 

Classifier 

Feature 

extraction 

Training examples 

B. Leibe 

1. Obtain training data 

2. Define features 

3. Define classifier 

Fleshing out this 

pipeline a bit more, 

we need to: 

Slide credit: Kristen Grauman 
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Recap: Object Detector Design 

• In practice, the classifier often determines the design. 

 Types of features 

 Speedup strategies 
 

• We’ve looked at 2 state-of-the-art detector designs  

 Based on SVMs 

 HOG, DPM detectors 

 

 Based on Boosting 

 Viola-Jones, VeryFast, Roerei detectors 

 

 Based on Random Forests 

 (Cut due to time constraints...) 

60 
B. Leibe 
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Recap: Histograms of Oriented Gradients (HOG) 

• Holistic object representation 

 Localized gradient orientations 

61 

Image Window 

Object/Non-object 

Linear SVM 

Collect HOGs over 

detection window 

Contrast normalize over 

overlapping spatial cells 

Weighted vote in spatial & 

orientation cells 

Compute gradients 

Gamma compression 

[ ..., ..., ...,         ...] 

Slide adapted from Navneet Dalal 
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Recap: Deformable Part-based Model (DPM) 

 

 

 

 

 

 

 

 

 

 
 

• Multiscale model captures features at two resolutions 

 62 
B. Leibe 

Score of object 

hypothesis is sum of 

filter scores minus 

deformation costs 

Score of filter:  

dot product of filter 

with HOG features 

underneath it 

Slide credit: Pedro Felzenszwalb [Felzenszwalb, McAllister, Ramanan, CVPR’08] 
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Recap: DPM Hypothesis Score 

 

63 
B. Leibe Slide credit: Pedro Felzenszwalb [Felzenszwalb, McAllister, Ramanan, CVPR’08] 
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Recap: Integral Channel Features 

 

 

 

 

 
 

 

• Generalization of Haar Wavelet idea from Viola-Jones 

 Instead of only considering intensities, also take into account 

other feature channels (gradient orientations, color, texture). 

 Still efficiently represented as integral images. 

 

64 
B. Leibe 

P. Dollar, Z. Tu, P. Perona, S. Belongie. Integral Channel Features, 

BMVC’09. 
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Recap: Integral Channel Features 

 

 

 
 

• Generalize also block computation 

 1st order features:  

– Sum of pixels in rectangular region. 
 

 2nd-order features:  

– Haar-like difference of sum-over-blocks 
 

 Generalized Haar:  

– More complex combinations of weighted rectangles 
 

 Histograms 

– Computed by evaluating local sums on quantized images. 

65 
B. Leibe 
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Recap: VeryFast Detector 

• Idea 1: Invert the template scale vs. image scale relation  

66 
B. Leibe 

1 model, 

50 image scales 

50 models, 

1 image scale 

Slide credit: Rodrigo Benenson 

R. Benenson, M. Mathias, R. Timofte, L. Van Gool. Pedestrian Detection 

at 100 Frames per Second, CVPR’12. 
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Recap: VeryFast Detector 

• Idea 2: Reduce training time by feature interpolation 

 

 

 

 

 

 

 

 

• Shown to be possible for Integral Channel features 

 P. Dollár, S. Belongie, Perona. The Fastest Pedestrian Detector 

in the West, BMVC 2010. 
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B. Leibe 

5 models, 

1 image scale 

50 models, 

1 image scale 

≈ 
 

Slide adapted from Rodrigo Benenson 
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Recap: VeryFast Classifier Construction 

 

 

 

 

 

 

 

 

 

 

 

