Computer Vision II - Lecture 14

Articulated Tracking II

10.07.2014

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de
leibe@vision.rwth-aachen.de

Outline of This Lecture

- Single-Object Tracking
- Bayesian Filtering
, Kalman Filters, EKF
, Particle Filters
- Multi-Object Tracking
, Data association
, MHT, (JPDAF, MCMCDA)
, Network flow optimization
- Articulated Tracking
, GP body pose estimation
> (Model-based tracking, AAMs)
> Pictorial Structures

Topics of This Lecture

- Articulated Tracking
, Motivation
- Classes of Approaches
- Body Pose Estimation as High-Dimensional Regression
, Representations
, Training data generation
, Latent variable space
, Learning a mapping between pose and appearance
- Review: Gaussian Processes
, Formulation
, GP Prediction
, Algorithm
- Applications
. Articulated Tracking under Egomotion

Basic Classes of Approaches

- Global methods
, Entire body configuration is treated as a point in some high-dimensional space.
, Observations are also global feature vectors.
\Rightarrow View of pose estimation as a high-dimensional regression problem.
\Rightarrow Often in a subspace of "typical" motions...
- Part-based methods

, Body configuration is modeled as an assembly of movable parts with kinematic constraints.
, Local search for part configurations that provide a good explanation for the observed appearance under the kinematic constraints.
\Rightarrow View of pose estimation as probabilistic inference in a dynamic Graphical Model.

Recap: Advantage of Silhouette Data

- Synthetic training data generation possible!
, Create sequences of „Pose + Silhouette" pairs
, Poses recorded with Mocap, used to animate 3D model
, Silhouette via 3D rendering pipeline

Pose Data (p)
3D Rendering
B. Leibe

Silhouettes (s)

Recap: Latent Variable Models

- Joint angle pose space is huge!
, Only a small portion contains valid body poses.
\Rightarrow Restrict estimation to the subspace of valid poses for the task
, Latent variable models: PCA, FA, GPLVM, etc.

Recap: Articulated Motion in Latent Space

walking cycles have one main (periodic) DOF

additional DOF encode
 "walking style"

- Regression from latent space to
, Pose
$\longrightarrow p($ pose $\mid \mathbf{z})$
, Silhouette
$\longrightarrow p($ silhouette $\mid \mathbf{z})$
- Regressors need to be learned from training data.

Slide adapted from Stefan Gammeter

B. Leibe

Recap: Learning a Generative Mapping

T. Jaeggli, E. Koller-Meier, L. Van Gool, "Learning Generative Models for Monocular Body Pose Estimation", ACCV 2007.

Recap: Gaussian Process Regression

- "Regular" regression: $\quad y=f(x)$

- GP regression: $\quad p(y \mid \mathbf{x}) \sim \mathcal{N}(\mu(\mathbf{x}), \sigma(\mathbf{x}))$

Recap: GP Prediction w/ Noisy Observations

- Calculation of posterior:
, Corresponds to conditioning the joint Gaussian prior distribution on the observations:

$$
\mathbf{f}_{\star} \mid X_{\star}, X, \mathbf{t} \sim \mathcal{N}\left(\overline{\mathbf{f}}_{\star}, \operatorname{cov}\left[\mathbf{f}_{\star}\right]\right) \quad \overline{\mathbf{f}}_{\star}=\mathbb{E}\left[\mathbf{f}_{\star} \mid X, X_{\star}, \mathbf{t}\right]
$$

, with:

$$
\begin{aligned}
\overline{\mathbf{f}_{\star}} & =K\left(X_{\star}, X\right)\left(K(X, X)+\sigma_{n}^{2} I\right)^{-1} \mathbf{t} \\
\operatorname{cov}\left[\mathbf{f}_{\star}\right] & =K\left(X_{\star}, X_{\star}\right)-K\left(X_{\star}, X\right)\left(K(X, X)+\sigma_{n}^{2} I\right)^{-1} K\left(X, X_{\star}\right)
\end{aligned}
$$

\Rightarrow This is the key result that defines Gaussian process regression!

- The predictive distribution is a Gaussian whose mean and variance depend on the test points X_{*} and on the kernel $k\left(x, x^{\prime}\right)$, evaluated on the training data X.

