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Announcements

¢ Exams
» Proposed dates
- 29./30.07.
- 22./23.09.

» Please enter your preferences in the Doodle poll | sent around
» If none of the dates work for you, please contact me.

e Exam Procedure
» Oral exams
> Duration 30min
» | will give you 4 questions and expect you to answer 3 of them.

B. Leibe

Announcements (2)

¢ Lecture Evaluation
~» Please fill out the forms...

B. Leibe

Computer Vision Il, Summer’14

TOWTH/ACHEN
Announcements (3)

¢ Today, I’ll summarize the most important points from
the lecture.
» It is an opportunity for you to ask questions...
. ..or get additional explanations about certain topics.
» So, please do ask.

¢ Today’s slides are intended as an index for the lecture.
~ But they are not complete, won’t be sufficient as only tool.

» Also look at the exercises - they often explain algorithms in
detail.

B. Leibe
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Course Outline

¢ Single-Object Tracking
Background modeling

Template based tracking

Color based tracking

Contour based tracking
Tracking by online classification
Tracking-by-detection

v

hatls 7%

v

v

¢ Bayesian Filtering
¢ Multi-Object Tracking

o Articulated Tracking

5
Image source; Tobias Jaegel
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RWTHCHEN
Recap: Gaussian Background Model

¢ Statistical model

» Value of a pixel represents a measure-
ment of the radiance of the first object
intersected by the pixel’s optical ray.

~ With a static background and static
lighting, this value will be a constant
affected by i.i.d. Gaussian noise.

A

¢ Idea

» Model the background distribution of each pixel by a single
Gaussian centered at the mean pixel value:

_ 1 B 1  \Tsl(y
N(x|p,B) = W exp{ i(x H) T (x #)}
» Test if a newly observed pixel value has a high likelihood

under this Gaussian model.

= Automatic estimation of a sensitivity threshold for each pixel.
B. Leibe



http://doodle.com/w4fbvigkxa9icu2u
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Recap: MoG Background Model

* Improved statistical model

» Large jumps between different pixel values | ()

because different objects are projected onto O

the same pixel at different times. 05 ﬁ Q ‘4
» While the same object is projected onto the

pixel, small local intensity variations due to | 05

Gaussian noise.

¢ ldea
» Model the color distribution of each pixel by a mixture of K

Gaussians K
px) = mN (x| Zi)
k=1

» Evaluate likelihoods of observed pixel values under this model.
» Or let entire Gaussian components adapt to foreground objects
and classify components as belonging to object or background. ,

B. Leibe Image source: Chris Bischoj
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RWTH/ACHET
Recap: Stauffer-Grimson Background Model

¢ Idea

» Model the distribution of each pixel by a mixture of K Gaussians
K
p(x) = ZW;.-‘V(X” |y, ) where B, =il

k=1
Check every new pixel value against the existing X components
until a match is found (pixel value within 2.5 o, of u,).
If a match is found, adapt the corresponding component.
Else, replace the least probable component by a distribution
with the new value as its mean and an initially high variance and
low prior weight.
Order the components by the value of w,; /o, and select the best
B components as the background model, where

v

v

v

v

b
. Wy
B = argmin E — =T
b ] (48

RWTHIACHE
Recap: Stauffer-Grimson Background Model

¢ Online adaptation

» Instead of estimating the MoG using EM, use a simpler online
adaptation, assigning each new value only to the matching
component.

» Let M, , = 1 iff component k is the model that matched, else 0.
1T,EH—1) =1 (‘z)ﬂ'{” oM

» Adapt only the parameters for the matching component

T = (1 4 pr
Ei&l) =(1 .”)EE,-” r,n(:r(’“-’ “%_H-IJ)(J.(H-U u,[‘_’“))]'
where

p=aN(x,|p,, Zp)
(i.e., the update is weighted by the component likelihood)

9
B. Leibe IC. Stauffer, W.EL_Grimson, CVPR'99]|
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Course Outline

¢ Single-Object Tracking
Background modeling

Template based tracking

Color based tracking

Contour based tracking
Tracking by online classification
Tracking-by-detection

v

v

v

v

v

v

¢ Bayesian Filtering
¢ Multi-Object Tracking

o Articulated Tracking

14
Image source; Robert Collin:
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IC. Stauffer, WE.L, Grimson, CVPR'99]

RWTHCHEN
Recap: Kernel Background Modeling
¢ Nonparametric density estimation

» Estimate a pixel’s background distribution using the kernel
density estimator K(-) as

N
1, ;

pix) = 53 K -x)
=1

. Choose K to be a Gaussian MV(0, ) with 3 = diag{c}. Then
ML Y el
(xM) = — — ¢
P ) N Zl: 1:[ !‘Qrgg
i=1j=14/270F

» A pixel is considered foreground if p(x(*)) < @ for a threshold 6.

- This can be computed very fast using lookup tables for the kernel
function values, since all inputs are discrete values.

- Additional speedup: partial evaluation of the sum usually sufficient

10
B. Leibe JA. Elgammal, D, Harwood, L Davis, ECCV'00]
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RWTHCHEN
Recap: Estimating Optical Flow
S : .
M ° .
1(x,y,t-1) 1(x,y,t)

* Optical Flow
~ Given two subsequent frames, estimate the apparent motion
field u(z,y) and v(zx,y) between them.
¢ Key assumptions
» Brightness constancy: projection of the same point looks the
same in every frame.
» Small motion: points do not move very far.
» Spatial coherence: points move like their neighbors.

ide credit: Svetlana | azebnik, B. Leibe
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RWTHCHEN
Recap: Lucas-Kanade Optical Flow

¢ Use all pixels in a KxK window to get more equations.
¢ Least squares problem:

Computer Vision I, Summer’14

L(p1)  ILy(p1) Ii(py)
L(po)  I,(pe 1 I (p
2(p2) Iy(p2) | | (p2) A d=b
; : v : 25x2 2x1 25x1
Ix(pas) 1y(pas) Ii(pas)
¢ Minimum least squares solution given by solution of
(ATA) d= AT
Recall the
22 2d 1 Harris detector!
Yhls Lhily|[u] _ _[ ik
S Iply Y Iyly v > Iyl
AT A ATy
ide adapted from Svetlana | azebnik B. Leibe 1
RWTH/CHEN

Recap: Coarse-to-fine Optical Flow Estimation

u=1.25 pixels

u=2.5 pixels

u=>5 pixels

u=10 pixels;

Gaussian pyramid of image 1

Gaussian pyramid of image 2
18

B. Leibe

ide credit: Steve Seit;
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ide credit: Svetlana | azebnik.

RWTHCHEN
Recap: Shi-Tomasi Feature Tracker (—KLT)

e Idea
»  Find good features using eigenvalues of second-moment matrix

> Key idea: “good” features to track are the ones that can be
tracked reliably.

¢ Frame-to-frame tracking
»  Track with LK and a pure translation motion model.

»  More robust for small displacements, can be estima-
ted from smaller neighborhoods (e.g., 5x5 pixels).

¢ Checking consistency of tracks
-~ Affine registration to the first observed feature instance.

. Affine model is more accurate for larger displacements. i;‘

»  Comparing to the first frame helps to minimize drift. Ezs_J

20

J. Shi and C. Tomasi. Good Features to Track. CVPR 1994.
B. Leibe
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Recap: Iterative Refinement

+ Estimate velocity at each
pixel using one iteration of
LK estimation. |

* Warp one image toward the f
other using the estimated
flow field.

¢ Refine estimate by repeating
the process. ¥

e |terative procedure
» Results in subpixel accurate localization.
» Converges for small displacements.

ide adapted from Steve Seit. B. Leibe T B %
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RWTH/ I CHEN
Recap: Coarse-to-fine Optical Flow Estimation

Run iterative LK

\—_—

Gaussian pyramid of image 1 Gaussian pyramid of image 2

19

ide credit: Steve Seit: B. Leibe
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TOWTH/ACHEN
Recap: General LK Image Registration

e Goal

» Find the warping parameters p that minimize the sum-of-
squares intensity difference between the template image 7(x)
and the warped input image /(W (x;p)).

