Computer Vision II - Lecture 15

Repetition

15.07.2014

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de

- Exams
, Proposed dates
29./30.07.
22./23.09.

Please enter your preferences in the Doodle poll I sent around
If none of the dates work for you, please contact me.

- Exam Procedure

Oral exams
, Duration 30min
, I will give you 4 questions and expect you to answer 3 of them.

Announcements (2)

- Lecture Evaluation

Please fill out the forms...

Announcements (3)

- Today, I'll summarize the most important points from the lecture.
. It is an opportunity for you to ask questions...
. ...or get additional explanations about certain topics.
, So, please do ask.
- Today's slides are intended as an index for the lecture.
, But they are not complete, won't be sufficient as only tool.
, Also look at the exercises - they often explain algorithms in detail.

Course Outline

- Single-Object Tracking
, Background modeling
- Template based tracking

Color based tracking
, Contour based tracking
, Tracking by online classification

- Tracking-by-detection
- Bayesian Filtering
- Multi-Object Tracking
- Articulated Tracking

Recap: MoG Background Model

- Improved statistical model

Large jumps between different pixel values because different objects are projected onto the same pixel at different times.
While the same object is projected onto the pixel, small local intensity variations due to Gaussian noise.

- Idea
- Model the color distribution of each pixel by a mixture of K Gaussians

$$
p(\mathbf{x})=\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

Evaluate likelihoods of observed pixel values under this model.
Or let entire Gaussian components adapt to foreground objects and classify components as belonging to object or background.

- Idea
, Model the distribution of each pixel by a mixture of K Gaussians

$$
p(\mathbf{x})=\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right) \quad \text { where } \quad \boldsymbol{\Sigma}_{k}=\sigma_{k}^{2} \mathbf{I}
$$

, Check every new pixel value against the existing K components until a match is found (pixel value within $2.5 \sigma_{k}$ of μ_{k}).
If a match is found, adapt the corresponding component.
, Else, replace the least probable component by a distribution with the new value as its mean and an initially high variance and low prior weight.
, Order the components by the value of w_{k} / σ_{k} and select the best B components as the background model, where

$$
B=\arg \min _{b}\left(\sum_{k=1}^{b} \frac{w_{k}}{\sigma_{k}}>T\right)
$$

Recap: Stauffer-Grimson Background Model

TRNIHAMEHE UNIVERSTT

Recap: Kernel Background Modeling

- Nonparametric density estimation
, Estimate a pixel's background distribution using the kernel density estimator $K(\cdot)$ as

$$
p\left(\mathbf{x}^{(t)}\right)=\frac{1}{N} \sum_{i=1}^{N} K\left(\mathbf{x}^{(t)}-\mathbf{x}^{(i)}\right)
$$

Choose K to be a Gaussian $\mathcal{N}(0, \boldsymbol{\Sigma})$ with $\boldsymbol{\Sigma}=\operatorname{diag}\left\{\sigma_{j}\right\}$. Then

$$
p\left(\mathbf{x}^{(t)}\right)=\frac{1}{N} \sum_{i=1}^{N} \prod_{j=1}^{d} \frac{1}{\sqrt{2 \pi \sigma_{j}^{2}}} e^{-\frac{1}{2} \frac{\left(x_{j}^{(t)}-x_{i}^{(i)}\right)^{2}}{\sigma_{j}^{2}}}
$$

- A pixel is considered foreground if $p\left(\mathbf{x}^{(t)}\right)<\theta$ for a threshold θ.

This can be computed very fast using lookup tables for the kernel function values, since all inputs are discrete values. Additional speedup: partial evaluation of the sum usually sufficient

Recap: Lucas-Kanade Optical Flow

- Use all pixels in a $K \times K$ window to get more equations.
- Least squares problem:
\(\left[$$
\begin{array}{cc}I_{x}\left(\mathbf{p}_{1}\right) & I_{y}\left(\mathbf{p}_{1}\right) \\
I_{x}\left(\mathbf{p}_{2}\right) & I_{y}\left(\mathbf{p}_{2}\right) \\
\vdots & \vdots \\
I_{x}\left(\mathbf{p}_{25}\right) & I_{y}\left(\mathbf{p}_{25}\right)\end{array}
$$\right]\left[$$
\begin{array}{l}u \\
v\end{array}
$$\right]=-\left[\begin{array}{c}I_{t}\left(\mathbf{p}_{1}\right)

I_{t}\left(\mathbf{p}_{2}\right)

\vdots

I_{t}\left(\mathbf{p}_{25}\right)\end{array}\right]\)| A | $d=b$ |
| :---: | :---: |
| 25×2 | 2×1 |

- Minimum least squares solution given by solution of

- Idea

Find good features using eigenvalues of second-moment matrix
Key idea: "good" features to track are the ones that can be tracked reliably.

- Frame-to-frame tracking

Track with LK and a pure translation motion model. More robust for small displacements, can be estimated from smaller neighborhoods (e.g., 5×5 pixels).

- Checking consistency of tracks

Affine registration to the first observed feature instance. Affine model is more accurate for larger displacements. Comparing to the first frame helps to minimize drift.

RWIH UNVERSIT

Recap: General LK Image Registration

- Goal
- Find the warping parameters p that minimize the sum-ofsquares intensity difference between the template image $T(\mathbf{x})$ and the warped input image $I(\mathbf{W}(\mathbf{x} ; \mathbf{p}))$.
- LK formulation
, Formulate this as an optimization problem

$$
\arg \min _{\mathbf{p}} \sum_{\mathbf{x}}[I(\mathbf{W}(\mathbf{x} ; \mathbf{p}))-T(\mathbf{x})]^{2}
$$

, We assume that an initial estimate of \mathbf{p} is known and iteratively solve for increments to the parameters $\Delta \mathrm{p}$:

$$
\arg \min _{\Delta \mathbf{p}} \sum_{\mathbf{x}}[I(\mathbf{W}(\mathbf{x} ; \mathbf{p}+\Delta \mathbf{p}))-T(\mathbf{x})]^{2}
$$