RWMHAAC racking
 Recap: Articulated Multi-Person Tracking

- Idea: Only perform articulated tracking where it's easy!
- Multi-person tracking
, Solves hard data association problem
- Articulated tracking
, Only on individual "tracklets" between occlusions
, GP regression on full-body pose

Topics of This Lecture

- Pictorial Structures
, Model components
, Prior
, Likelihood Model
- Recap: Inference
, Sum-Product algorithm
, Max-Sum algorithm
- Efficient Inference in Pictorial Structures
, Generalized Distance Transform
, Effect on Computation
- Results

Today: Pictorial Structures

Computer Vision II, Summer'14

- Pose estimation as inference in a graphical model
> [Fischler \& Elschlaeger, 1973; Felzenszwalb \& Huttenlocher, 00]
Slide adapted from Bernt Schiele
B. Leibe

Pictorial Structures

- Each body part one variable node
, Torso, head, etc. (11 total)
- Each variable represented as tupel
, E.g., $y_{\text {torso }}=(x, y, \theta, s)$ with
> (x, y) image coordinates
> θ rotation of the part
> s scale
- Discretize label space y into L states

, E.g., size of L for $y=(x, y, \theta, s)$
, $L=125 \times 125 \times 8 \times 4 \approx 500$ '000
\Rightarrow Efficient search needed to make this feasible!
P. Felzenszwalb, D. Huttenlocher, Pictorial Structures for Object Recognition, IJCV, Vol. 61(1), 2005.

Recap: Factor Graphs

- Joint probability
, Can be expressed as product of factors: $p(\mathbf{x})=\frac{1}{Z} \prod_{s} f_{s}\left(\mathbf{x}_{s}\right)$
, Factor graphs make this explicit through separate factor nodes.
- Converting a directed polytree
, Conversion to undirected tree creates loops due to moralization!
, Conversion to a factor graph again results in a tree!

Two Model Components

- Prior $p(L)$
- Models kinematic dependencies between body parts
, Tree-structured prior (constraints b/w body parts) lead to efficient inference
, Generalized distance transform provide additional efficiency

- Likelihood of body parts $p(E \mid L)$
, Models possible appearances of body parts
, Substantial improvements in recent years in appearance modeling and detection
- Finding body parts = Pose estimation

RWHH onents
 Pictorial Structures: Model Components

- Body is represented as flexible combination of parts posterior over body poses
$p(L \mid E) \propto p(E \mid L) p(L)$

likelihood of observations
prior on body poses

RWHH onents
 Pictorial Structures: Model Components

- Body is represented as flexible combination of parts posterior over body poses

$$
p(L \mid E) \propto p(E \mid L) p(L)
$$

likelihood of observations
prior on body poses

Slide adapted from Bernt Schiele
B. Leibe

Human Body Pose Models - Prior $p(L)$

- E.g., [Felzenszwalb \& Huttenlocher, IJCV’05]

- E.g., [Andriluka et al., IJCV' ${ }^{12]}$

Slide credit: Bernt Schiele
B. Leibe

Pictorial Structures

- Potentials (= energies = factors)
, Unaries for each body part (torso, head, ...)
, Pairwise between connected body parts
- Body pose estimation
, Find most likely part location
\Rightarrow Sum-product algorithm (marginals)

, Find the best overall configuration
\Rightarrow Max-sum algorithm (MAP estimate)
- Complexity
, Let k be the number of body parts (e.g., $k=10$)
> L is the size of the label space (e.g., several 100k)
, Max-sum algorithm in general: $\mathcal{O}\left(k L^{2}\right)$
, For specific pairwise potentials: $\mathcal{O}(k L)$

Kinematic Tree Prior

- Notation
, (from [Andriluka et al., IJCV'12])
- Body configuration

$$
L=\left\{l_{0}, l_{1}, \ldots, l_{N}\right\}
$$

, Each body part: $l_{i}=\left(x_{i}, y_{i}, \theta_{i}, s_{i}\right)$

- Prior

$$
p(L)=p\left(l_{0}\right) \prod_{(i, j) \in G} p\left(l_{i} \mid l_{j}\right)
$$

, with $p\left(l_{0}\right)$ assumed uniform
, with $\mathrm{p}\left(l_{i} \mid l_{j}\right)$ modeled using a Gaussian

Kinematic Tree Prior

- Gaussian assumption for $\mathrm{p}\left(l_{i} \mid l_{j}\right)$
, This may seem like a significant limitation.
> E.g., distribution of forearm configuration given the upper arm is semi-circular, rather than Gaussian!