¢ LK formulation
» Formulate this as an optimization problem

argmin ) [[(W(x:p)) ~ T(x)]*

» We assume that an initial estimate of p is known and iteratively
solve for increments to the parameters Ap:

arg Igiglz [I(W(X§ p+Ap)) — T(x)} :

21

B. Leibe



http://www.ces.clemson.edu/~stb/klt/shi-tomasi-good-features-cvpr1994.pdf

RWTHCHEN RWTHCHEN
Recap: Step-by-Step Derivation Recap: General LK Algorithm
* Key to the derivation o |terate
. Taylor expansion around Ap - Warp I to obtain I(W([z, y]; p))
I(W(x;p + Ap)) ~ I(W(x;p)) + VfaalAp+O(Ap2) ~ Compute the error image T([z, y]) — I(W([z, y]; p))
p » Warp the gradient VI with W([z, y]; p)
= I(W([z,ylp1;-- -, pn)) . Evaluate % at ([z, y); p) (Jacobian)
= oW, AW, W, Apy s . Compute steepest descent images ¥ J 2.
g o1 or]| dpa T opn | | AD2 g df’ T )
£ + [E @} oW, oW, W, : E - Compute Hessian matrix H=3"_ VI%‘;;] [VI%%]
a e T Tl | @
= Apn o - compute S [VISE] [T (la)) — IW(f, i p))]
° Gradient Jacobian Increment ] N ow1l
; parameters ; - ComputeAp=H '} [Vl'ap—} [T(z,9) — I(W([z,y]; p))]
é- AW to solve for é. » Update the parameters p < p + Ap
-— A : X : -
8 Vi dp P » | « Until Ap magnitude is negligible »
ide credit: Rohert Collin B. Leibe B. Leibe [S. Baker, |, Matthews, 1JCV’04]
RWTHCHEN RWTHCHEN

Recap: General LK Algorithm Visualization Course Outline
¢ Single-Object Tracking

» Background modeling

» Template based tracking

» Color based tracking

» Contour based tracking
Tracking by online classification

v

b T . Tracking-by-detection
o @
= =
£ 4| * Bayesian Filtering
(7] (7]
H = * Multi-Object Tracking
2 i
?, ; e Articulated Tracking
= =
=3 o
£ =
o o
o o
LI - fwie IS, Baker, | Matthe: LJCV'04 Image source: Robert Collin:
RWTHIACHE RWTH/ACHET
Recap: Mean-Shift Recap: Using Mean-Shift on Color Models
:
° nterest « Two main approaches
° Center of . . X
L mass 1. Explicit weight images
° ° - Create a color likelihood image, with pixels
weighted by the similarity to the desired
° ° color (best for unicolored objects).
° - Use mean-shift to find spatial modes of the likelihood.
° °
°
° 2. Implicit weight images
° - Represent color distribution by a histogram.
[ ) ° [ ] - Use mean-shift to find the region that has the

most similar color distribution.

° e o
° °
[ vector
Objective: Find the densest region
ide bv Y, Ukrainitz & B, Sarel
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Slide credit; Robert Collin B. Leibe
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Mean-Shift on Weight Images

¢ |deal case

» Want an indicator function that returns 1 for pixels on the
tracked object and O for all other pixels.

¢ Instead
» Compute likelihood maps

» Value at a pixel is proportional to the likelihood
that the pixel comes from the tracked object.

¢ Likelihood can be based on
» Color
» Texture
» Shape (boundary)
» Predicted location
28

ide credit: Robert Collin B. Leibe

TRWTH TN
Recap: Mean-Shift Tracking

¢ Mean-Shift finds the mode of an explicit likelihood image

Kernel weight
evaluated at
offset (a — x)

Weight from the
likelihood image
at pixel a

Offset of pixel a
to kernel center x

_ 2. K(a-xjw(a)(a—x)

ax Y. K(a—x)w(a)
|
Sum over all pixels a 0

Normalization

under kernel K term

= Mean-shift computes the weighted mean of all
shifts (offsets), weighted by the point likelihood

and the kernel function centered at x.
B. Leibe

Computer Vision Il, Summer’14

Recap: Explicit Weight Images

¢ Histogram backprojection

» Histogram is an empirical estimate of p(color | object) = p(c | 0)
plelo)p(o)
. Bayes’ rule says: plo|c) = —————
Y v l p(c)

» Simplistic approximation: assume p(0)/p(c) is constant.

= Use histogram h as a lookup table to set pixel values in the
weight image.

» If pixel maps to histogram bucket ¢, set weight for pixel to h(i).

B. Leibe

Slide credit; Robert Collin Image source: Gary Bradski

RWTHCHEN
Recap: Scale Adaptation in CAMshift

Mean shift window
initialization

Computer Vision Il, Summer’14

1
Image source; http://docs,opency.org/trunk/doc/py tutorials/py video/py_meanshift/py_meanshift.html
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RWTHCHEN
Recap: Tracking with Implicit Weight Images

Target Model

Target Candidate
(centered at 0) \J

(centered at y)

i={a.},. . qu:. =1

Similarity f
Function:

(»)=114.5(»)]

32

ide bv Y, Ukrainitz & B, Sarel 8. Leibe

Recap: Comaniciu’s Mean-Shift

e Color histogram representation

a={dluztm

target model:

Dod=1
u=1

> he=1.
u=1

target candidate:

PY) = {pul¥) bzt m

¢ Measuring distances between histograms
~ Distance as a function of window location y

dly) = v1-ppE)dl.
» where f(y] is the Bhattacharyya coefficient

ALy) = pli(y), €] = Z Pul¥ ) »

5. Leibe
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Slide credit; Robert Collin
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Recap: Comaniciu’s Mean-Shift Recap: Result of Taylor Expansion

¢ Compute histograms via Parzen estimation

du=0C3 k(i) [t =] .

i=1
T
« y—-xi
B =Gk (”T|
=1

» where k(-) is some radially symmetric smoothing kernel profile,
x, is the pixel at location ¢, and b(x;) is the index of its bin in
the quantized feature space.

¢ Simple update procedure: At each iteration, perform
£ w222
£ g ([Z55])

» which is just standard mean-shift on (implicit) weight image w;.

¥ where g(zr) = —k'(x)

2
) IbGe) =]
» Let’s look at the weight image more closely. For each pixel x;

m P This is only 1
Gu
w; = E | —— :-b Xi) — U once in the
= PuFo [oec) ]

summation

¢ Consequence of this formulation
» Gathers a histogram over a neighborhood

» Also allows interpolation of histograms centered around an
off-lattice location.

= If pixel x,’s value maps to histogram bucket B, then

w; = \/qn/pe(yo)

ide credit: Robert Collin: B. Leibe

Computer Vision Il, Summer’14
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i 34
ide credit: Robert Collin B. Leibe

Course Outline Recap: Deformable Contours
¢ Single-Object Tracking
Background modeling

Template based tracking

Color based tracking

Contour based tracking
Tracking by online classification

e Given
» Initial contour (model) near desired object
¢ Goal

» Evolve the contour to fit the exact object
boundary

v

v

v

v

v

E » Tracking-by-detection § e Main ideas
o @
E £ Iteratively adjust the elastic band to b i
£ . . . £ » ly adjust the elastic band so as to be near image
@ * Bayesian Filtering @ positions with high gradients, and
E « Multi-Object Tracking E » Satisfy shape “preferences” or contour priors
i ® » Formulation as energy minimization problem.
§ e Articulated Tracking ;
§, ‘é_ M. Kass, A. Witkin, D. Terzopoulos. Snakes: Active Contour Models,
£ £ 1JCV1988.
38 38
37
Image source: Yuri Bovko slide credit; Kristen Grauman B. Leibe Image source: Yuri Bovko

Recap: Energy Function

¢ Definition
» Total energy (cost) of the current snake @

Eptat = Exnternar + E

interna

Recap: Energy Formulation

¢ Total energy

Etotal = Einternal +®Eextemal

» with the component terms

n-1
Eeternai = — Z| G, (%, y,) I* + G, (%, Y) §
i-0

n-1 -~
Eovrn = 3 (@ - -vF + B2+
i=0

Behavior can be controlled by adapting the weights «, (3, 7.

total external

¢ Internal energy
» Encourage prior shape preferences: e.g., smoothness,
elasticity, particular known shape.
¢ External energy

» Encourage contour to fit on places where image structures
exist, e.g., edges.