• Ensemble of short trees, learned by AdaBoost 

 
68 

B. Leibe Slide credit: Rodrigo Benenson 

𝑠𝑐𝑜𝑟𝑒 = 𝑤1 ⋅ ℎ1 + 

+1 -1 +1 -1 +1 -1 +1 -1 

𝑤2 ⋅ ℎ2 + 

+1 -1 +1 -1 

⋯ 

⋯ 
+𝑤𝑁 ⋅ ℎ𝑁 
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Course Outline 

• Single-Object Tracking 

 Background modeling 

 Template based tracking 

 Color based tracking 

 Contour based tracking 

 Tracking by online classification 

 Tracking-by-detection 
 

• Bayesian Filtering 

 Kalman filter 

 Particle filter 
 

• Multi-Object Tracking 
 

• Articulated Tracking 

69 

X1 X2 

Y1 Y2 

Xt 

Yt 

… 

http://vision.ucsd.edu/~pdollar/files/papers/DollarBMVC09ChnFtrs.pdf
http://rodrigob.github.io/documents/2012_cvpr_pedestrian_detection_at_100_frames_per_second.pdf
http://rodrigob.github.io/documents/2012_cvpr_pedestrian_detection_at_100_frames_per_second.pdf
http://vision.ucsd.edu/~pdollar/files/papers/DollarBMVC10FPDW.pdf
http://vision.ucsd.edu/~pdollar/files/papers/DollarBMVC10FPDW.pdf
http://vision.ucsd.edu/~pdollar/files/papers/DollarBMVC10FPDW.pdf
http://vision.ucsd.edu/~pdollar/files/papers/DollarBMVC10FPDW.pdf
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Recap: Tracking as Inference 

• Inference problem 

 The hidden state consists of the true parameters we care about, 
denoted X. 

 The measurement is our noisy observation that results from the 
underlying state, denoted Y. 

 At each time step, state changes (from Xt-1 to Xt) and we get a 

new observation Yt. 
 

• Our goal: recover most likely state Xt given 

 All observations seen so far. 

 Knowledge about dynamics of state transitions. 

70 
B. Leibe Slide credit: Kristen Grauman 

X1 X2 

Y1 Y2 

Xt 

Yt 

… 
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Recap: Tracking as Induction 

• Base case:  

 Assume we have initial prior that predicts state in absence of 

any evidence: P(X0) 

 At the first frame, correct this given the value of Y0=y0 

• Given corrected estimate for frame t:  

 Predict for frame t+1 

 Correct for frame t+1 

 

71 
B. Leibe 

predict correct 

Slide credit: Svetlana Lazebnik 
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Recap: Prediction and Correction 

• Prediction: 

 

 

 

 

 

• Correction: 

 

 

72 
B. Leibe 

      1101110 ,,||,,|   ttttttt dXyyXPXXPyyXP 

Dynamics 

model 

Corrected estimate 

from previous step 

Slide credit: Svetlana Lazebnik 

 
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Recap: Linear Dynamic Models 

• Dynamics model 

 State undergoes linear tranformation Dt plus Gaussian noise 

 

 

 

 

• Observation model 

 Measurement is linearly transformed state plus Gaussian noise 

 

73 
B. Leibe 

 1~ ,
tt t t dN  x D x

 ~ ,
tt t t mN y M x

Slide credit: S. Lazebnik, K. Grauman 
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Recap: Constant Velocity Model (1D) 

• State vector: position p and velocity v 
 

 

 

 

 

 

• Measurement is position only 

 

74 
B. Leibe 
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Slide credit: S. Lazebnik, K. Grauman 
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Recap: Constant Acceleration Model (1D) 

• State vector: position p, velocity v, and acceleration a. 

 

 

 

 

 

 

 

• Measurement is position only 
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B. Leibe 
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Recap: General Motion Models 

• Assuming we have differential equations for the motion 

 E.g. for (undampened) periodic motion of a spring 

 

 
 

• Substitute variables to transform this into linear system 

 
 

• Then we have 
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B. Leibe 
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Recap: The Kalman Filter 

77 
B. Leibe 

Know prediction of state, 

and next measurement 

Update distribution 

over current state. 

Know corrected state from 

previous time step, and all 

measurements up to the 

current one  

 Predict distribution over 

next state. 

Time advances: t++ 

Time update 

(“Predict”) 

Measurement update 

(“Correct”) 

Receive measurement 

 10 ,, tt yyXP 



tt  ,

Mean and std. dev. 

of predicted state: 

 tt yyXP ,,0 



tt  ,

Mean and std. dev. 

of corrected state: 

Slide credit: Kristen Grauman 
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Recap: General Kalman Filter (>1dim) 

• What if state vectors have more than one dimension? 