- Solution
[Felzenszwalb \& Huttenlocher, IJCV’05]
, Transform part configuration l_{i} into coordinate system of the joint, where the distribution is captured well by a Gaussian:

$$
T_{j i}\left(l_{i}\right)=\left[\begin{array}{c}
x_{i}+s_{i} d_{x}^{j i} \cos \theta_{i}-s_{i} d_{y}^{j i} \sin \theta_{i} \\
y_{i}+s_{i} d_{x}^{j i} \sin \theta_{i}+s_{i} d_{y}^{j i} \cos \theta_{i} \\
\theta_{i} \\
s_{i}
\end{array}\right]
$$

, with $d^{j i}=\left[\begin{array}{l}d_{x}^{j i} \\ d_{y}^{j i}\end{array}\right] \begin{aligned} & \text { position of the joint between parts } i \text { and } j, \\ & \text { represented in the coordinate system of part } i \\ & 22\end{aligned}$

Kinematic Tree Prior

- Represent pairwise part relations

$$
\begin{aligned}
p(L) & =p\left(l_{0}\right) \prod_{(i, j) \in G} p\left(l_{i} \mid l_{j}\right) \\
p\left(l_{i} \mid l_{j}\right) & =\mathcal{N}\left(T_{j i}\left(l_{i}\right)-T_{i j}\left(l_{j}\right) \mid \boldsymbol{\mu}_{i j}, \boldsymbol{\Sigma}_{i j}\right)
\end{aligned}
$$

Computer Vision II, Summer'14

Slide credit: Bernt Schiele
B. Leibe

Kinematic Tree Prior

- Prior parameters $\left\{T_{i j}, \Sigma_{i j}\right\}$
, Learned using maximum likelihood

Slide credit: Bernt Schiele

Several independent samples

24
Computer Vision II, Summer'14

Pictorial Structures: Model Components

- Body is represented as flexible combination of parts posterior over body poses

$$
p(L \mid E) \propto p(E \mid L) p(L)
$$

likelihood of observations
prior on body poses

Computer Vision II, Summer'14

[^0]B. Leibe

Likelihood Model

- Assumption
, Evidence (image features) for each part independent of all other parts

$$
p(E \mid L)=\prod_{i=0}^{N} p\left(E \mid l_{i}\right)
$$

- The assumption is clearly not correct, but
, Allows efficient computation
, Works rather well in practice
, Training data for different body parts should cover "all" appearances

Likelihood Model

- Many variants have been proposed over the years...
, [Felzenszwalb, IJCV’05]
- Modeled using rectangular parts based on fg/bg probabilities
$-N_{1}$: \#fg pixels inside rectangle
$-A_{1}$: size of rectangle
$-N_{2}: \# f g$ pixels inside border
$-A_{2}$: size of border area

$-t$: \#pixels in image
- Part likelihood

$$
p\left(E \mid l_{i}\right)=q_{1}^{N_{1}}\left(1-q_{1}^{A_{1}-N_{1}}\right) q_{2}^{N_{2}}\left(1-q_{2}^{A_{2}-N_{2}}\right) 0.5^{t-A_{1}-A_{2}}
$$

Likelihood Model

- Many variants have been proposed over the years...
, [Felzenszwalb, IJCV’05]
, [Ramanan, PAMI'07]
- Learn person-specific body part appearance models by clustering
- Initially only color models
- Later extended by edge models [NIPS'06]