= Good fit between current deformable contour and target shape
in the image will yield a low value for this cost function.
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ide credit; Kristen Grayman B. Leibe slide credit; Kristen Grauman B. Leibe



http://www.cs.ucla.edu/~dt/papers/ijcv88/ijcv88.pdf
http://www.cs.ucla.edu/~dt/papers/ijcv88/ijcv88.pdf
http://www.cs.ucla.edu/~dt/papers/ijcv88/ijcv88.pdf
http://www.cs.ucla.edu/~dt/papers/ijcv88/ijcv88.pdf

RWTHIACHE
Recap: Extension with Shape Priors

¢ Shape priors

» If object is some smooth variation on T'—‘—-—-—4

a known shape, we can use a term that
will penalize deviation from that shape:

n-1
— 5 )2 v
Einternal t=a- Z (Vi - Vi)
i=0

where {V,} are the points of the known
shape.

Computer Vision Il, Summer’14

40

ide credit; Kristen Grauman B. Leibe

RWTH/CHET]
Recap: Energy Min. by Dynamic Programming

¢ Dynamic Programming solution

Limit possible moves to neighboring pixels (discrete states).
Find the best joint move of all points using Viterbi algorithm.
Iterate until optimal position for each point is the center of

the box, i.e., the snake is optimal in the local search space
constrained by boxes.

vy

v

Computer Vision I, Summer’14

42

Slide credit; Kristen Grauman Figure source; Yuri Bovko

[Amini, Weymouth, Jain, 1990]

Computer Vision Il, Summer’14
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RWTH/ACHET
Recap: Greedy Energy Minimization

¢ Greedy optimization
» For each point, search window around it

and move to where energy function is
minimal.

» Typical window size, e.g., 5x5 pixels

e Stopping criterion
» Stop when predefined number of points
have not changed in last iteration,
or after max number of iterations.

¢ Note:
» Local optimization - need decent initialization!
» Convergence not guaranteed

4

B. Leibe

ide credit: Kristen Grauman

Recap: Viterbi Algorithm

¢ Main idea:
» Determine optimal state of predecessor, for each possible state
» Then backtrack from best state for last vertex

B = E1(V1,V,) + B, (Vo V) .+ By (Vi g, V)

. Ei(vyvz)‘Ez(vz,va). Ea(va,\u)‘ B (Va.V,
E®=0 E,(1) E, E, E

1 Z

E®=0
™

vertices

states

N E(m)=0

Complexity: O(nm?) vs. brute force search ?

43
Slide credit; Kristen Grauman, adapted from Yurj Bovko:

RWTHCHEN
Recap: Tracking via Deformable Contours

¢ Idea

1. Use final contour/model extracted at frame ¢ as an initial
solution for frame t+1

2. Evolve initial contour to fit exact object boundary at frame ¢+1
3. Repeat, initializing with most recent frame.
A ——

Tracking Heart Ventricles
(multiple frames)

<
&
T
3
=
=
3
7}
=
o}
0
b
T
2
3
a
=
S
o

44

B. Leibe

ide credit; Kristen Grauyman
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Course Outline

¢ Single-Object Tracking

» Background modeling

» Template based tracking

» Color based tracking

~ Contour based tracking
Tracking by online classification
Tracking-by-detection

v

v

¢ Bayesian Filtering

¢ Multi-Object Tracking

o Articulated Tracking

45

Image source; Helmut Grabner,




RWTHCHEN
Recap: Tracking as Online Classification

* Tracking as binary classification problem

object

Computer Vision Il, Summer’14

VS.
background
; 46
ide credit: Helmut Grabner B. Leibe Image source: Disney /Pixar]

RWTHCHEN
Recap: AdaBoost - “Adaptive Boosting”

¢ Main idea [Freund & Schapire, 1996]
. Iteratively select an ensemble of classifiers

» Reweight misclassified training examples after each iteration
to focus training on difficult cases.

e Components

RWTHCHEN
Recap: Tracking as Online Classification

* Tracking as binary classification problem

background g K

» Handle object and background changes by online updating

Computer Vision Il, Summer’14

47

ide credit; Helmut Grabner B. Lebe Image source; Disney /Pixa

Recap: AdaBoost - Algorithm

1. Initialization: Set w() = % forn=1,...,N.
2. For m=1,...,M iterations

a) Train a new weak classifier h,,(x) using the current weighting
coefficients W (") by minimizing the weighted error function
N

I = Z'UJ,EJ")I<hm(x) #tn) 4= {l' il is e

» We do not know a priori the difficulty of a sample!
(Could already have seen the same sample before...)

¢ |dea of Online Boosting

» Estimate the importance of a sample by propagating it through
a set of weak classifiers.

This can be thought of as modeling the information gain w.r.t.
the first n classifiers and code it by the importance weight \ for
the n+1 classifier.

Proven [0za]: Given the same training set, Online Boosting
converges to the same weak classifiers as Offline Boosting in the
limit of N — oo iterations.

N. Oza and S. Russell. Online Bagging and Boosting.

Artificial Intelligence and Statistics, 2001.

B. Leibe
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s » hy,(x): “weak” or base classifier + ) o ) - 0, ske
B - Condition: <50% training error over any distribution 5 b) Estimate the welghteg e”’g; of this classifier on X:
£ . H(x): “strong” or final classifier E o = Znzywn 1(hn(x) # tn)
= = m N (m)
@ @ Yoy wn
E * AdaBoost: E c) Calculate a weighting coefficient for h,,(x):
@ » Construct a strong classifier as a thresholded linear combination @ o —nfl=fm
§ of the weighted weak classifiers: ; " €m
E ) M E d) Update the weighting coefficients:
£ H(x) = sign Z P (X) £ W™D = wl™ exp {aum ] (ho(Xn) # tn)}
S m=1 4 S %
B. Leibe B. Leibe
RWTHCHEN RWTHCHEN
Recap: From Offline to Online Boosting Recap: From Offline to Online Boosting
¢ Main issue off-line on-line
» Computing the weight distribution for the samples. Given: Given:

- set of labeled training samples - ONE labeled training sample
urlyll

- strong classifier to update

A= {0y e (3ovn) v £ 1}
- weight distribution over them
Dy =1/L

- initial importance A =1
forn =1 to N forn=1to N
- train a weak classifier using
samples and weight dist.

heak(x) = L(X, Dy1)

- calculate error tn

- update the weak classifier using
samples and importance
hgeak(x) = LOAEEE, (2, y). A)
- update error estimation fn
- update weight fin = f(7n)
- update importance weight A
next next

- calculate weight rn = [(rn)
- update weight dist. Dn

N
Krma(x) = sian( S an - hEEH(x))

N
RIT(x) = sign( 3 an - kEE(x))
n=1

n=1
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Slide credit; Helmut Grabner B. Leibe



http://ti.arc.nasa.gov/m/profile/oza/files/ozru01a.pdf

Recap: Online Boosting for Feature Selection ‘

hSelector

O,

¢ Introducing “Selector”

» Selects one feature from its local
feature pool

Hweak — {hf"““k‘ . hjL'l“Fle}

F={f1,.fu}
< 1ol (x) = higeek () N R
] m = argmin;e;
=
=
®
=3 | On-line boosting is performed on
s the Selectors and not on the @
= weak classifiers directly.
g
é. H. Grabner and H. Bischof.
S On-line boosting and vision.
S CVPR, 2006. 52
ide credit; Helmut Grabner 8. Leibe

Recap: Tracking by Online Classification

Evaluate classifier

from time # to t+1 on sub-patches

—

‘Actual
bject position
e
i

Search
region

Analyze map and set 1
new object position Create
confidence map

" Update classifier
(tracker)

Computer Vision I, Summer’14

54

B. Leibe Jmage source; Disney /Pixal

Slide credit; Helmut Grabner.