	Recap: General LK Algorithm - Iterate , Warp I to obtain $I(\mathbf{W}([x, y] ; \mathbf{p}))$, Compute the error image $T([x, y])-I(\mathbf{W}([x, y] ; \mathbf{p}))$, Warp the gradient ∇I with $\mathbf{W}([x, y] ; \mathbf{p})$, Evaluate $\frac{\partial \mathbf{W}}{\partial \mathbf{p}}$ at $([x, y] ; \mathbf{p}) \quad$ (Jacobian) , Compute steepest descent images $\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}}$ - Compute Hessian matrix $\mathbf{H}=\sum_{\mathbf{x}}\left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}}\right]^{T}\left[\nabla I \frac{\partial \mathbf{W}}{\partial_{\mathbf{p}}}\right]$, Compute $\quad \sum_{\mathbf{x}}\left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}}\right]^{T}[T([x, y])-I(\mathbf{W}([x, y] ; \mathbf{p}))]$, Compute $\Delta \mathbf{p}=\mathbf{H}^{-1} \sum_{\mathbf{x}}\left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}}\right]^{T}[T([x, y])-I(\mathbf{W}([x, y] ; \mathbf{p}))]$, Update the parameters $\mathbf{p} \leftarrow \mathbf{p}+\Delta \mathbf{p}$ - Until $\Delta \mathbf{p}$ magnitude is negligible

Course Outline

- Single-Object Tracking
- Background modeling
, Template based tracking
- Color based tracking
- Contour based tracking
- Tracking by online classification
- Tracking-by-detection
- Bayesian Filtering
- Multi-Object Tracking
- Articulated Tracking

Mean-Shift on Weight Images

- Ideal case

Want an indicator function that returns 1 for pixels on the tracked object and 0 for all other pixels.

- Instead
- Compute likelihood maps
- Value at a pixel is proportional to the likelihood that the pixel comes from the tracked object.
- Likelihood can be based on

. Color
- Texture
, Shape (boundary)
- Predicted location

RWIHAACHET

Recap: Mean-Shift Tracking

- Mean-Shift finds the mode of an explicit likelihood image

RWIHAALEIET UNVERSITY

Recap: Explicit Weight Images

- Histogram backprojection
- Histogram is an empirical estimate of $p($ color \mid object $)=p(c \mid o)$
- Bayes' rule says: $p(o \mid c)=\frac{p(c \mid o) p(o)}{p(c)}$
- Simplistic approximation: assume $p(o) / p(c)$ is constant.
\Rightarrow Use histogram h as a lookup table to set pixel values in the weight image.
, If pixel maps to histogram bucket i, set weight for pixel to $h(i)$.
Slidecredit: Robert Collins B. Leibe Image source: Gary Brads 30

Recap: Scale Adaptation in CAMshift

Mean shift window initialization

RwIHALETE UNVERSTI

Recap: Comaniciu's Mean-Shift

- Color histogram representation

$$
\begin{array}{rll}
\text { target model: } & \hat{\mathbf{q}}=\left\{\hat{q}_{u}\right\}_{u=1 \ldots m} & \sum_{u=1}^{m} \hat{q}_{u}=1 \\
\text { rget candidate: } & \hat{\mathbf{p}}(\mathbf{y})=\left\{\hat{p}_{u}(\mathbf{y})\right\}_{u=1 \ldots m} & \sum_{u=1}^{m} \hat{p}_{u}=1
\end{array}
$$

- Measuring distances between histograms

Distance as a function of window location y

$$
d(\mathbf{y})=\sqrt{1-\rho[\hat{\mathbf{p}}(\mathbf{y}), \hat{\mathbf{q}}]}
$$

, where $\hat{\rho}(\mathbf{y})$ is the Bhattacharyya coefficient

$$
\hat{\rho}(\mathbf{y}) \equiv \rho[\hat{\mathbf{p}}(\mathbf{y}), \hat{\mathbf{q}}]=\sum_{u=1}^{m} \sqrt{\hat{p}_{u}(\mathbf{y}) \hat{q}_{u}},
$$

, Distance as a function of wh
 $\vec{p}(y)=\left\{p_{u}(y)\right\}_{u=1 m} \quad \sum p_{u}=$

Similarity $f(y)=f[\vec{q}, \vec{p}(y)]$

Recap: Comaniciu's Mean-Shift

- Compute histograms via Parzen estimation

$$
\begin{aligned}
\hat{q}_{u} & =C \sum_{i=1}^{n} k\left(\left\|\mathbf{x}_{i}^{\star}\right\|^{2}\right) \delta\left[b\left(\mathbf{x}_{i}^{\star}\right)-u\right], \\
\hat{p}_{u}(\mathbf{y}) & =C_{h} \sum_{i=1}^{n_{k}} k\left(\left\|\frac{\mathbf{y}-\mathbf{x}_{i}}{h}\right\|^{2}\right) \delta\left[b\left(\mathbf{x}_{i}\right)-u\right],
\end{aligned}
$$

where $k(\cdot)$ is some radially symmetric smoothing kernel profile, \mathbf{x}_{i} is the pixel at location i, and $b\left(\mathbf{x}_{i}\right)$ is the index of its bin in the quantized feature space.

- Consequence of this formulation

Gathers a histogram over a neighborhood
Also allows interpolation of histograms centered around an off-lattice location.
Slide credit: Robert Collins B. Leibe

Recap: Result of Taylor Expansion

- Simple update procedure: At each iteration, perform

$$
\hat{\mathbf{y}}_{1}=\frac{\sum_{i=1}^{n_{h}} \mathbf{x}_{i} w_{i} g\left(\left\|\frac{\hat{\mathbf{y}}_{0}-\mathbf{x}_{i}}{h}\right\|^{2}\right)}{\sum_{i=1}^{n_{h}} w_{i} g\left(\left\|\frac{\hat{\mathbf{y}}_{0}-\mathbf{x}_{i}}{h}\right\|^{2}\right)} \text { where } g(x)=-k^{\prime}(x)
$$

which is just standard mean-shift on (implicit) weight image w_{i}.
, Let's look at the weight image more closely. For each pixel \mathbf{x}_{i}

$$
w_{i}=\sum_{u=1}^{m} \sqrt{\frac{\hat{q}_{u}}{\hat{p}_{u}\left(\hat{\mathbf{y}}_{0}\right)} \delta\left[b\left(\mathbf{x}_{i}\right)-u\right] .} \begin{gathered}
\begin{array}{c}
\text { This is only } 1 \\
\text { once in the } \\
\text { summation }
\end{array}
\end{gathered}
$$

\Rightarrow If pixel \mathbf{x}_{i} 's value maps to histogram bucket B, then

$$
w_{i}=\sqrt{q_{B} / p_{B}\left(\mathbf{y}_{0}\right)}
$$

Course Outline

RWIHAACEFIT UNNERSTY

- Single-Object Tracking
, Background modeling
- Template based tracking

Color based tracking

- Contour based tracking
- Tracking by online classification

Tracking-by-detection

- Bayesian Filtering
- Multi-Object Tracking
- Articulated Tracking

RNMHAAGHE

Recap: Energy Function

- Definition

Total energy (cost) of the current snake

$$
E_{\text {total }}=E_{\text {internal }}+E_{\text {external }}
$$

- Internal energy

Encourage prior shape preferences: e.g., smoothness, elasticity, particular known shape.