Likelihood Model

- Many variants have been proposed over the years...
, [Felzenszwalb, IJCV’05]
, [Ramanan, PAMI’07]
> [Andriluka, IJCV'12]
- Boosted classifiers based on local feature descriptors
 (e.g., Shape context, SIFT)
- Part likelihood derived from Boosting score

$$
\begin{aligned}
& \text { Decision stump weight } \\
& \underset{p}{ }\left(E \mid l_{i}\right)=\max \left(\frac{\sum_{t} \alpha_{i, t} h_{t}\left(e_{i}\left(l_{i}\right)\right)}{\sum_{t} \alpha_{i, t}}, \varepsilon_{0}\right) \\
& \text { Small constant to deal } \\
& \text { location } \\
& \text { with partial occlusions }
\end{aligned}
$$

Part location

Likelihood Models - Part Likelihoods

Topics of This Lecture

- Pictorial Structures
, Model components
, Prior
, Likelihood Model
- Recap: Inference
, Sum-Product algorithm
, Max-Sum algorithm
- Efficient Inference in Pictorial Structures
, Generalized Distance Transform
, Effect on Computation
- Results

Recap: Sum-Product Algorithm

- Objectives
, Efficient, exact inference algorithm for finding marginals.
- Procedure:
, Pick an arbitrary node as root.
> Compute and propagate messages from the leaf nodes to the root, storing received messages at every node.
, Compute and propagate messages from the root to the leaf nodes, storing received messages at every node.
, Compute the product of received messages at each node for which the marginal is required, and normalize if necessary.

$$
p(x) \propto \prod_{s \in \operatorname{ne}(x)} \mu_{f_{s} \rightarrow x}(x)
$$

- Computational effort
, Total number of messages $=2$. number of graph edges.

Recap: Sum-Product Algorithm

- Two kinds of messages
- Message from factor node to variable nodes:
- Sum of factor contributions

$$
\begin{aligned}
\mu_{f_{s} \rightarrow x}(x) & \equiv \sum_{X_{s}} F_{s}\left(x, X_{s}\right) \\
& =\sum_{X_{s}} f_{s}\left(\mathbf{x}_{s}\right) \prod_{m \in \operatorname{ne}\left(f_{s}\right) \backslash x} \mu_{x_{m} \rightarrow f_{s}}\left(x_{m}\right)
\end{aligned}
$$

, Message from variable node to factor node:

- Product of incoming messages

$$
\mu_{x_{m} \rightarrow f_{s}}\left(x_{m}\right) \equiv \prod_{l \in \operatorname{ne}\left(x_{m}\right) \backslash f_{s}} \mu_{f_{l} \rightarrow x_{m}}\left(x_{m}\right)
$$

\Rightarrow Simple propagation scheme.

Recap: Sum-Product from Leaves to Root

Message definitions:

$$
\begin{aligned}
& \mu_{f_{s} \rightarrow x}(x) \equiv \sum_{X_{s}} f_{s}\left(\mathbf{x}_{s}\right) \prod_{m \in \operatorname{ne}\left(f_{s}\right) \backslash x} \mu_{x_{m} \rightarrow f_{s}}\left(x_{m}\right) \\
& \mu_{x_{m} \rightarrow f_{s}}\left(x_{m}\right) \equiv \prod_{l \in \operatorname{ne}\left(x_{m}\right) \backslash f_{s}} \mu_{f_{l} \rightarrow x_{m}}\left(x_{m}\right) \\
& \xrightarrow{ } \xrightarrow{\mu_{x \rightarrow f}(x)}=1
\end{aligned}
$$

Recap: Sum-Product from Root to Leaves

Computer Vision II, Summer'14

 Message definitions:
 $$
\begin{aligned} \mu_{f_{s} \rightarrow x}(x) & \equiv \sum_{X_{s}} f_{s}\left(\mathbf{x}_{s}\right) \prod_{m \in \operatorname{ne}\left(f_{s}\right) \backslash x} \mu_{x_{m} \rightarrow f_{s}}\left(x_{m}\right) \\ \mu_{x_{m} \rightarrow f_{s}}\left(x_{m}\right) & \equiv \prod_{l \in \operatorname{ne}\left(x_{m}\right) \backslash f_{s}} \mu_{f_{l} \rightarrow x_{m}}\left(x_{m}\right) \end{aligned}
$$