 

78 B. Leibe 

PREDICT CORRECT 


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  1ttt xDx

td

T

tttt DD  
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1
   tttttt xMyKxx

    tttt MKI

  1 
tm

T

ttt

T

ttt MMMK

More weight on residual 

when measurement error 

covariance approaches 0. 
 

Less weight on residual as 
a priori estimate error 

covariance approaches 0. 

Slide credit: Kristen Grauman 

“residual” 

for derivations,  

see F&P Chapter 17.3 

“Kalman gain” 
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Recap: Kalman Filter 

• Algorithm summary 

 Assumption: linear model 

 

 
 

 Prediction step 

 

 

 

 Correction step 

79 
B. Leibe 
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Recap: Extended Kalman Filter (EKF) 

• Algorithm summary 

 Nonlinear model 

 

 
 

 Prediction step 

 

 

 

 Correction step 

80 
B. Leibe 

with the Jacobians 
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Course Outline 

• Single-Object Tracking 

 Background modeling 

 Template based tracking 

 Color based tracking 

 Contour based tracking 

 Tracking by online classification 

 Tracking-by-detection 
 

• Bayesian Filtering 

 Kalman filters 

 Particle filters 
 

• Multi-Object Tracking 
 

• Articulated Tracking 

81 
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Recap: Propagation of General Densities 

 

82 
B. Leibe Slide credit: Svetlana Lazebnik Figure from  Isard & Blake 
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Recap: Factored Sampling 

 

 

 

 

 
 

• Idea: Represent state distribution non-parametrically 

 Prediction: Sample points from prior density for the state, P(X) 

 Correction: Weight the samples according to P(Y |X) 
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B. Leibe 
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Slide credit: Svetlana Lazebnik Figure from  Isard & Blake 
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Recap: Particle Filtering 

• Many variations, one general concept: 

 Represent the posterior pdf by a set of randomly chosen 

weighted samples (particles) 

 

 

 

 

 

 

 

 Randomly Chosen = Monte Carlo (MC) 

 As the number of samples become very large – the 

characterization becomes an equivalent representation  

of the true pdf. 

 85 
B. Leibe Slide adapted from Michael Rubinstein 

Sample space 

Posterior 
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Recap: Sequential Importance Sampling 

function  

 
 

for  i = 1:N 
 

 

 

 

 

 

 

 

 

 

 

 

end 

for  i = 1:N 

 
 

end 
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B. Leibe 

Sample from proposal pdf 

Update weights 

Update norm. factor 

Normalize weights 

Initialize 

Slide adapted from Michael Rubinstein 
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Recap: Sequential Importance Sampling 

function  

 
 

for  i = 1:N 
 

 

 

 

 

 

 

 

 

 

 

 

end 

for  i = 1:N 

 
 

end 

 
87 

B. Leibe 

Sample from proposal pdf 

Update weights 

Update norm. factor 

Normalize weights 

Initialize 

Slide adapted from Michael Rubinstein 

For a concrete algorithm, 

we need to define the 

importance density q(.|.)! 
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Recap: SIS Algorithm with Transitional Prior 

function  

 
 

for  i = 1:N 
 

 

 

 

 

 

 

 

 

 

 

 

end 

for  i = 1:N 

 
 

end 
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Sample from proposal pdf 

Update weights 

Update norm. factor 

Normalize weights 

Initialize 

Slide adapted from Michael Rubinstein 

Transitional prior 

 

 



15 

P
e
rc

e
p
tu

a
l 
a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

C
o

m
p

u
te

r 
V

is
io

n
 I
I,
 S

u
m

m
e

r’
1

4
 

Recap: Resampling 

• Degeneracy problem with SIS 

 After a few iterations, most particles have negligible weights. 

 Large computational effort for updating particles with very small 

contribution to p(xt | y1:t). 

 

• Idea: Resampling 

 Eliminate particles with low importance weights and increase 

the number of particles with high importance weight. 

 

 
 

 The new set is generated by sampling with replacement from 

the discrete representation of p(xt | y1:t) such that 
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Recap: Efficient Resampling Approach 

• From Arulampalam paper: 
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Basic idea: choose one initial 

small random number; deter- 

ministically sample the rest 

by “crawling” up the cdf.  