- External energy
- Encourage contour to fit on places where image structures exist, e.g., edges.
\Rightarrow Good fit between current deformable contour and target shape in the image will yield a low value for this cost function.

Recap: Energy Formulation

- Total energy

$$
E_{\text {total }}=E_{\text {internal }}+\widehat{E_{\text {external }}}
$$

, with the component terms

$$
\begin{aligned}
& E_{\text {external }}=-\sum_{i=0}^{n-1}\left|G_{x}\left(x_{i}, y_{i}\right)\right|^{2}+\left|G_{y}\left(x_{i}, y_{i}\right)\right|^{2} \\
& \left.E_{\text {internal }}=\sum_{i=0}^{n-1} \bigcap\left(\bar{d}-\left\|v_{i+1}-v_{i}\right\|\right)^{2}+\Omega\right)\left\|v_{i+1}-2 v_{i}+v_{i-1}\right\|^{2}
\end{aligned}
$$

Behavior can be controlled by adapting the weights α, β, γ.
\qquad

Recap: Extension with Shape Priors

- Shape priors

If object is some smooth variation on a known shape, we can use a term that will penalize deviation from that shape:

$$
E_{\text {internal }}+=\alpha \cdot \sum_{i=0}^{n-1}\left(v_{i}-\hat{v}_{i}\right)^{2}
$$

where $\left\{\hat{v}_{i}\right\}$ are the points of the known shape.

Recap: Energy Min. by Dynamic Programming

- Dynamic Programming solution
- Limit possible moves to neighboring pixels (discrete states).
- Find the best joint move of all points using Viterbi algorithm.

Iterate until optimal position for each point is the center of the box, i.e., the snake is optimal in the local search space constrained by boxes.
Slidecredit: KristenGrauman [Amini, Weymouth, Jain, 1990]_ Figure source: Yuri Borko

Recap: Greedy Energy Minimization

- Greedy optimization

For each point, search window around it and move to where energy function is minimal.
Typical window size, e.g., 5×5 pixels

- Stopping criterion
, Stop when predefined number of points have not changed in last iteration, or after max number of iterations.
- Note:
, Local optimization - need decent initialization!
- Convergence not guaranteed

RWIHAACHET
UNVERSIT

Recap: Tracking as Online Classification

- Tracking as binary classification problem
object
vs.
background

Recap: AdaBoost - Algorithm

1. Initialization: Set $w_{n}^{(1)}=\frac{1}{N}$ for $n=1, \ldots, N$.
2. For $m=1, \ldots, M$ iterations
a) Train a new weak classifier $h_{m}(\mathbf{x})$ using the current weighting coefficients $\mathbf{W}^{(m)}$ by minimizing the weighted error function

$$
J_{m}=\sum_{n=1}^{N} w_{n}^{(m)} I\left(h_{m}(\mathbf{x}) \neq t_{n}\right) \quad I(A)= \begin{cases}1, & \text { if } A \text { is tru } \\ 0, & \text { else }\end{cases}
$$

b) Estimate the weighted error of this classifier on \mathbf{X} :

$$
\epsilon_{m}=\frac{\sum_{n=1}^{N} w_{n}^{(m)} I\left(h_{m}(\mathbf{x}) \neq t_{n}\right)}{\sum_{n=1}^{N} w_{n}^{(m)}}
$$

c) Calculate a weighting coefficient for $h_{m}(\mathbf{x})$:

$$
\alpha_{m}=\ln \left\{\frac{1-\epsilon_{m}}{\epsilon_{m}}\right\}
$$

d) Update the weighting coefficients:

$$
w_{n}^{(m+1)}=w_{n}^{(m)} \exp \left\{\alpha_{m} I\left(h_{m}\left(\mathbf{x}_{n}\right) \neq t_{n}\right)\right\}
$$

Recap: From Offline to Online Boosting
 - Main issue
 - Computing the weight distribution for the samples.
 We do not know a priori the difficulty of a sample!
 (Could already have seen the same sample before...)

- Idea of Online Boosting
. Estimate the importance of a sample by propagating it through a set of weak classifiers.
This can be thought of as modeling the information gain w.r.t. the first n classifiers and code it by the importance weight λ for the $n+1$ classifier.
Proven [Oza]: Given the same training set, Online Boosting converges to the same weak classifiers as Offline Boosting in the limit of $N \rightarrow \infty$ iterations.
N. Oza and S. Russell. Online Bagging and Boosting.

Artificial Intelligence and Statistics, 2001.

RWाH सakill

NVBSI
Recap: From Offline to Online Boosting

Given:

- set of labeled training samples $\mathcal{X}=\left\{\left\langle\mathbf{x}_{1}, y_{1}\right\rangle, \ldots,\left\langle\mathbf{x}_{\mathbf{L}}, y_{L}\right\rangle \mid y_{i} \pm 1\right\}$
- weight distribution over them
$D_{0}=1 / L$
for $\mathrm{n}=1$ to N
- train a weak classifier using
samples and weight dist.
$h_{n}^{\text {weak }}(\mathrm{x})=\mathcal{L}\left(\mathcal{X}, D_{n-1}\right)$
- calculate error e_{n}
- calculate weight $\alpha_{n}=f\left(e_{n}\right)$
- update weight dist. D_{n}
next
$h^{\text {strong }}(\mathrm{x})=\operatorname{sign}\left(\sum_{n=1}^{N} \alpha_{n} \cdot h_{n}^{\text {weak }}(\mathrm{x})\right)$
on-line
Given:
- ONE labeled training sample $\langle\mathbf{x}, y\rangle \mid y \pm 1$
- strong classifier to update
- initial importance $\lambda=1$
for $\mathrm{n}=1$ to N
- update the weak classifier using
samples and importance
$h_{n}^{\text {weak }}(\mathrm{x})=\mathcal{L}\left(h_{n}^{\text {weak }},\langle x, y\rangle, \lambda\right)$ - update error estimation \tilde{e}_{n}
- update weight $\alpha_{n}=f\left(\ddot{e}_{n}\right)$ - update importance weight λ
next
$h^{\text {strong }}(\mathrm{x})=\operatorname{sign}\left(\sum_{n=1}^{N} \alpha_{n} \cdot h_{n}^{\text {weak }}(\mathrm{x})\right)$
B. Leibe

Recap: Self-Learning and Drift

- Drift
- Major problem in all adaptive or self-learning trackers.
, Difficulty: distinguish "allowed" appearance changes due to lighting or viewpoint variation from "unwanted" appearance change due to drifting.
Cannot be decided based on the tracker confidence!
- Several approaches to address this
, Comparison with initialization
- Semi-supervised learning (additional data)

RHENRT
WhyyMy TIUW, DTV
 Tracked Patches

, Additional information sources

Elements of Tracking

Detection

Data association

Prediction

- Detection

Where are candidate objects?