Course Outline

¢ Single-Object Tracking
Background modeling
Template based tracking
Color based tracking
Contour based tracking
Tracking by online classification
Tracking-by-detection

v

v

v

v

v

v
LERTET

¢ Bayesian Filtering
o Multi-Object Tracking '

o Articulated Tracking
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Image source; Helmut Grabner,

Computer Vision Il, Summer’14

Computer Vision Il, Summer’14

Recap: Direct Feature Selection '
S HOO0 00O ® |

gloabal eak classifer pool
hSelector, electory

estimate

hSelector,

estimate. estimate.

errors. errors errors.
inital estimate estimate .
importance | selectbest [ " importance ~ | select best importance "] select best
=1 weak A weak 2 weak
classifier classifier classifier

2

repeat for each
trainingsample

current strong classifier hStrong ‘

¢ Shared feature pool for all selectors to save computation
53

ide credit: Helmut Grabner B. Leibe

Recap: Self-Learning and Drift
o Drift
» Major problem in all adaptive or self-learning
trackers.
» Difficulty: distinguish “allowed” appearance

changes due to lighting or viewpoint variation
from “unwanted” appearance change due to

drifting. Tracked Patches
» Cannot be decided based on the tracker
confidence! Tt
. LT
¢ Several approaches to address this
~ Comparison with initialization i
» Semi-supervised learning (additional data) Confidence
» Additional information sources
55
B. Leibe
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Recap: Tracking-by-Detection

¢ Main ideas
~ Apply a generic object detector to find objects of a certain class
» Based on the detections, extract object appearance models
~ Link detections into trajectories

57
B. Leibe
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Elements of Tracking

-~
/e I/ k
\ e |
e 1 ® ‘o
® S - ’ 14 =7
[
Detection Data association Prediction

¢ Detection
» Where are candidate objects?

¢ Data association
» Which detection corresponds to which object?

¢ Prediction
» Where will the tracked object be in the next time step?

. 58
B. Leibe

TOWNTHITCHEN
Recap: Object Detector Design

¢ In practice, the classifier often determines the design.
~ Types of features
» Speedup strategies

¢ We’ve looked at 2 state-of-the-art detector designs
» Based on SVMs
— HOG, DPM detectors

» Based on Boosting
— Viola-Jones, VeryFast, Roerei detectors

» Based on Random Forests
— (Cut due to time constraints...)

B. Leibe
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ide credit: Pedrg

RWTHCHEN
Recap: Deformable Part-based Model (DPM)

Score of filter:
dot product of filter
with HOG features

underneath it

Score of object
hypothesis is sum of
filter scores minus
deformation costs

HOOG feature pyramid

Image pyramid

¢ Multiscale model captures features at two resolutions

B. Leibe

62
[Felzenszwalb, McAllister, Ramanan, CVPR’08]
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RWTHCHEN
Recap: Sliding-Window Object Detection

Fleshing out this
pipeline a bit more, - 7 R
=l
1 A
i |
1

we need to: -
1. Obtain training data | 5
Training examples

2. Define features
3. Define classifier

—| Car/non-car
Classifier

Feature
extraction

59

B. Leibe

ide credit: Kristen Grauman

RWTH/ I CHEN
Recap: Histograms of Oriented Gradients (HOG)

« Holistic object representation Object/Non-object

.~ Localized gradient orientations

4
Linear SVM
T
Collect HOGs over
detecnon window

overlapping spanal cells

Weighted vote in spatial &
or1entatlon cells

Compute gradlents
t
Gamma compression
f
Image Window

\ |
‘ Contrast normahze over ‘
\ |
\ |

61

ide adapted from Navneet Dalal
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RWTH/ACHET
Recap: DPM Hypothesis Score
“data term”™ “spatial prior”
n i
score(po, ..., pn) =| 3 i - &(H, ps)| — (3 di - (da?, dy)
i=0 i=1 displacements
filters deformation parameters
score(z) = 8- U(H, z)

/N

concatenation filters and  concatenation of HOG
features and part
displacement features

deformation parameters

ide credit: Pedrg B. Leibe

63
[Felzenszwalb, McAllister, Ramanan, CVPR’08]
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RWTHZACHET]

Recap: Integral Channel Features
6 Orientation bins Sradient LUV color
n\agu(u(le channels

./-
_ﬁ (( '

RWTH/ACHET
Recap: Integral Channel Features

% o B

=y

¢ Generalize also block computation
» 1t order features:

<
E - Sum of pixels in rectangular region.
* Generalization of Haar Wavelet idea from Viola-Jones £ . 2nd-order features:
» Instead of only considering intensities, also take into account 5‘{ - Haar-like difference of sum-over-blocks
other feature channels (gradient orientations, color, texture). = .
» Still efficiently represented as integral images. ;% » Generalized Haar:
> - More complex combinations of weighted rectangles
@
P. Dollar, Z. Tu, P. Perona, S. Belongie. Integral Channel Features, 2 » Histograms
BMVC’09. § - Computed by evaluating local sums on quantized images.
B. Leibe o4 B. Leibe 05
RWTHCHEN

Recap: VeryFast Detector

¢ Idea 1: Invert the template scale vs. image scale relation

50 models,
1 image scale

1 model,
50 image scales

R. Benenson, M. Mathias, R. Timofte, L. Van Gool. Pedestrian Detection
at 100 Frames per Second, CVPR’12.
66

ide credit: Radricg B B. Leibe
TRWNTH/TCHE
Recap: VeryFast Classifier Construction
6 Orientation bins G'ad.ienl LUV color
magnitude channels
A — ~ -

MR A

score = wy-hy + wy - hy + +wy - hy
¢ Ensemble of short trees, learned by AdaBoost
68

ide credit: Rodrioq B B. Leibe
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Recap: VeryFast Detector

¢ |dea 2: Reduce training time by feature interpolation

5 models,
1 image scale

50 models,
1 image scale

¢ Shown to be possible for Integral Channel features
» P. Dollar, S. Belongie, Perona. The Fastest Pedestrian Detector
in the West, BMVC 2010.

67

ide adapted from Rodrieg Benensan B. Leibe

Course Outline

¢ Single-Object Tracking

» Background modeling

» Template based tracking

» Color based tracking

» Contour based tracking
Tracking by online classification
Tracking-by-detection

v

v

¢ Bayesian Filtering
» Kalman filter
» Particle filter

¢ Multi-Object Tracking
o Articulated Tracking

69
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http://vision.ucsd.edu/~pdollar/files/papers/DollarBMVC10FPDW.pdf
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Recap: Tracking as Inference

* Inference problem

» The hidden state consists of the true parameters we care about,
denoted X.

» The measurement is our noisy observation that results from the
underlying state, denoted Y.

» At each time step, state changes (from X, , to X,) and we get a
new observation Y,.

¢ Our goal: recover most likely state X, given
» All observations seen so far.
» Knowledge about dynamics of state transitions.

(o~ (x)
® ® ® .

B. Leibe

Computer Vision Il, Summer’14

ide credit: Kristen Grauman

RWTHCHEN
Recap: Prediction and Correction

¢ Prediction:

P(Xt [ Yor--es yt—l):_[‘P(Xt | Xt-1)P(Xt-1 [ Yos--es yt—l)dxt—l

Dynamics  Corrected estimate
model from previous step
e Correction: . .
Observation Predicted
model estimate

Py | XOP(X¢ | Yoo Yir)
Py I XO)P(X, [ Yor- - Y JAX,

B. Leibe

P(XI | yo--nryt):j

Computer Vision I, Summer’14

72

ide credit: Svetlanalazebnik.