Recap: Max-Sum Algorithm

- Objective: an efficient algorithm for finding
, Value $\mathbf{x}^{\text {max }}$ that maximises $p(\mathbf{x})$;
, Value of $p\left(\mathbf{x}^{\max }\right)$.
\Rightarrow Application of dynamic programming in graphical models.
- Key ideas
. We are interested in the maximum value of the joint distribution

$$
p\left(\mathbf{x}^{\max }\right)=\max _{\mathbf{x}} p(\mathbf{x})
$$

\Rightarrow Maximize the product $p(\mathbf{x})$.
, For numerical reasons, use the logarithm.

$$
\ln \left(\max _{\mathbf{x}} p(\mathbf{x})\right)=\max _{\mathbf{x}} \ln p(\mathbf{x})
$$

\Rightarrow Maximize the sum (of log-probabilities).

Recap: Max-Sum Algorithm

- Initialization (leaf nodes)

$$
\mu_{x \rightarrow f}(x)=0 \quad \mu_{f \rightarrow x}(x)=\ln f(x)
$$

- Recursion

$$
\begin{aligned}
& \text { Messages } \\
& \begin{aligned}
\mu_{f \rightarrow x}(x) & =\max _{x_{1}, \ldots, x_{M}}\left[\ln f\left(x, x_{1}, \ldots, x_{M}\right)+\sum_{m \in \operatorname{ne}\left(f_{s}\right) \backslash x} \mu_{x_{m} \rightarrow f}\left(x_{m}\right)\right] \\
\mu_{x \rightarrow f}(x) & =\sum_{l \in \operatorname{ne}(x) \backslash f} \mu_{f_{l} \rightarrow x}(x)
\end{aligned}
\end{aligned}
$$

. For each node, keep a record of which values of the variables gave rise to the maximum state:

$$
\phi(x)=\underset{x_{1}, \ldots, x_{M}}{\arg \max }\left[\ln f\left(x, x_{1}, \ldots, x_{M}\right)+\sum_{m \in \operatorname{ne}\left(f_{s}\right) \backslash x} \mu_{x_{m} \rightarrow f}\left(x_{m}\right)\right]
$$

Recap: Max-Sum Algorithm

- Termination (root node)
, Score of maximal configuration

$$
p^{\max }=\max _{x}\left[\sum_{s \in \operatorname{ne}(x)} \mu_{f_{s} \rightarrow x}(x)\right]
$$

. Value of root node variable giving rise to that maximum

$$
x^{\max }=\underset{x}{\arg \max }\left[\sum_{s \in \operatorname{ne}(x)} \mu_{f_{s} \rightarrow x}(x)\right]
$$

. Back-track to get the remaining variable values

$$
x_{n-1}^{\max }=\phi\left(x_{n}^{\max }\right)
$$

Topics of This Lecture

- Pictorial Structures
, Model components
, Prior
, Likelihood Model
- Recap: Inference
, Sum-Product algorithm
, Max-Sum algorithm
- Efficient Inference in Pictorial Structures
, Generalized Distance Transform
- Effect on Computation
- Results

Efficient Inference

- Best location given by MAP

$$
\begin{aligned}
\max _{L} p(L \mid E) & =\max _{L} \prod_{i=0}^{N}\left(p\left(l_{i} \mid l_{0}\right) p\left(e_{i} \mid l_{i}\right)\right) \\
& =\min _{L} \sum_{i=0}^{N}\left(-\ln p\left(l_{i} \mid l_{0}\right)-\ln p\left(e_{i} \mid l_{i}\right)\right)
\end{aligned}
$$

, Consider case of 2 parts

$$
\min _{l_{0}, l_{1}}\left(-\ln p\left(e_{0} \mid l_{0}\right)-\ln p\left(e_{1} \mid l_{1}\right)-\ln p\left(l_{1} \mid l_{0}\right)\right)
$$

. Rename things

$$
=\min _{l_{0}, l_{1}}\left(m_{0}\left(l_{0}\right)+m_{1}\left(l_{1}\right)+d\left(l_{1}, l_{0}\right)\right)
$$

Efficient Inference

- Assume d to have quadratic form

$$
d\left(l_{1}, l_{0}\right)=\left\|l_{1}-T_{1}\left(l_{0}\right)\right\|^{2}
$$