- Data association

Which detection corresponds to which object?

- Prediction

Where will the tracked object be in the next time step?

Recap: Object Detector Design

- In practice, the classifier often determines the design.
- Types of features
- Speedup strategies
- We've looked at 2 state-of-the-art detector designs
- Based on SVMs
\rightarrow HOG, DPM detectors

Based on Boosting
\rightarrow Viola-Jones, VeryFast, Roerei detectors
Based on Random Forests
\rightarrow (Cut due to time constraints...)

B. Leibe

RWIHAALSHET

Recap: Integral Channel Features

- Generalization of Haar Wavelet idea from Viola-Jones
- Instead of only considering intensities, also take into account other feature channels (gradient orientations, color, texture).
Still efficiently represented as integral images.
P. Dollar, Z. Tu, P. Perona, S. Belongie. Integral Channel Features, BMVC'09.

RWIHAACHEI Recap: Integral Channel Features

- Generalize also block computation
$1^{\text {st }}$ order features:
Sum of pixels in rectangular region.
- $2^{\text {nd }}$-order features:

Haar-like difference of sum-over-blocks

- Generalized Haar:

More complex combinations of weighted rectangles
, Histograms
Computed by evaluating local sums on quantized images.

Recap: VeryFast Detector

- Idea 1: Invert the template scale vs. image scale relation

R. Benenson, M. Mathias, R. Timofte, L. Van Gool. Pedestrian Detection at 100 Frames per Second, CVPR' 12.

Recap: VeryFast Detector

- Idea 2: Reduce training time by feature interpolation

- Shown to be possible for Integral Channel features
P. Dollár, S. Belongie, Perona. The Fastest Pedestrian Detector in the West, BMVC 2010.

- Ensemble of short trees, learned by AdaBoost

Course Outline

RWIH ALEHE
UNWERSTT

- Single-Object Tracking
, Background modeling
, Template based tracking
, Color based tracking
, Contour based tracking
- Tracking by online classification
, Tracking-by-detection
- Bayesian Filtering
, Kalman filter
, Particle filter

- Multi-Object Tracking
- Articulated Tracking

Slide credit: Rodrion Renenson_ B. Leibe

Recap: Tracking as Inference

- Inference problem

The hidden state consists of the true parameters we care about, denoted X .

The measurement is our noisy observation that results from the underlying state, denoted Y.
At each time step, state changes (from X_{t-1} to X_{t}) and we get a new observation \mathbf{Y}_{t}.

- Our goal: recover most likely state \mathbf{X}_{t} given All observations seen so far.
Knowledge about dynamics of state transitions.

Recap: Prediction and Correction

- Prediction:

$$
P\left(X_{t} \mid y_{0}, \ldots, y_{t-1}\right)=\int \underbrace{P\left(X_{t} \mid X_{t-1}\right)}_{\begin{array}{c}
\text { Dynamics } \\
\text { model }
\end{array}} \underbrace{P\left(X_{t-1} \mid y_{0}, \ldots, y_{t-1}\right)}_{\begin{array}{c}
\text { Corrected estimate } \\
\text { from previous step }
\end{array}} d X_{t-1}
$$

- Correction:

$$
\begin{array}{cc}
\text { Observation } & \text { Predicted } \\
\text { model } & \text { estimate }
\end{array}
$$

$$
P\left(X_{t} \mid y_{0}, \ldots, y_{t}\right)=\frac{P\left(y_{t} \mid X_{t}\right) P\left(X_{t} \mid y_{0}, \ldots, y_{t-1}\right)}{\int P\left(y_{t} \mid X_{t}\right) P\left(X_{t} \mid y_{0}, \ldots, y_{t-1}\right) d X_{t}}
$$

Recap: Tracking as Induction

- Base case:
. Assume we have initial prior that predicts state in absence of any evidence: $P\left(\mathbf{X}_{0}\right)$
, At the first frame, correct this given the value of $\mathbf{Y}_{0}=\mathbf{y}_{\text {o }}$
- Given corrected estimate for frame t :
, Predict for frame $t+1$
- Correct for frame $t+1$

RWIH UNMERSTY

Recap: Linear Dynamic Models

- Dynamics model

State undergoes linear tranformation D_{t} plus Gaussian noise

$$
\boldsymbol{x}_{t} \sim N\left(\boldsymbol{D}_{t} \boldsymbol{x}_{t-1}, \Sigma_{d_{t}}\right)
$$

- Observation model

Measurement is linearly transformed state plus Gaussian noise

$$
\boldsymbol{y}_{t} \sim N\left(\boldsymbol{M}_{t} \boldsymbol{x}_{t}, \Sigma_{m_{t}}\right)
$$

Recap: Constant Velocity Model (1D)

- State vector: position p and velocity v

$$
\left.\begin{array}{c}
x_{t}=\left[\begin{array}{c}
p_{t} \\
v_{t}
\end{array}\right] \quad \begin{array}{l}
p_{t}=p_{t-1}+(\Delta t) v_{t-1}+\varepsilon \\
v_{t}=v_{t-1}+\xi
\end{array} \\
x_{t}=D_{t} x_{t-1}+\text { noise }=\left[\begin{array}{cc}
1 & \Delta t \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
\text { (greek letters } \\
\text { denote noise } \\
\text { terms) }
\end{array}\right. \\
p_{t-1} \\
v_{t-1}
\end{array}\right]+ \text { noise } \quad .
$$

- Measurement is position only

$$
y_{t}=M x_{t}+\text { noise }=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{l}
p_{t} \\
v_{t}
\end{array}\right]+\text { noise }
$$