This is O(N)! 

Slide adapted from Robert Collins 
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Recap: Generic Particle Filter 

function  
 

Apply SIS filtering 
 

 

Calculate 
 

if  Neff < Nthr 
 

 

 

 
 

end 
 

• We can also apply resampling selectively 

 Only resample when it is needed, i.e., Neff is too low. 

 Avoids drift when there the tracked state is stationary. 
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Outline of This Lecture 

• Single-Object Tracking 
 

• Bayesian Filtering 

 Kalman Filters, EKF 

 Particle Filters 
 

• Multi-Object Tracking 

 Data association 

 MHT 

 Network flow optimization 
 

• Articulated Tracking 

 GP body pose estimation 

 Pictorial Structures 
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Recap: Motion Correspondence Ambiguities 

 

 

 

 

1. Predictions may not be supported by measurements 

 Have the objects ceased to exist, or are they simply occluded? 
 

2. There may be unexpected measurements 

 Newly visible objects, or just noise? 
 

3. More than one measurement may match a prediction 

 Which measurement is the correct one (what about the others)? 
 

4. A measurement may match to multiple predictions 

 Which object shall the measurement be assigned to? 
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Recap: Reducing Ambiguities 

• Gating 

 Only consider measurements within a certain 

area around the predicted location. 

 Large gain in efficiency, since only a small 

region needs to be searched 
 

• Nearest-Neighbor Filter 

 Among the candidates in the gating region, 

only take the one closest to the prediction xp 

 
 

 Better: the one most likely under a Gaussian prediction model 

 
which is equivalent to taking the Mahalanobis distance 
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Recap: Track-Splitting Filter 

• Idea 

 Instead of assigning the measurement that is 

currently closest, as in the NN algorithm, 

select the sequence of measurements 

that minimizes the total Mahalanobis distance 

over some interval!  
 

 Form a track tree for the different association decisions 

 Modified log-likelihood provides the merit of a particular  

node in the track tree. 

 Cost of calculating this is low, since most terms are needed 

anyway for the Kalman filter. 
 

• Problem 

 The track tree grows exponentially, may generate a very large 

number of possible tracks that need to be maintained. 
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Recap: Pruning Strategies 

• In order to keep this feasible, need to apply pruning 

 Deleting unlikely tracks 

– May be accomplished by comparing the modified log-likelihood ̧ (k), 

which has a Â2 distribution with knz degrees of freedom, with a 

threshold ® (set according to Â2 distribution tables). 

– Problem for long tracks: modified log-likelihood gets dominated by 

old terms and responds very slowly to new ones. 

 Use sliding window or exponential decay term. 
 

 Merging track nodes 

– If the state estimates of two track nodes are similar, merge them. 

– E.g., if both tracks validate identical subsequent measurements. 
 

 Only keeping the most likely N tracks 

– Rank tracks based on their modified log-likelihood. 
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Outline of This Lecture 

• Single-Object Tracking 
 

• Bayesian Filtering 

 Kalman Filters, EKF 

 Particle Filters 
 

• Multi-Object Tracking 

 Data association 

 MHT 

 Network flow optimization 
 

• Articulated Tracking 

 GP body pose estimation 

 Pictorial Structures 
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Image source: [Cox, IJCV’93] 
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Recap: Multi-Hypothesis Tracking (MHT) 

98 
B. Leibe Image source: [Cox, IJCV’93] 

D. Reid, An Algorithm for Tracking Multiple Targets, IEEE Trans.  

Automatic Control, Vol. 24(6), pp. 843-854, 1979. 

• Ideas 

 Instead of forming a track 

tree, keep a set of hypotheses 

that generate child hypotheses 

based on the associations. 

 Enforce exclusion constraints 

between tracks and measure-

ments in the assignment. 

 Integrate track generation into 

the assignment process. 

 After hypothesis generation, 

merge and prune the current 

hypothesis set. 