RWTHCHEN
Recap: Constant Velocity Model (1D)

¢ State vector: position p and velocity v
X, = Pt P =Pt (At)vt—l +ée
Vi V=V, +¢

- 1 At Pia B
X, = DyX_, + noise = +noise
0 1]v,

(greek letters
denote noise
terms)

¢ Measurement is position only

¥, = Mx, +noise =[1 0{5’} +noise
t
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ide credit: S | azebnik K _Grauman B. Leibe
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Recap: Tracking as Induction

¢ Base case:

» Assume we have initial prior that predicts state in absence of
any evidence: P(X)

» At the first frame, correct this given the value of Y=y,
¢ Given corrected estimate for frame ¢:

» Predict for frame t+4-1

» Correct for frame ¢+1

p ct correct

71

ide credit: Svetlana | azebnik B. Lebe

Recap: Linear Dynamic Models

¢ Dynamics model
» State undergoes linear tranformation D, plus Gaussian noise

X ~N (Dtxt—l’z:d‘)

¢ Observation model
» Measurement is linearly transformed state plus Gaussian noise

yt~N(MtXt’zmt)

73

ide credit: S | azebnik K. Grauman B. Leibe
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RWTHCHEN
Recap: Constant Acceleration Model (1D)
¢ State vector: position p, velocity v, and acceleration a.
D, P =P+ AV, +& (greek letters
denote noise
X =Y Ve =V +(Aa, +& terms)
& a=a,+¢
1 At 0| p
X =D _ +noise={0 1 At| v, [+noise
0 0 1]a,
* Measurement is position only
P
Y, =Mx +noise=[L 0 0] v, |+noise
ide credit- S 1 azebnik K _Grauman 8. Leibe a‘ 7
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RWTHCHEN
Recap: General Motion Models

* Assuming we have differential equations for the motion
» E.g. for (undampened) periodic motion of a spring

Recap: The Kalman Filter

Know corrected state from
previous time step, and all
measurements up to the

Receive measurement

RWTHZACHE

Know prediction of state
and next measurement
->Update distribution
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d 2 p current one over current state.
- == p => Predict distribution over
dt next state.
e Substitute variables to transform this into linear system Time update Measurement update
_ dp d? p bt (“Predict”) (“Correct”)
p=p P, =—- Py =— 5
dt dt E
e Then we have a P(X“yo,_.,, yH) P(X,\yo,...(yp)
= + (At +& F
Pt Pie =P (a) P2 1 A0 .§ Mean al"ld std. dev. Time advances: t++ Mean and std. dev.
X = Py Py = Py (AP, +E D=| 0 1 At | of predicted state: of corrected state:
g - - + +
Ps; Pat =—Preat g -1 0 0 é- :th ' O-t ,th ) Ut
o
76 S 77
B. Leibe ide credit: Kristen Grauman B. Leibe
RWTHIACHE RWTH/ACHET
Recap: General Kalman Filter (>1dim) Recap: Kalman Filter
¢ What if state vectors have more than one dimension? ¢ Algorithm summary
» Assumption: linear model
PREDICT CORRECT X, = Dyx—y 44
K =M (MM +3, )" vm Mo
— = +
X =Dx, AR mJ . Prediction step
‘“Kalman gain’-- hal” -« Dxt
+ ] = : =
I = D'ELID[T +2d' X =X +EK1K % X X ,
. =(| —KtM g Z,T = sz!—lDf -+ SJ'
. dual :— » Correction step
More weight on residua = g T
VWhen measurement error é K, = M/ (M;E, M/ + Z’"r)
covariance approaches 0. 3 x = x + K, (yi — fo[—)
for derivations Less weight on residual as 2 = = 1I-KM)Z,
see F&P Chapter 1’7 3 a priori estimate error § t t
P . covariance approaches 0. © 79
ide credit: Kristen Grauman B. Leibe zal B. Leibe
RWTHIACHE RWTH/ACHET

Recap: Extended Kalman Filter (EKF)

¢ Algorithm summary
» Nonlinear model
X = glXi-1)+e
ye = hix:)+d

» Prediction step with the Jacobians

x = eglx,) o
= a3z ,clys, G, = 28X
()X X=x,
» Correction step .y -
K, = Zr Htf (H*St Hi +2"ir) ] H; = [)l;l'X}
X -

X=X,

xf = x +K;(ys—h(x;))
Th o= (I-KH)Z]

80

B. Leibe

Course Outline

¢ Single-Object Tracking

» Background modeling

» Template based tracking

» Color based tracking

» Contour based tracking
Tracking by online classification
Tracking-by-detection

v

v

¢ Bayesian Filtering
» Kalman filters
» Particle filters

¢ Multi-Object Tracking
o Articulated Tracking
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RWTHIACHE
Recap: Propagation of General Densities

pix pit)

stochastic diffusion

#lx)

reactive effect of measurement

B. Leibe

82

ide credit: Svetlanal azebnik

Figure from lsard & Blake!

Recap: Particle Filtering

¢ Many variations, one general concept:

» Represent the posterior pdf by a set of randomly chosen
weighted samples (particles)

Posterior
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Sample space
» Randomly Chosen = Monte Carlo (MC)
» As the number of samples become very large - the
characterization becomes an equivalent representation
of the true pdf.
85
ide adapted from Michael B. Leibe
RWTHCHEN

Recap: Sequential Importance Sampling
function {{x;.u*,’}j\: lJ = 81§ [{XLL- u-;fl}:v L y,J

n=0
for i = I:N

Initialize

Xp ~ q(X¢ X1, ¥¢)

Sample from proposal pdf|

Update weights

Update norm. factor

For a concrete algorithm,
we need to define the
importance density g(.|.)!

end
for i = I:N

wi = wiin Normalize weights

end

ide adapted from Michael

87

B. Leibe
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Recap: Factored Sampling

¥ prevabiity

— postenor
Hensity
® veged

@ amo QP © State *

¢ |dea: Represent state distribution non-parametrically
» Prediction: Sample points from prior density for the state, P(X)
» Correction: Weight the samples according to P(Y'|X)

Py | X)P(Xc | Yoo Yer)
P(Y, [ X P(X, ] Yor- s Ve JAX,

P(X( [ Yoreees yl):-[

ide credit: Svetlana | azebnik

B. Leibe

83

Eieure from lsard & Blakel

Recap: Sequential Importance Sampling

function {{x;.u*,’}j\: lJ = 81§ [{XLL- u-;fl}:v L y,J

=10
for i = I:N

X~ (XX, ¥e)

i Ji

plydxp(xilxi_y)

RWTHZACHE

Initialize

Sample from proposal pdf]
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wy =Wy : Update weights
q(xe/x; 1, ¥1)
n=n+ u.':: Update norm. factor

end
for i = I:N

w, =wi/n Normalize weights
end s
ide adapted from Michael B. Leibe

RWTH/ACHET

Recap: SIS Algorithm with Transitional Prior

function {{x;.u*,’}j\: lJ = 81§ [{XLL- u-;fl}:v L y,J

=10
for i = I:N

X, ~p(x %)

wy = wi p(yilxi)

Initialize

Sample from proposal pdf]

Update weights

n=n+ u.':: Update norm. factor
end Transitional prior
for i = I:N q(xe|xi_y,ye) = plxi|x; )
w, =wi/n Normalize weights

B. Leibe

88
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Recap: Resampling

¢ Degeneracy problem with SIS
» After a few iterations, most particles have negligible weights.

» Large computational effort for updating particles with very small
contribution to p(x, | y,,).