Recap: Constant Acceleration Model (1D)		
	- State vector: position p, velocity v, and acceleration a.	
	$x_{t}=\left[\begin{array}{l}p_{t} \\ v_{t} \\ a_{t}\end{array}\right] \begin{aligned} & p_{t}=p_{t-1}+(\Delta t) v_{t-1}+\varepsilon \\ & v_{t}=v_{t-1}+(\Delta t) a_{t-1}+\xi \\ & a_{t}=a_{t-1}+\zeta\end{aligned}$	(greek letters denote noise terms)
	$x_{t}=D_{t} x_{t-1}+\text { noise }=\left[\begin{array}{ccc} 1 & \Delta t & 0 \\ 0 & 1 & \Delta t \\ 0 & 0 & 1 \end{array}\right]\left[\begin{array}{l} p_{t-1} \\ v_{t-1} \\ t_{t-1} \end{array}\right]+\text { noise }$	
	- Measurement is position only	
	$y_{t}=M x_{t}+$ noise $=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]\left[\begin{array}{c}p_{t} \\ v_{t} \\ a_{t}\end{array}\right]+$ noise	

Recap: General Motion Models

- Assuming we have differential equations for the motion E.g. for (undampened) periodic motion of a spring

$$
\frac{d^{2} p}{d t^{2}}=-p
$$

- Substitute variables to transform this into linear system

$$
p_{1}=p \quad p_{2}=\frac{d p}{d t} \quad p_{3}=\frac{d^{2} p}{d t^{2}}
$$

- Then we have

$$
x_{t}=\left[\begin{array}{l}
p_{1, t} \\
p_{2, t} \\
p_{3, t}
\end{array}\right] \quad \begin{aligned}
& p_{1, t}=p_{1, t-1}+(\Delta t) p_{2, t-1}+\varepsilon \\
& p_{2, t}=p_{2, t-1}+(\Delta t) p_{3, t-1}+\xi \\
& p_{3, t}=-p_{1, t-1}+\zeta
\end{aligned} \quad D_{t}=\left[\begin{array}{ccc}
1 & \Delta t & 0 \\
0 & 1 & \Delta t \\
-1 & 0 & 0
\end{array}\right]
$$

Recap: Kalman Filter

- Algorithm summary
, Assumption: linear model

$$
\begin{aligned}
& \mathbf{x}_{t}=\mathbf{D}_{t} \mathbf{x}_{t-1}+\varepsilon_{t} \\
& \mathbf{y}_{t}=\mathbf{M}_{t} \mathbf{x}_{t}+\delta_{t}
\end{aligned}
$$

, Prediction step

$$
\begin{aligned}
\mathbf{x}_{t}^{-} & =\mathbf{D}_{t} \mathbf{x}_{t-1}^{+} \\
\boldsymbol{\Sigma}_{t}^{-} & =\mathbf{D}_{t} \boldsymbol{\Sigma}_{t-1}^{+} \mathbf{D}_{t}^{T}+\boldsymbol{\Sigma}_{d_{t}}
\end{aligned}
$$

- Correction step

$$
\begin{aligned}
\mathbf{K}_{t} & =\boldsymbol{\Sigma}_{t}^{-} \mathbf{M}_{t}^{T}\left(\mathbf{M}_{t} \boldsymbol{\Sigma}_{t}^{-} \mathbf{M}_{t}^{T}+\boldsymbol{\Sigma}_{m_{t}}\right)^{-1} \\
\mathbf{x}_{t}^{+} & =\mathbf{x}_{t}^{-}+\mathbf{K}_{t}\left(\mathbf{y}_{t}-\mathbf{M}_{t} \mathbf{x}_{t}^{-}\right) \\
\boldsymbol{\Sigma}_{t}^{+} & =\left(\mathbf{I}-\mathbf{K}_{t} \mathbf{M}_{t}\right) \boldsymbol{\Sigma}_{t}^{-}
\end{aligned}
$$

Recap: Factored Sampling

- Idea: Represent state distribution non-parametrically
- Prediction: Sample points from prior density for the state, $P(X)$
- Correction: Weight the samples according to $P(Y \mid X)$

$$
P\left(X_{t} \mid y_{0}, \ldots, y_{t}\right)=\frac{P\left(y_{t} \mid X_{t}\right) P\left(X_{t} \mid y_{0}, \ldots, y_{t-1}\right)}{\int P\left(y_{t} \mid X_{t}\right) P\left(X_{t} \mid y_{0}, \ldots, y_{t-1}\right) d X_{t}}
$$

Recap: Particle Filtering

- Many variations, one general concept:

Represent the posterior pdf by a set of randomly chosen weighted samples (particles)

Randomly Chosen $=$ Monte Carlo (MC)
As the number of samples become very large - the characterization becomes an equivalent representation of the true pdf.

Recap: Sequential Importance Sampling

$$
\begin{aligned}
& \text { function }\left[\left\{\mathbf{x}_{t}^{i}, w_{t}^{i}\right\}_{i=1}^{N}\right]=S I S\left[\left\{\mathbf{x}_{t-1}^{i}, w_{t-1}^{i}\right\}_{i=1}^{N}, \mathbf{y}_{t}\right] \\
& \eta=0 \quad \text { Initialize } \\
& \text { for } i=1: N \\
& \mathbf{x}_{t}^{i} \sim q\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}^{i}, \mathbf{y}_{t}\right) \quad \text { Sample from proposal pdf } \\
& \begin{array}{l}
w_{t}^{i}=w_{t-1}^{i} \frac{p\left(\mathbf{y}_{t} \mid \mathbf{x}_{t}^{i}\right) p\left(\mathbf{x}_{t}^{i} \mid \mathbf{x}_{t-1}^{i}\right)}{q\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}^{i}, \mathbf{Y}_{t}\right)} \\
\eta=\eta+w_{t}^{i}
\end{array} \\
& \text { Update weights } \\
& \text { Update norm. factor } \\
& \text { importance density } q(. \mid \text {.)! } \\
& w_{l}^{i}=w_{i}^{i} / \eta \\
& \text { Normalize weights }
\end{aligned}
$$

Initialize
for $i=1: N$
$\mathbf{x}_{t}^{i} \sim q\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}^{i}, \mathbf{y}_{t}\right) \quad$ Sample from proposal pdf
$w_{t}^{i}=w_{t-1}^{i} \frac{p\left(\mathbf{y}_{t} \mid \mathbf{x}_{t}^{i}\right) p\left(\mathbf{x}_{t}^{i} \mid \mathbf{x}_{t-1}^{i}\right)}{q\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}^{i}, \mathbf{y}_{t}\right) \quad \quad \text { Update weights }}$
$\eta=\eta+w_{i}^{i} \quad$ Update norm. factor
end
for $i=1: N$
$w_{l}^{i}=w_{l}^{i} / \eta \quad$ Normalize weights
end

	B. Leibe	86

${ }^{86}$

Recap: Resampling

- Degeneracy problem with SIS

After a few iterations, most particles have negligible weights.
Large computational effort for updating particles with very small contribution to $p\left(\mathbf{x}_{t} \mid \mathbf{y}_{\text {l.t }}\right)$.