 

P
e
rc

e
p
tu

a
l 
a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

C
o

m
p

u
te

r 
V

is
io

n
 I
I,
 S

u
m

m
e

r’
1

4
 

Recap: Hypothesis Generation 

• Create hypothesis matrix of the feasible associations 

 

 

 

 

 

 

• Interpretation 

 Columns represent tracked objects, rows encode measurements 

 A non-zero element at matrix position (i,j) denotes that 

measurement yi is contained in the validation region of track xj. 

 Extra column xfa for association as false alarm. 

 Extra column xnt for association as new track. 

 Turn this hypothesis matrix  
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£ =

2
664

1 0 1 1

1 1 1 1

0 1 1 1

0 0 1 1

3
775
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Recap: Creating Assignments 

 

 

 

 

 

 
 

• Impose constraints 

 A measurement can originate from only one object. 

 Any row has only a single non-zero value. 
 

 An object can have at most one associated measurement per 

time step. 

 Any column has only a single non-zero value, except for xfa, xnt 
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Zj x1 x2 xfa xnt 

y1 0 0 1 0 

y2 1 0 0 0 

y3 0 1 0 0 

y4 0 0 0 1 

http://dx.doi.org/10.1109/TAC.1979.1102177
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Recap: Calculating Hypothesis Probabilities 

• Probabilistic formulation 

 It is straightforward to enumerate all possible assignments. 

 However, we also need to calculate the probability of each child 

hypothesis.  

 This is done recursively: 
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Measurement 

likelihood 

Prob. of 

parent 

Normalization 

factor 

Prob. of 

assignment set 
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Recap: Measurement Likelihood 

• Use KF prediction 

 Assume that a measurement         associated to a track xj has a 
 

Gaussian pdf centered around the measurement prediction 
 

with innovation covariance        . 
 

 Further assume that the pdf of a measurement belonging to a 

new track or false alarm is uniform in the observation volume W 

(the sensor’s field-of-view) with probability W -1. 
 

 Thus, the measurement likelihood can be expressed as 
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Recap: Probability of an Assignment Set 
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• Composed of three terms 

1. Probability of the number of tracks Ndet, Nfal, Nnew 

– Assumption 1: Ndet follows a binomial distribution 

 

 

 
 

where N is the number of tracks in the parent hypothesis 
 

– Assumption 2: Nfal and Nnew both follow a Poisson distribution  

with expected number of events ¸falW and ¸newW  
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Recap: Probability of an Assignment Set 

2. Probability of a specific assignment of measurements 

– Such that Mk = Ndet + Nfal + Nnew holds. 

– This is determined as 1 over the number of combinations 

 

 

 
 

3. Probability of a specific assignment of tracks 

– Given that a track can be either detected or not detected.  

– This is determined as 1 over the number of assignments 

 

 

 

 

 When combining the different parts, many terms cancel out! 
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Outline of This Lecture 

• Single-Object Tracking 
 

• Bayesian Filtering 

 Kalman Filters, EKF 

 Particle Filters 
 

• Multi-Object Tracking 

 Data association 

 MHT 

 Network flow optimization 
 

• Articulated Tracking 

 GP body pose estimation 

 Pictorial Structures 
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Image source: [Zhang, Li, Nevatia, CVPR’08] 
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Recap: Linear Assignment Formulation 

• Form a matrix of pairwise similarity scores 

• Example: Similarity based on motion prediction 

 Predict motion for each trajectory and assign scores for each 

measurement based on inverse (Mahalanobis) distance, such  

that closer measurements get higher scores. 

 

 

 

 

 

 

 
 

 Choose at most one match in each row and column to maximize 

sum of scores 
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Recap: Linear Assignment Problem 

• Formal definition 
 

 Maximize 

 
 

 

subject to  

 

 

 

 

 The permutation matrix constraint ensures that we can only 

match up one object from each row and column. 
 

 Note: Alternatively, we can minimize  

cost rather than maximizing weights. 
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B. Leibe Slide adapted from Robert Collins 

Those constraints  

ensure that Z is a  

permutation matrix 
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Recap: Optimal Solution 

• Greedy Algorithm 

 Easy to program, quick to run, and yields “pretty good” 

solutions in practice. 

 But it often does not yield the optimal solution 
 

• Hungarian Algorithm 

 There is an algorithm called Kuhn-Munkres or “Hungarian” 

algorithm specifically developed to efficiently solve the linear 

assignment problem. 