RWTH/ACHET
Recap: Efficient Resampling Approach

¢ From Arulampalam paper:

Algorithm 2: Resampling Algorithm
T AU I . N
W, wf, #1] = rResamers [, wi)Ys]
+ Initialize the CDF: ¢ =0
® FOR i =2: N,
— Construct CDF: ¢ = ¢i1 + wj

* Idea: Resampling * END EOR .
< + Start at the bottom of the CDF: ¢=1
» Eliminate particles with low importance weights and increase T e Draw a starting point: wu ~WU[0, N7
the number of particles with high importance weight. g % FOR j=1: N,
1 N § — Move along the CDF: a; = + NG =1)
{X;-w;};zlﬂ{xr'ﬁ} = ;tAH—IfiluJ)q ic i initi
A= 5i = ) e Basic idea: choose one initial
» The new set is generated by sampling with replacement from g B Asmén sample: x| = x| small random number; deter-
the discrete representation of p(x, | y,.,) such that K ~ Assign weight : 4 ; ministically sample the rest
; i 2 — Assign parent: by “crawling” up the cdf.
Pr {xj = x,’} =w/ 3 + END FOR This is O(N)!
89 S ) 90
ide adapted from Michael 8. Leibe ide adapted from Rohert Collin B. Leibe
RWTHIACHE RWTH/ACHET
Recap: Generic Particle Filter Outline of This Lecture
. iV Sy i N : : :
function |{xj,w;},_ | =PF |{x{_,wi ,}_ .y « Single-Object Tracking
: N i N . . .
Apply SIS filtering [{x}.u‘,’}_‘ lJ = SIS “x:_i. Wi b, .y,J ¢ Bayesian Filtering
» Kalman Filters, EKF
1 N :
Calculate Ny = W » Particle Filters
wy )’
. =10 * Multi-Object Trackin PN
if Nejp < Ny, : Ject g /e
5 » Data association w s
N N £ i
(i wi}.L, | = RESAMPLE [{x, w}} [, | S MHT g
@ » Network flow optimization s
end E : .
z e Articulated Tracking
¢ We can also apply resampling selectively 7 . GP body pose estimation
- Only resample when it is needed, i.e., NV, is too low. é_ ~ Pictorial Structures
= Avoids drift when there the tracked state is stationary. 3
ide adapted from Michael 8. Leibe o ”
RWTHIACHE RWTH/ACHET
Recap: Motion Correspondence Ambiguities Recap: Reducing Ambiguities
YRR 77N e . Gating P
I o 1 I o1 ® I o @ : s : /e IM
o', ', o » Only consider measurements within a certain '/
e~ - e~ - ¢~ - area around the predicted location. ¢ “x
° s ° ° ° = Large gain in efficiency, since only a small s
region needs to be searched
1. Predictions may not be supported by measurements . .
. Y pP y - % ¢ Nearest-Neighbor Filter
» Have the objects ceased to exist, or are they simply occluded? s R . . . P
= ~ Among the candidates in the gating region, , e )
2. There may be unexpected measurements E only take the one closest to the prediction x, . '. ,
isil j j ise? 3 k . k)R (k) (K | S
» Newly visible objects, or just noise? 2 21( ) — arg ‘m“_f(xt(;.{ —y! )I(X‘(’J ~ v ))
3. More than one measurement may match a prediction .§ . Better: the one most likely under a Gaussian prediction model
» Which measurement is the correct one (what about the others)? H z’“ﬂ — argmax; (\;‘[y(k=3. x(k,’ E“?)
s FAVAY G Rp S,
4. A measurement may match to multiple predictions é which is equivalent to taking the Mahalanobis distance
. Which object shall the measurement be assigned to? 0 g z = argming(x,; —y,)" E;_;(x‘r,‘g ¥ o
B. Leibe B. Leibe
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Recap: Track-Splitting Filter

¢ |dea

» Instead of assigning the measurement that is
currently closest, as in the NN algorithm,
select the sequence of measurements
that minimizes the total Mahalanobis distance
over some interval! e

Form a track tree for the different association decisions
Modified log-likelihood provides the merit of a particular
node in the track tree.

Cost of calculating this is low, since most terms are needed
anyway for the Kalman filter.

v

¢ Problem

» The track tree grows exponentially, may generate a very large
number of possible tracks that need to be maintained.

Computer Vision Il, Summer’14

95

B. Leibe

TOWTH/ACHEN
Recap: Pruning Strategies

¢ In order to keep this feasible, need to apply pruning
~ Deleting unlikely tracks
- May be accomplished by comparing the modified log-likelihood A(%),
which has a x? distribution with kn_ degrees of freedom, with a
threshold « (set according to x? distribution tables).

- Problem for long tracks: modified log-likelihood gets dominated by
old terms and responds very slowly to new ones.
= Use sliding window or exponential decay term.

» Merging track nodes
- If the state estimates of two track nodes are similar, merge them.
- E.g., if both tracks validate identical subsequent measurements.

» Only keeping the most likely N tracks
- Rank tracks based on their modified log-likelihood.

Computer Vision Il, Summer’14

. 96
B. Leibe

Outline of This Lecture
¢ Single-Object Tracking

¢ Bayesian Filtering
» Kalman Filters, EKF
» Particle Filters

¢ Multi-Object Tracking
» Data association
» MHT
» Network flow optimization

Articulated Tracking
» GP body pose estimation
~ Pictorial Structures

Computer Vision I, Summer’14

97
Image source; [Cox, 1Cv'93]

RWTH/ACHET
Recap: Multi-Hypothesis Tracking (MHT)

¢ Ideas

Instead of forming a track
tree, keep a set of hypotheses
that generate child hypotheses
based on the associations.
Enforce exclusion constraints
between tracks and measure-
ments in the assignment.
Integrate track generation into
the assignment process.

After hypothesis generation, [ reatere oceation
merge and prune the current

hypothesis set.

v

Hypothesse st time k- Hypotheses ut ticue k.
| i ry

ypothasis Manngeman
(pruning, merging)

iy pothesis Generst

i Ech Typothusss 05~
Generata Predictions

v

% Lk =y
FrosieiS Fuatores Hypothesia Matris

v

v

Rew Sensor Data

D. Reid, An Algorithm for Tracking Multiple Targets, IEEE Trans.
Automatic Control, Vol. 24(6), pp. 843-854, 1979.

B. Leibe
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Recap: Hypothesis Generation

¢ Create hypothesis matrix of the feasible associations

X1 XoXfe Xy
1 0 11 Y1
1111 Yo
6= 01 11 ¥s
00 1 1 Y4

¢ Interpretation

Columns represent tracked objects, rows encode measurements
A non-zero element at matrix position (,j) denotes that
measurement y, is contained in the validation region of track x;.
Extra column x, for association as false alarm.

v

Extra column x,, for association as new track.

Turn this hypothesis matrix
B. Leibe
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Image source; [Cox, 1)Cv'93]

TWNTH/TCHEN
Recap: Creating Assignhments
Z; ‘ X1 ‘ X ‘ Xfa ‘ Xt
Vi 0 0 1 0
Vs 1 0 0 0
Vs 0 1 0 0
Vs 0 0 0 1

¢ Impose constraints
» A measurement can originate from only one object.
= Any row has only a single non-zero value.
» An object can have at most one associated measurement per
time step.

= Any column has only a single non-zero value, except for x,, X,
100
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RWTHCHEN
Recap: Calculating Hypothesis Probabilities

¢ Probabilistic formulation
It is straightforward to enumerate all possible assignments.

However, we also need to calculate the probability of each child
hypothesis.