- Idea: Resampling

Eliminate particles with low importance weights and increase the number of particles with high importance weight.

$$
\left\{\mathbf{x}_{t}^{i}, w_{t}^{i}\right\}_{i=1}^{N} \rightarrow\left\{\mathbf{x}_{t}^{i *}, \frac{1}{N}\right\}_{i=1}^{N}
$$

The new set is generated by sampling with replacement from the discrete representation of $p\left(\mathbf{x}_{t} \mid \mathbf{y}_{1: t}\right)$ such that

$$
\operatorname{Pr}\left\{\mathbf{x}_{t}^{i *}=\mathbf{x}_{t}^{j}\right\}=w_{t}^{j}
$$

Recap: Generic Particle Filter

$$
\begin{aligned}
& \text { function }\left[\left\{\mathbf{x}_{t}^{i}, w_{t}^{i}\right\}_{i=1}^{N}\right]=P F\left[\left\{\mathbf{x}_{t-1}^{i}, w_{t-1}^{i}\right\}_{i=1}^{N}, \mathbf{y}_{t}\right] \\
& \text { Apply SIS filtering }\left[\left\{\mathbf{x}_{t}^{i}, w_{t}^{i}\right\}_{i=1}^{N}\right]=S I S\left[\left\{\mathbf{x}_{t-1}^{i}, w_{t-1}^{i}\right\}_{i=1}^{N}, \mathbf{y}_{t}\right] \\
& \text { Calculate } N_{e f f}=\frac{1}{\sum_{i=1}^{N}\left(w_{t}^{i}\right)^{2}} \\
& \text { if } N_{\text {eff }}<N_{t h r} \\
& \qquad\left\{\left\{\mathbf{x}_{t}^{i}, w_{t}^{i}\right\}_{i=1}^{N}\right]=\text { RESAMPLE }\left[\left\{\mathbf{x}_{t}^{i}, w_{t}^{i}\right\}_{i=1}^{N}\right]
\end{aligned}
$$

end

- We can also apply resampling selectively
, Only resample when it is needed, i.e., $N_{e f f}$ is too low.
\Rightarrow Avoids drift when there the tracked state is stationary.

Outline of This Lecture

- Single-Object Tracking
- Bayesian Filtering

Kalman Filters, EKF
Particle Filters

- Multi-Object Tracking
, Data association
, MHT
, Network flow optimization

- Articulated Tracking
, GP body pose estimation
, Pictorial Structures

Recap: Motion Correspondence Ambiguities

1. Predictions may not be supported by measurements - Have the objects ceased to exist, or are they simply occluded?
2. There may be unexpected measurements

Newly visible objects, or just noise?
3. More than one measurement may match a prediction Which measurement is the correct one (what about the others)?
4. A measurement may match to multiple predictions Which object shall the measurement be assigned to?

Recap: Reducing Ambiguities

- Gating

Only consider measurements within a certain area around the predicted location.
\Rightarrow Large gain in efficiency, since only a small
 region needs to be searched

- Nearest-Neighbor Filter
. Among the candidates in the gating region, only take the one closest to the prediction \mathbf{x}_{p} $z_{l}^{(k)}=\arg \min _{j}\left(\mathbf{x}_{p, l}^{(k)}-\mathbf{y}_{j}^{(k)}\right)^{T}\left(\mathbf{x}_{p, l}^{(k)}-\mathbf{y}_{j}^{(k)}\right)$

Better: the one most likely under a Gaussian prediction model

$$
z_{l}^{(k)}=\arg \max _{j} \mathcal{N}\left(\mathbf{y}_{j}^{(k)} ; \mathbf{x}_{p, l}^{(k)}, \mathbf{\Sigma}_{p, l}^{(k)}\right)
$$

which is equivalent to taking the Mahalanobis distance

$$
z_{l}=\arg \min _{j}\left(\mathbf{x}_{p, l}-\mathbf{y}_{j}\right)^{T} \boldsymbol{\Sigma}_{p, l}^{-1}\left(\mathbf{x}_{p, l}-\mathbf{y}_{j}\right)
$$

Recap: Track-Splitting Filter

- Idea

Instead of assigning the measurement that is currently closest, as in the NN algorithm, select the sequence of measurements that minimizes the total Mahalanobis distance over some interva!!

Form a track tree for the different association decisions
Modified log-likelihood provides the merit of a particular node in the track tree.
Cost of calculating this is low, since most terms are needed anyway for the Kalman filter.

- Problem

The track tree grows exponentially, may generate a very large number of possible tracks that need to be maintained.

RWIHAMCHE

Recap: Pruning Strategies

- In order to keep this feasible, need to apply pruning

Deleting unlikely tracks May be accomplished by comparing the modified log-likelihood $\lambda(k)$, which has a χ^{2} distribution with $k n_{z}$ degrees of freedom, with a threshold α (set according to χ^{2} distribution tables). Problem for long tracks: modified log-likelihood gets dominated by old terms and responds very slowly to new ones.
\Rightarrow Use sliding window or exponential decay term.

- Merging track nodes

If the state estimates of two track nodes are similar, merge them. E.g., if both tracks validate identical subsequent measurements.

Only keeping the most likely N tracks
Rank tracks based on their modified log-likelihood.

Outline of This Lecture

- Single-Object Tracking
- Bayesian Filtering

Kalman Filters, EKF
Particle Filters

- Multi-Object Tracking
, Data association
- MHT

Network flow optimization

- Articulated Tracking
- GP body pose estimation

Pictorial Structures

Recap: Multi-Hypothesis Tracking (MHT)

- Ideas

Instead of forming a track tree, keep a set of hypotheses that generate child hypotheses based on the associations.
Enforce exclusion constraints between tracks and measurements in the assignment.
Integrate track generation into the assignment process.
After hypothesis generation, merge and prune the current hypothesis set.