 Reduces assignment problem to bipartite graph matching. 

 When starting from an N£N matrix, it runs in O(N3).  

 If you need LAP, you should use it. 
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Recap: Min-Cost Flow 

 

 

 

 

 

 

 

 
 

• Conversion into flow graph 

 Transform weights into costs 

 Add source/sink nodes with 0 cost. 

 Directed edges with a capacity of 1. 
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B. Leibe Slide credit: Robert Collins 

P
e
rc

e
p
tu

a
l 
a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

C
o

m
p

u
te

r 
V

is
io

n
 I
I,
 S

u
m

m
e

r’
1

4
 

Recap: Min-Cost Flow 

 

 

 

 

 

 

 

 
 

• Conversion into flow graph 

 Pump N units of flow from source to sink. 

 Internal nodes pass on flow ( flow in =  flow out). 

 Find the optimal paths along which to ship the flow. 
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B. Leibe Slide credit: Robert Collins 
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Recap: Min-Cost Flow 

 

 

 

 

 

 

 

 
 

• Conversion into flow graph 

 Pump N units of flow from source to sink. 

 Internal nodes pass on flow ( flow in =  flow out). 

 Find the optimal paths along which to ship the flow. 
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B. Leibe Slide credit: Robert Collins 
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Recap: Using Network Flow for Tracking 

 

 

 

 

 

 

 

 
 

• Complication 1 

 Tracks can start later than frame1 (and end earlier than frame4) 

 Connect the source and sink nodes to all intermediate nodes. 

112 
B. Leibe Slide credit: Robert Collins 
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Recap: Using Network Flow for Tracking 

 

 

 

 

 

 

 

 
 

• Complication 2 

 Trivial solution: zero cost flow! 
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B. Leibe Slide credit: Robert Collins 
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Recap: Network Flow Approach 
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Zhang, Li, Nevatia, Global Data Association for Multi-Object Tracking 

using Network Flows, CVPR’08. 

image source: [Zhang, Li, Nevatia, CVPR’08] 

Solution: Divide 

each detection 

into 2 nodes 
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Recap: Min-Cost Formulation 

• Objective Function 

 

 

 

 
 

• subject to 

 Flow conservation at all nodes 

 

 
 

 Edge capacities 

 

115 
B. Leibe Slide credit: Laura Leal 

P
e
rc

e
p
tu

a
l 
a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

C
o

m
p

u
te

r 
V

is
io

n
 I
I,
 S

u
m

m
e

r’
1

4
 

Outline of This Lecture 

• Single-Object Tracking 
 

• Bayesian Filtering 

 Kalman Filters, EKF 

 Particle Filters 
 

• Multi-Object Tracking 

 Data association 

 MHT 

 Network flow optimization 
 

• Articulated Tracking 

 GP body pose estimation 

 Pictorial Structures 
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Image sources: Tomasz Svoboda, Deva Ramanan 
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Recap: Basic Pose Estimation Approaches 

• Global methods 

 Entire body configuration is treated as a point 

in some high-dimensional space. 

 Observations are also global feature vectors. 

 View of pose estimation as a high-dimensional  

regression problem. 

 Often in a subspace of “typical” motions... 
 

• Part-based methods 

 Body configuration is modeled as an assembly 

of movable parts with kinematic constraints. 

 Local search for part configurations that 

provide a good explanation for the observed 

appearance under the kinematic constraints. 

 View of pose estimation as probabilistic 
inference in a dynamic Graphical Model. 
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image sources: T. Jaeggli, D. Ramanan, T. Svoboda 

P
e
rc

e
p
tu

a
l 
a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

C
o

m
p

u
te

r 
V

is
io

n
 I
I,
 S

u
m

m
e

r’
1

4
 

Recap: Advantage of Silhouette Data 

• Synthetic training data generation possible! 