This is done recursively:
PO = p(z ol Yy ®)

v

RWTH/ACHET
Recap: Measurement Likelihood

¢ Use KF prediction
» Assume that a measurement y(” associated to a track x; has a
Gaussian pdf centered around the measurement prediction x(“

with innovation covariance E"“

» Further assume that the pdf of a measurement belonging to a
new track or false alarm is uniform in the observation volume W

<
. _ _ T (the sensor’s field-of-view) with probability 171,
Baye. (Y \Z") U:A 1\) [Z(” QL’E,)I) =
E » Thus, the measurement likelihood can be expressed as
—, ;(Y“’|Z”“ QCA—L )}( m (1)), (b1 2 My
" L (i) (i) = P (Y[”IZ R n) _ H,\( (k). & 2(#1) (=80
/ :% pli) —|'
Normalization Measurement Prob. of Prob. of ; B e M (A )
factor likelihood assignment set  parent 3 = W~ WartNocw H N ( b )
5
101 = 102
B. Leibe B. Leibe
RWTHCHEN RWTHCHEN
Recap: Probability of an Assignment Set Recap: Probability of an Assignment Set
;;(ZJ';'R"\ Slg‘r'j)”:] 2. Probability of a specific assignment of measurements

¢ Composed of three terms
1. Probability of the number of tracks Ny.;, Ny, Ny
- Assumption 1: N, follows a binomial distribution

Fecl=Dy = N _ (N=Na)
P(Nawtl ) = (Nd.‘f)p'“ (1= paer)

- Such that M; = Ny, + Ny, + N, holds.
- This is determined as 1 over the number of combinations

M;, M. — Nyt ) (_"‘.-f;,. — Nier — Npai )
Noet Niai Niew
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o

st
T 3. Probability of a specific assignment of tracks
@
i i i = - Given that a track can be either detected or not detected.
where N is the number of tracks in the parent hypothesis £ " ) _
a - This is determined as 1 over the number of assignments
- Assumption 2: Ny, and N,,,,, both follow a Poisson distribution =
with expected number of events A, W and A, W §
- ]
-1 Ny N v~ s
P(Naces Nyar, Nye wl“m i) ) = (Nd ) ) Past(1— Pace)t g
2 Npats At W)+ 11Ny Arpeos W g‘ = When combining the different parts, many terms cancel out!
al’ Afal new’ Anew
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Outline of This Lecture
¢ Single-Object Tracking

* Bayesian Filtering
» Kalman Filters, EKF
» Particle Filters

¢ Multi-Object Tracking
~» Data association
» MHT
» Network flow optimization

Articulated Tracking
» GP body pose estimation
~ Pictorial Structures

105
Image source; [Zhang, Li, Nevatia, CVPR'08]

Recap: Linear Assighment Formulation

¢ Form a matrix of pairwise similarity scores
e Example: Similarity based on motion prediction

» Predict motion for each trajectory and assign scores for each
measurement based on inverse (Mahalanobis) distance, such
that closer measurements get higher scores.

ail  ai2
* 1(30
i trackl __p---tH 2|50
£ fug 3 [60] 1o
@ . 4 (9.0 || 8.0
= a A 5 30
s AT
S &
2 track2
é » Choose at most one match in each row and column to maximize
3 sum of scores

106
ide credit: Robert Collin B. Leibe
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Recap: Linear Assighment Problem Recap: Optimal Solution

¢ Formal definition

N oM
» Maximize 5 E WigZif

i=15=1

¢ Greedy Algorithm
~ Easy to program, quick to run, and yields “pretty good”
solutions in practice.
~ But it often does not yield the optimal solution

subjectto >, 2 =13 i=1,2....N ¢ Hungarian Algorithm

Those constraints

* S mj=Lj=12 M U ensure that Z s a ® » There is an algorithm called Kuhn-Munkres or “Hungarian”
) i=1 "4 i [t : . Y algorithm specifically developed to efficiently solve the linear
£ ;€ {0,1} permutation matrix] E assignment problem.
@ ’ @ » Reduces assignment problem to bipartite graph matching.
= . . . = . When starting from an Nx N matrix, it runs in O(N3).
8 » The permutation matrix constraint ensures that we can only S .
2 match up one object from each row and column. 2 = If you need LAP, you should use it.
3 N M 8
= » Note: Alternatively, we can minimize . =
g cost rather than maximizing weights. argran z Z Cij%ij g
3 e S 108
ide adapted from Robert Collin: B. Leibe ide credit- Robert Collin B. Lebe
RWTHZACHET] RWTHZACHE

Recap: Min-Cost Flow Recap: Min-Cost Flow

23 -3
0 2 [+3] _° -2 0 g [-3]
O CTN & Gy T
0 -3 0 -3 :
4

4

-5
1

¢ Conversion into flow graph
» Pump N units of flow from source to sink.

=
=.°

-5
1

¢ Conversion into flow graph
» Transform weights into costs ; TR
» Add source/sink nodes with 0 cost.

» Directed edges with a capacity of 1.
ide credit: Rohert Collin B. Leibe

iy
» Internal nodes pass on flow (X flow in = X flow out).
= Find the optimal paths along which to ship the flow.

ide credit: Robert Collin B. Leibe

Computer Vision I, Summer’14
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RWTHZACHE

Recap: Min-Cost Flow Recap: Using Network Flow for Tracking

frame2 frame3

-3]

¢ Conversion into flow graph
» Pump N units of flow from source to sink.

e Complication 1
» Tracks can start later than frame1 (and end earlier than frame4)
. Internal nodes pass on flow (3 flow in = ¥ flow out). = Connect the source and sink nodes to all intermediate nodes.

= Find the optimal paths along which to ship the flow.

ide credit: Rohert Collin B. Leibe
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ide credit: Robert Collin B. Leibe




RWTHIACHE
Network Flow for Tracking

frame2

¢ Complication 2
» Trivial solution: zero cost flow!

Computer Vision Il, Summer’14

) 13
ide credit: Rohert Collin B. Lebe

RWTH/ACHET
Recap: Network Flow Approach
Solution: Divide

each detection
into 2 nodes

Ur—>N

Uy—>

time 0

)
(CAD) (Vi) (s,u;) & (vif)
Observation edges  Transition edges  Enter/exit edges

Zhang, Li, Nevatia, Global Data Association for Multi-Object Tracking
using Network Flows, CVPR’08.

Computer Vision Il, Summer’14
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image source: [Zhang, Li, Nevatija, CVPR’08

Recap: Min-Cost Formulation

e Objective Function
T*= arg;rlin Z Cin,ifin,i + E Ci,outfi,uut
i i

+2Cijfig + 2 Cifi
7 i

Al <
"g e subject to E . Data association
E » Flow conservation at all nodes £ » MHT
7] ~ =~ . @ imizati
2 Fini + L Fii=fi= fouri+ L Fig Vi 2 » Network flow optimization
c c
2 ! ! 71 * Articulated Tracking -
§ » Edge capacities ; ~ GP body pose estimation ,,_1\
3 fi<1 2 . Pictorial Structures \
15 116
ide credit: 1aura leal 8. Leibe Image sources; Tomasz Svoboda, Deva Ramana

Outline of This Lecture
¢ Single-Object Tracking

¢ Bayesian Filtering
» Kalman Filters, EKF
» Particle Filters

¢ Multi-Object Tracking

TOWNTHITCHEN
Recap: Basic Pose Estimation Approaches

¢ Global methods 1\
» Entire body configuration is treated as a point il
in some high-dimensional space. 4

» Observations are also global feature vectors. !

= View of pose estimation as a high-dimensional
regression problem.

= Often in a subspace of “typical” motions...

¢ Part-based methods
~ Body configuration is modeled as an assembly
of movable parts with kinematic constraints.
» Local search for part configurations that
provide a good explanation for the observed
appearance under the kinematic constraints.
= View of pose estimation as probabilistic
inference in a dynamic Graphical Model.
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RWTHCHEN
Recap: Advantage of Silhouette Data

¢ Synthetic training data generation possible!
» Create sequences of ,Pose + Silhouette“ pairs
~ Poses recorded with Mocap, used to animate 3D model
» Silhouette via 3D rendering pipeline

Orientation (m)\

it

H

£

a Motion

= Capture —_— —_—

s

]

>

8

=

=3

=

3 Pose Data (p) 3D Rendering Silhouettes (s)
ide adapted from Stefan B. Leibe
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Recap: Latent Variable Models

x n

Low-dim. latent space (X) Joint angle pose space (¥)

* Joint angle pose space is huge!
» Only a small portion contains valid body poses.
= Restrict estimation to the subspace of valid poses for the task
» Latent variable models: PCA, FA, GPLVM, etc.