D. Reid, An Algorithm for Tracking Multiple Targets, IEEE Trans. Automatic Control, Vol. 24(6), pp. 843-854, 1979.

Recap: Hypothesis Generation

- Create hypothesis matrix of the feasible associations
$\mathbf{x}_{1} \mathbf{x}_{2} \mathbf{x}_{f a} \mathbf{x}_{n l}$
\(\Theta=\left[\begin{array}{llll}1 \& 0 \& 1 \& 1

1 \& 1 \& 1 \& 1

0 \& 1 \& 1 \& 1

0 \& 0 \& 1 \& 1\end{array}\right]\)| \mathbf{y}_{1} |
| :--- |
| \mathbf{y}_{2} |
| \mathbf{y}_{3} |
| \mathbf{y}_{4} |,

- Interpretation
- Columns represent tracked objects, rows encode measurements
, A non-zero element at matrix position (i, j) denotes that measurement \mathbf{y}_{i} is contained in the validation region of track \mathbf{x}_{j}.
Extra column $\mathbf{x}_{f a}$ for association as false alarm.
Extra column $\mathbf{x}_{n t}$ for association as new track.
Turn this hypothesis matrix

Recap: Creating Assignments

Z_{j}	\mathbf{x}_{1}	\mathbf{x}_{2}	$\mathbf{x}_{f a}$	$\mathbf{x}_{n t}$
\mathbf{y}_{1}	0	0	1	0
\mathbf{y}_{2}	1	0	0	0
\mathbf{y}_{3}	0	1	0	0
\mathbf{y}_{4}	0	0	0	1

- Impose constraints
, A measurement can originate from only one object.
\Rightarrow Any row has only a single non-zero value.
- An object can have at most one associated measurement per time step.
\Rightarrow Any column has only a single non-zero value, except for $\mathbf{x}_{f a}, \mathbf{x}_{n t}$

Recap: Measurement Likelihood

RNITAALHE

UNVERST

- Use KF prediction

, Assume that a measurement $\mathbf{y}_{i}^{(k)}$ associated to a track \mathbf{x}_{j} has a Gaussian pdf centered around the measurement prediction $\hat{\mathbf{x}}_{j}^{(k)}$ with innovation covariance $\widehat{\boldsymbol{\Sigma}}_{j}^{(k)}$.
, Further assume that the pdf of a measurement belonging to a new track or false alarm is uniform in the observation volume W (the sensor's field-of-view) with probability W^{-1}.
. Thus, the measurement likelihood can be expressed as

$$
\begin{aligned}
p\left(\mathbf{Y}^{(k)} \mid Z_{j}^{(k)}, \Omega_{p(j)}^{(k-1)}\right)= & \prod_{i=1}^{M_{k}} \mathcal{N}\left(\mathbf{y}_{i}^{(k)} ; \hat{\mathbf{x}}_{j}, \widehat{\mathbf{\Sigma}}_{j}^{(k)}\right)^{\delta_{i}} W^{-\left(1-\delta_{i}\right)} \\
& =W^{-\left(N_{f a l}+N_{n e w}\right)} \prod_{i=1}^{M_{k}} \mathcal{N}\left(\mathbf{y}_{i}^{(k)} ; \hat{\mathbf{x}}_{j}, \widehat{\mathbf{\Sigma}}_{j}^{(k)}\right)^{\delta_{i}}
\end{aligned}
$$

Recap: Probability of an Assignment Set

$$
p\left(Z_{j}^{(k)} \mid \Omega_{p(j)}^{(k-1)}\right)
$$

- Composed of three terms

1. Probability of the number of tracks $N_{d e t}, N_{\text {fal }}, N_{\text {new }}$

Assumption 1: $N_{\text {det }}$ follows a binomial distribution
$p\left(N_{\text {det }} \mid \Omega_{p(j)}^{(k-1)}\right)=\binom{N}{N_{\text {det }}} p_{\text {det }}^{N_{\text {det }}}\left(1-p_{\text {det }}\right)^{\left(N-N_{\text {det }}\right)}$
where N is the number of tracks in the parent hypothesis
Assumption 2: $N_{\text {fal }}$ and $N_{\text {new }}$ both follow a Poisson distribution with expected number of events $\lambda_{\text {fal }} W$ and $\lambda_{\text {new }} W$

$$
\begin{aligned}
p\left(N_{\text {det }}, N_{\text {fal }}, N_{\text {new }} \mid \Omega_{p(j)}^{(k-1)}\right)= & \binom{N}{N_{\text {det }}} p_{\text {det }}^{N_{\text {det }}}\left(1-p_{\text {det }}\right)^{\left(N-N_{\text {det }}\right)} \\
& \cdot \mu\left(N_{\text {fal }} ; \lambda_{\text {fal }} W\right) \cdot \mu\left(N_{\text {new }} ; \lambda_{\text {new }} W\right)
\end{aligned}
$$

$$
\frac{N!}{\left(N-N_{d e t}\right)!}\binom{N-N_{d e t}}{N_{d e t}}
$$

\Rightarrow When combining the different parts, many terms cancel out!

Recap: Linear Assignment Formulation

- Form a matrix of pairwise similarity scores
- Example: Similarity based on motion prediction
, Predict motion for each trajectory and assign scores for each measurement based on inverse (Mahalanobis) distance, such that closer measurements get higher scores.

- Articulated Tracking - GP body pose estimation

Pictorial Structures

Recap: Linear Assignment Problem

- Formal definition

Maximize $\sum_{i=1}^{N} \sum_{j=1}^{M} w_{i j} z_{i j}$
subject to $\sum_{j=1} z_{i j}=1 ; i=1,2, \ldots, N$
$\sum_{i=1} z_{i j}=1 ; j=1,2, \ldots, M$ $z_{i j} \in\{0,1\}$

Those constraints ensure that Z is a permutation matrix

The permutation matrix constraint ensures that we can only match up one object from each row and column.

Note: Alternatively, we can minimize cost rather than maximizing weights. $\arg \min _{z_{i j}} \sum_{i=1}^{N} \sum_{j=1}^{M} c_{i j} z_{i j}$

Recap: Optimal Solution

- Greedy Algorithm

Easy to program, quick to run, and yields "pretty good" solutions in practice.
But it often does not yield the optimal solution

- Hungarian Algorithm
. There is an algorithm called Kuhn-Munkres or "Hungarian" algorithm specifically developed to efficiently solve the linear assignment problem.
, Reduces assignment problem to bipartite graph matching
, When starting from an $N \times N$ matrix, it runs in $\mathcal{O}\left(N^{3}\right)$.
\Rightarrow If you need LAP, you should use it.