 Create sequences of „Pose + Silhouette“ pairs 

 Poses recorded with Mocap, used to animate 3D model 

 Silhouette via 3D rendering pipeline 
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Motion  

Capture 

3D Rendering 

Orientation () 

Pose Data (p) Silhouettes (s) 

Slide adapted from Stefan Gammeter 

vision.cse.psu.edu/courses/Tracking/vlpr12/lzhang_cvpr08global.pdf
vision.cse.psu.edu/courses/Tracking/vlpr12/lzhang_cvpr08global.pdf
vision.cse.psu.edu/courses/Tracking/vlpr12/lzhang_cvpr08global.pdf
vision.cse.psu.edu/courses/Tracking/vlpr12/lzhang_cvpr08global.pdf
vision.cse.psu.edu/courses/Tracking/vlpr12/lzhang_cvpr08global.pdf
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Recap: Latent Variable Models 

 

 

 

 

 

 

 
 

• Joint angle pose space is huge! 

 Only a small portion contains valid body poses. 

 Restrict estimation to the subspace of valid poses for the task 

 Latent variable models: PCA, FA, GPLVM, etc.  

119 
B. Leibe image source: R. Urtasun 
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Recap: Articulated Motion in Latent Space 

 

 

 

 

 

 

 
 

• Regression from latent space to 

 Pose    p(pose | z) 

 Silhouette  p(silhouette | z) 
 

• Regressors need to be learned from training data. 

120 
B. Leibe 

walking cycles have one 

main (periodic) DOF  

additional DOF encode 

„walking style“ 

Slide adapted from Stefan Gammeter 

P
e
rc

e
p
tu

a
l 
a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

C
o

m
p

u
te

r 
V

is
io

n
 I
I,
 S

u
m

m
e

r’
1

4
 

Recap: Learning a Generative Mapping 

121 

projection (BPCA)  

Learn dim. red. (LLE) 

reconstruct 
pose 

Body Pose 

Appearance 

X : Body Pose 

(high dim.) 

x : Body Pose 

(low dim.) 

Y : Image 

(high dim.) 

y : Appearance  

Descriptor: (low dim.) 

dynamic prior 

likelihood 

g
e
n
e
ra

ti
v
e
 m

a
p
p
in

g
 

Slide credit: Tobias Jaeggli 

T. Jaeggli,  E. Koller-Meier,  L. Van Gool,  "Learning Generative Models for 

Monocular Body Pose Estimation",  ACCV 2007. P
e
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Recap: Gaussian Process Regression 

• “Regular” regression: 

 

 

 

 

 

• GP regression: 
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B. Leibe 

x 

y f(x) 

x 

y 
μ (x) 

μ (x)+σ(x) 

μ (x)-σ(x) 

Slide credit: Stefan Gammeter 
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Recap: GP Prediction w/ Noisy Observations 

• Calculation of posterior: 

 Corresponds to conditioning the joint Gaussian prior distribution 

on the observations: 

 

 

 

 with: 

 

 

 
 

 This is the key result that defines Gaussian process regression! 

– The predictive distribution is a Gaussian whose mean and variance 

depend on the test points X* and on the kernel k(x,x’), evaluated 

on the training data X. 

123 
B. Leibe Slide credit: Bernt Schiele 

¹f? = E[f?jX;X?; t]
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124 

Recap: Articulated Multi-Person Tracking 

 

 

 

 

 

 

• Idea: Only perform articulated tracking where it’s easy! 

• Multi-person tracking  

 Solves hard data association problem 

• Articulated tracking  

 Only on individual “tracklets” between occlusions 

 GP regression on full-body pose 

1...N 

[Gammeter, Ess, Jaeggli, Schindler, Leibe, Van Gool, ECCV’08] 

ftp://ftp.vision.ee.ethz.ch/publications/proceedings/eth_biwi_00514.pdf
ftp://ftp.vision.ee.ethz.ch/publications/proceedings/eth_biwi_00514.pdf
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Outline of This Lecture 

• Single-Object Tracking 
 

• Bayesian Filtering 

 Kalman Filters, EKF 

 Particle Filters 
 

• Multi-Object Tracking 

 Data association 

 MHT 

 Network flow optimization 
 

• Articulated Tracking 

 GP body pose estimation 

 Pictorial Structures 

 
125 

Image sources: Tomasz Svoboda, Deva Ramanan 
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Recap: Pictorial Structures 

• Each body part one variable node 

 Torso, head, etc. (11 total) 
 

• Each variable represented as tupel 

 E.g., ytorso = (x,y,µ,s) with 

 (x,y) image coordinates 

 µ rotation of the part 

 s scale 
 

• Discretize label space y into L states 

 E.g., size of L for y = (x,y,µ,s) 

 L = 125 £ 125 £ 8 £ 4 ¼ 500’000 

 Efficient search needed to make this feasible! 
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B. Leibe 

P. Felzenszwalb, D. Huttenlocher,  Pictorial Structures for Object Recognition, 

IJCV, Vol. 61(1), 2005. 