- Then

$$
\begin{aligned}
& \min _{l_{0}, l_{1}}\left(m_{0}\left(l_{0}\right)+m_{1}\left(l_{1}\right)+d\left(l_{1}, l_{0}\right)\right) \\
= & \min _{l_{0}}\left(m_{0}\left(l_{0}\right)+\min _{l_{1}}\left(m_{1}\left(l_{1}\right)+d\left(l_{1}, l_{0}\right)\right)\right)
\end{aligned}
$$

, with the second term a generalized distance transform (gDT).
, Algorithms exist to compute gDT efficiently.
, Thus $=\min _{l_{0}}\left(m_{0}\left(l_{0}\right)+D T_{m_{1}}\left(T_{1}\left(l_{0}\right)\right)\right)$
\Rightarrow Finding the best part configuration can be done sequentially, rather than simultaneously!

Distance Transform

- Given points $p \in P$ on a grid (e.g., image) G
> Distance Transform associates to each location $x \in G$ the distance to the nearest point $p \in P$

$$
D T_{P}(x)=\min _{p \in P}\{d(x, p)\}
$$

, or equivalent

$$
D T_{P}(x)=\min _{q \in G}\{d(x, q)+1(q)\}
$$

$$
1(q)= \begin{cases}0 & \text { if } q \in P \\ \infty & \text { otherwise }\end{cases}
$$

- Example

$$
\begin{aligned}
& d(x, q)=|x-q| \\
& D T_{P}(x)=\min _{q \in G}\{|x-q|+1(q)\}
\end{aligned}
$$

Generalized Distance Transform

- Replace binary function $1(q)$ with general function $f(q)$

$$
D T_{f}(x)=\min _{q \in G}\{d(x, q)+f(q)\}
$$

, We can assign "soft membership of all grid elements to P.
> $f(q)$ is sampled on the entire grid G.

- In our case
, f corresponds to m_{1}.
, Distance corresponds to $d\left(l_{1}, l_{0}\right)=\left\|l_{1}-T_{1}\left(l_{0}\right)\right\|^{2}$

$$
D T_{m_{1}}\left(T_{1}\left(l_{0}\right)\right)=\min _{l_{1}}\left\{m_{1}\left(l_{1}\right)+d\left(l_{1}, l_{0}\right)\right\}
$$

Example: Part Model of Motorbikes

- Model
> 2 parts (use both wheels), simple translation between them given by (x, y) position

1. Part unaries (log prob)

- $m_{0}\left(l_{0}\right)$ and $m_{1}\left(l_{1}\right)$

2. Distance transform of $m_{1}\left(l_{1}\right)$
3. Simply find minimum of sum

$D T_{m_{1}}\left(T_{1}\left(l_{0}\right)\right)$

$$
\min _{l_{0}}\left(m_{0}\left(l_{0}\right)+D T_{m_{1}}\left(T_{1}\left(l_{0}\right)\right)\right)
$$

44

Topics of This Lecture

- Pictorial Structures
, Model components
, Prior
, Likelihood Model
- Recap: Inference
, Sum-Product algorithm
- Max-Sum algorithm
- Efficient Inference in Pictorial Structures
, Generalized Distance Transform
, Effect on Computation
- Results

Results

- Tracking and interpreting detailed body motion.

D. Ramanan, D.A. Forsyth, A. Zisserman. Tracking People by Learning their Appearance, PAMI 2007.

References and Further Reading

- Pictorial Structures
, P. Felzenszwalb, D. Huttenlocher, Pictorial Structures for Object Recognition, IJCV, Vol. 61(1), 2005.
- Human Body Pose Estimation with Pictorial Structures
, D. Ramanan, D. A. Forsyth, A. Zisserman. Tracking People by Learning their Appearance, IEEE Trans. PAMI., 2007.
, V. Ferrari, M. Marin, A. Zisserman, Progressive Search Space Reduction for Human Pose Estimation, CVPR, 2008.
- M. Andriluka, S. Roth and B. Schiele, Discriminative Appearance Models for Pictorial Structures, IJCV, Vol. 99(3), pp.259-280, 2012.

[^0]: Slide credit: Bernt Schiele