Recap: Min-Cost Flow
RWIH TALHET
UNIVERSITM

- Conversion into flow graph
, Pump N units of flow from source to sink.
- Internal nodes pass on flow (\sum flow in $=\sum$ flow out).
\Rightarrow Find the optimal paths along which to ship the flow.

Zhang, Li, Nevatia, Global Data Association for Multi-Object Tracking using Network Flows, CVPR'08.

Recap: Min-Cost Formulation

RWIH

- Objective Function
$\mathcal{T} *=\underset{\mathcal{T}}{\operatorname{argmin}} \sum_{i} C_{i n, i} f_{i n, i}+\sum_{i} C_{i, \text { out }} f_{i, \text { out }}$

$$
+\sum_{i, j} C_{i, j} f_{i, j}+\sum_{i} C_{i} f_{i}
$$

- subject to

Flow conservation at all nodes

$$
f_{i n, i}+\sum_{j} f_{j, i}=f_{i}=f_{\text {out }, i}+\sum_{j} f_{i, j} \forall i
$$

. Edge capacities

$$
f_{i} \leq 1
$$

Outline of This Lecture

- Single-Object Tracking

- Bayesian Filtering
, Kalman Filters, EKF
, Particle Filters
- Multi-Object Tracking
, Data association
, MHT
, Network flow optimization
- Articulated Tracking
, GP body pose estimation
, Pictorial Structures

Recap: Basic Pose Estimation Approaches

- Global methods
- Entire body configuration is treated as a point in some high-dimensional space.
- Observations are also global feature vectors.
\Rightarrow View of pose estimation as a high-dimensional regression problem.
\Rightarrow Often in a subspace of "typical" motions...
- Part-based methods
- Body configuration is modeled as an assembly of movable parts with kinematic constraints.
Local search for part configurations that provide a good explanation for the observed appearance under the kinematic constraints.
\Rightarrow View of pose estimation as probabilistic
 inference in a dynamic Graphical Model.

RWIH ALEHE NIVERSTT

Recap: Advantage of Silhouette Data

- Synthetic training data generation possible!
. Create sequences of „Pose + Silhouette" pairs
, Poses recorded with Mocap, used to animate 3D model
, Silhouette via 3D rendering pipeline

Pose Data (p)
3D Rendering
B. Leibe

- Joint angle pose space is huge!
, Only a small portion contains valid body poses.
\Rightarrow Restrict estimation to the subspace of valid poses for the task - Latent variable models: PCA, FA, GPLVM, etc.

Recap: Gaussian Process Regression

- "Regular" regression: $y=f(\mathbf{x})$

- GP regression: $\quad p(y \mid \mathbf{x}) \sim \mathcal{N}(\mu(\mathbf{x}), \sigma(\mathbf{x}))$

B. Leibe

Recap: Articulated Motion in Latent Space

„walking style"

- Regression from latent space to

$$
\begin{array}{ll}
\text { P Pose } & \longrightarrow p(\text { pose } \mid \mathbf{z}) \\
\text {, Silhouette } & \longrightarrow p(\text { silhouette } \mid \mathbf{z})
\end{array}
$$

- Regressors need to be learned from training data.

Side adanted from Stefan Gameter B. Leibe

Recap: GP Prediction w/ Noisy Observations

- Calculation of posterior:

Corresponds to conditioning the joint Gaussian prior distribution on the observations:

$$
\mathbf{f}_{\star} \mid X_{\star}, X, \mathbf{t} \sim \mathcal{N}\left(\bar{f}_{\star}, \operatorname{cov}\left[\mathbf{f}_{\star}\right]\right) \quad \overline{\mathbf{f}}_{\star}=\mathbb{E}\left[\mathbf{f}_{\star} \mid X, X_{\star}, \mathbf{t}\right]
$$

- with:
$\overline{\mathbf{f}_{\star}}=K\left(X_{\star}, X\right)\left(K(X, X)+\sigma_{n}^{2} I\right)^{-1} \mathrm{t}$
$\operatorname{cov}\left[\mathbf{f}_{\star}\right]=K\left(X_{\star}, X_{\star}\right)-K\left(X_{\star}, X\right)\left(K(X, X)+\sigma_{n}^{2} I\right)^{-1} K\left(X, X_{\star}\right)$
\Rightarrow This is the key result that defines Gaussian process regression!
The predictive distribution is a Gaussian whose mean and variance depend on the test points X_{*} and on the kernel $k\left(x, x^{\prime}\right)$, evaluated on the training data X.
Recap: Learning a Generative Mapping

T. Jaeggli, E. Koller-Meier, L. Van Gool, "Learning Generative Models for Monocular Body Pose Estimation", ACCV 2007.

RNIH A CHIT
Recap: Articulated Multi-Person Tracking

- Idea: Only perform articulated tracking where it's easy!
- Multi-person tracking
, Solves hard data association problem
- Articulated tracking
, Only on individual "tracklets" between occlusions
, GP regression on full-body pose

Recap: Efficient Inference

- Assume d to have quadratic form

$$
d\left(l_{1}, l_{0}\right)=\left\|l_{1}-T_{1}\left(l_{0}\right)\right\|^{2}
$$

- Then

$$
\begin{aligned}
& \min _{l_{0}, l_{1}}\left(m_{0}\left(l_{0}\right)+m_{1}\left(l_{1}\right)+d\left(l_{1}, l_{0}\right)\right) \\
= & \min _{l_{0}}\left(m_{0}\left(l_{0}\right)+\min _{l_{1}}\left(m_{1}\left(l_{1}\right)+d\left(l_{1}, l_{0}\right)\right)\right)
\end{aligned}
$$

- with the second term a generalized distance transform (gDT).
- Algorithms exist to compute gDT efficiently.
- Thus $=\min _{l_{0}}\left(m_{0}\left(l_{0}\right)+D T_{m_{1}}\left(T_{1}\left(l_{0}\right)\right)\right)$
with $D T_{m_{1}}\left(T_{1}\left(l_{0}\right)\right)=\min \left\{m_{1}\left(l_{1}\right)+d\left(l_{1}, l_{0}\right)\right\}$
\Rightarrow Finding the best part configuration can be done sequentially, rather than simultaneously!

140

- Multi-Person tracking

Recover trajectories and solve data association

- Articulated Tracking

Estimate detailed body pose for each tracked person
[Gammeter, Ess, Jaeggli, Schindler, Leibe, Van Gool, ECCV' ${ }^{144}$