Slide adapted from Bernt Schiele 
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Recap: Model Components 

• Body is represented as flexible combination of parts 
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B. Leibe 

posterior over body poses 

prior on body poses likelihood of observations 

Slide adapted from Bernt Schiele 
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Recap: Kinematic Tree Prior 

• Notation  

 (from [Andriluka et al., IJCV’12]) 

 Body configuration 

 
 

 Each body part:  li = (xi, yi, µi, si) 
 

• Prior 

 

 
 

 with p(l0) assumed uniform 

 with p(li | lj) modeled using a Gaussian in the  

transformed joint space 
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B. Leibe Slide credit: Bernt Schiele 
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Recap: Likelihood Model 

• Assumption 

 Evidence (image features) for each part  

independent of all other parts 

 

 

 

• Many variants proposed in the past 

 Based on rectangular fg regions 

 Based on color/edge models 

 Based on AdaBoost classifiers 

 ... 
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B. Leibe Slide credit: Bernt Schiele 
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Pictorial Structures 

• Potentials (= energies = factors) 

 Unaries for each body part (torso, head, ...) 

 Pairwise between connected body parts 
 

• Body pose estimation 

 Find most likely part location 

  Sum-product algorithm (marginals) 

 Find the best overall configuration 

  Max-sum algorithm (MAP estimate) 
 

• Complexity 

 Let k be the number of body parts (e.g., k =10) 

 L is the size of the label space (e.g., several 100k) 

 Max-sum algorithm in general: O(k L2) 

 For specific pairwise potentials: O(k L) 
130 

B. Leibe Slide adapted from Bernt Schiele 

http://cs.brown.edu/~pff/papers/blobrecJ.pdf
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Recap: Efficient Inference 

• Assume d to have quadratic form 

 

 

• Then 

 

 
 

 with the second term a generalized distance transform (gDT). 

 Algorithms exist to compute gDT efficiently. 
 

 Thus 

 

with 
 

 Finding the best part configuration can be done sequentially, 

rather than simultaneously! 
138 

B. Leibe Slide credit: Bernt Schiele 
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Recap: Example Part Model of Motorbikes 

• Model 

 2 parts (use both wheels), 

simple translation between 

them given by (x,y) position 

 

1. Part unaries (log prob) 

– m0(l0) and m1(l1) 

 

2. Distance transform of m1(l1) 

 

3. Simply find minimum of sum 

139 
B. Leibe Slide credit: Bernt Schiele Example from Dan Huttenlocher 
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Any Questions? 

 

 

 

 
 

So what can you do with all of this? 
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Robust Object Detection & Tracking 
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Mobile Tracking in Densely Populated Settings 

142 

[D. Mitzel, B. Leibe, ECCV’12] 

(Tracking based on stereo depth only, no detector verification) P
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Classifying Interactions with Objects 

143 
B. Leibe [T. Baumgartner, D. Mitzel, B. Leibe, CVPR’13] 
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Articulated Multi-Person Tracking 

 

 

 

 

 

 

 
 

• Multi-Person tracking 
 Recover trajectories and solve data association 

 

• Articulated Tracking 
 Estimate detailed body pose for each tracked person 

144 
[Gammeter, Ess, Jaeggli, Schindler, Leibe, Van Gool, ECCV’08] 
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Semantic 2D-3D Scene Segmentation 

145 
B. Leibe [G. Floros, B. Leibe, CVPR’12] 
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Integrated 3D Point Cloud Labels 

146 
B. Leibe [G. Floros, B. Leibe, CVPR’12] 
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Any More Questions? 

 

 

 

 
 

Good luck for the exam! 
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