Computer Vision Il, Summer’14
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119
image source: R. Urtasul

Recap: Learning a Generative Mapping
Body Pose _ - ==~ _Learn dim. red. (LLE)
_- <5
X : Body Pose X : Body Pose
(high dim.) reconstruct | (low dim.)
pose
E dynamic pri
g

: s
& 2
3 % | likelihood
£
£ &
7}
= T _— :
§ projection (BpcA Y : Appearance
g (h b «———|Descriptor: (low dim.)|
g Appearance
=3
=
S
(5}

T. Jaeggli, E. Koller-Meier, L. Van Gool, “Learning Generative Models for

Monocular Body Pose Estimation”, ACCV 2007. 121

ide credit: Tobias Jaegoli

TOWNTHITCHEN
Recap: GP Prediction w/ Noisy Observations

¢ Calculation of posterior:
» Corresponds to conditioning the joint Gaussian prior distribution
on the observations:

f.|X., X, t ~ N(f,,cov[f,]) f, = E[f.|X,X,,t]

> with:
f, = K(X.,X) (K(X,X)+o1) "t

covlf] = K(X,,X.) - K(X., X) (K(X, X)+o21) "

K(X,X.)
= This is the key result that defines Gaussian process regression!
- The predictive distribution is a Gaussian whose mean and variance

depend on the test points X. and on the kernel k(x,x’), evaluated
on the training data X.
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ide credit: Bernt Schiele B. Leibe
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Recap: Articulated Motion in Latent Space

walking cycles have one
main (periodic) DOF

additional DOF encode
w»walking style

* Regression from latent space to

. Pose —> p(pose | z)

» Silhouette p(silhouette | z)
¢ Regressors need to be learned from training data.
ide adapted from Stefan B. Leibe 120

RWTHCHEN
Recap: Gaussian Process Regression
e “Regular” regression: y = f(x)
_ flx)

¢ GP regression:

py[x) ~ N(p(x),o(x))

- b(x)+ox)

<
r
T
3
E
E
>
12
=
o
]
5
>
]
3
=3
£
o
o

—
o . B (x)
- < B X)-o(x)
122
ide credit: Stefan B. Leibe
RWTHZACHE
Recap: Articulated Multi-Person Tracking
1...N
(Multi-Person Tracker ) (Articulated Tracker Trocklet;

Segmentation

Shape prediction Body Pose/

¢ Idea: Only perform articulated tracking where it’s easy!
e Multi-person tracking

~ Solves hard data association problem
e Articulated tracking

~ Only on individual “tracklets” between occlusions

» GP regression on full-body pose

124
i schi " Gool. Fccv'os]
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Outline of This Lecture
¢ Single-Object Tracking

¢ Bayesian Filtering
» Kalman Filters, EKF
» Particle Filters

¢ Multi-Object Tracking
~ Data association
» MHT
» Network flow optimization

o Articulated Tracking
» GP body pose estimation
» Pictorial Structures

Computer Vision Il, Summer’14

Image sources; Tomasz Svoboda, Deva Ramanal

RWTHCHEN
Recap: Model Components

¢ Body is represented as flexible combination of parts
posterior over body poses

v
P(LIE) o< p(E[L)p(L)
A7 ~

likelihood of observations prior on body poses

-
&
= . . likelihood
£ orientation K of part N estimated ~ part
g - pose posteriors
@a o
= Local vl

e
- Features AdaBoost [y = £ #
2 ¢ e
2 [~ St
- 't i
2
H : :

-
: : :
® 127
ide adapted from Bernt Schiele B Leibe

Recap: Likelihood Model

e Assumption

» Evidence (image features) for each part
independent of all other parts
N

p(E|L) = [ p(EIL)
i=0

t4| * Many variants proposed in the past
é » Based on rectangular fg regions
@ ~ Based on color/edge models
= ~ Based on AdaBoost classifiers
s .
H Person
£ model
2
=
o
o

ide credit: Bernt Schiele B. Leibe
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Recap: Pictorial Structures

¢ Each body part one variable node
» Torso, head, etc. (11 total)

¢ Each variable represented as tupel
> E.8., Yoo = (2,y,0,s) With
» (z,y) image coordinates
» 0 rotation of the part
» Sscale

¢ Discretize label space y into L states
» E.g., size of L for y = (z,y,0,s)
» L =125 x 125 x 8 x 4 ~ 500°000
= Efficient search needed to make this feasible!

P. Felzenszwalb, D. Huttenlocher, Pictorial Structures for Object Recognition,
1JCV, Vol. 61(1), 2005.

126

ide adapted from Bernt Schiele B. Lebe

Recap: Kinematic Tree Prior

¢ Notation
» (from [Andriluka et al., IJCV’12])
» Body configuration

L={lpIi,....In}

. Each body part: I, = (z;, y;, 0;, s;) ° o
e Prior o o

(ij)et
» with p(l,) assumed uniform I *
-~ withp(l; | 1)) .m.odeled using a Gaussian in the o=l
transformed joint space .
P“i ",1) =N (T,‘l['!i-] TH(“‘JJ ‘-”’u' Eu)
ide credit: Bernt Schiele B. Leibe %
RWTHCHEN

Pictorial Structures

¢ Potentials (= energies = factors)
» Unaries for each body part (torso, head, ...
» Pairwise between connected body parts

¢ Body pose estimation
» Find most likely part location
= Sum-product algorithm (marginals)
» Find the best overall configuration
= Max-sum algorithm (MAP estimate)

Complexity
» Let k be the number of body parts (e.g., k =10)
» L is the size of the label space (e.g., several 100k)
> Max-sum algorithm in general: O(k L?)

» For specific pairwise potentials: O(k L)
ide adapted from Bernt Schiele B. Leibe
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Recap: Efficient Inference

¢ Assume d to have quadratic form
dily,lo) = || = Titho)|[*

e Then I,Hi,“ (mo(lo) +my(ly) +d(l, o)

o.l1

= 11}111 (”h]“‘r;] + 11{1111(1:11(1'\ )+ (i’(i’].!‘ﬂ“)

Mobile Tracking in Densely Populated Se‘ttih'gs !

th.onlly,"no -tiei:e

-

- p v 253 < i ;
(Tracking based on stereo dep

by
ctor verification) 4,
ID _Mitzel B, leibe ECCV'12]
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g » with the second term a generalized distance transform (gDT).
5 » Algorithms exist to compute gDT efficiently.
5 + Thus = min (mo(lo) + DT, (T1(la))
o a
S . .
5 with DTH,,[TI(FI»]_]=11’1111{”‘1“\)+“’“‘I-"u]}
3 1
g = Finding the best part configuration can be done sequentially,
3 rather than simultaneously! .
ide credit: Bernt Schiele B. Leibe
UNIVE Y
Any Questions?
b So what can you do with all of this?
g
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3
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UNIVEF
Recap: Example Part Model of Motorbikes

¢ Model

» 2 parts (use both wheels),
mo(lo)

simple translation between
them given by (x,y) position

. m(l)
1. Part unaries (log prob)

= my(ly) and my(l)

2. Distance transform of m, (1)

DT, (T1(lo))

3. Simply find minimum of sum

u{u’u (mo(lo) + DT, (T1(1n)))
0
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Classifying Interactions with Objects
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Articulated Multi-Person Tracking

e Multi-Person tracking
» Recover trajectories and solve data association

¢ Articulated Tracking
» Estimate detailed body pose for each tracked person

Computer Vision Il, Summer’14

144 ; 145
IG Ess, Jaeggli i Leibe, Van Gool, ECCV’08 B. Leibe [G. Floros, B. Leibe, CVPR’12

RWTHZACHET]

Integrated 3D Point Cloud Labels Any More Questions?

Good luck for the exam!
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