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Outline of This Lecture

e Single-Object Tracking

e Bayesian Filtering
> Kalman Filters, EKF
> Particle Filters

e Multi-Object Tracking
> Data association
> MHT, (JPDAF, MCMCDA)
> Network flow optimization

e Articulated Tracking

» GP body pose estimation
> (Model-based tracking, AAMs)
> Pictorial Structures
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Image sources: Tomasz Svoboda, Deva Ramanan



Topics of This Lecture

e Body Pose Estimation as High-Dimensional Regression
> Representations
> Training data generation
~ Latent variable space
~ Learning a mapping between pose and appearance
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Basic Classes of Approaches

e Global methods

~ Entire body configuration is treated as a point
in some high-dimensional space.

- Observations are also global feature vectors.

= View of pose estimation as a high-dimensional
regression problem.

= Often in a subspace of “typical” motions...

e Part-based methods

~ Body configuration is modeled as an assembly
of movable parts with kinematic constraints.

» Local search for part configurations that
provide a good explanation for the observed
appearance under the kinematic constraints.

= View of pose estimation as probabilistic
inference in a dynamic Graphical Model.

image sources: T. Jaeggli, D. Ramanan, T. Svoboda
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RWTH
Recap: Advantage of Silhouette Data

e Synthetic training data generation possible!
» Create sequences of ,,Pose + Silhouette* pairs
~ Poses recorded with Mocap, used to animate 3D model
~ Silhouette via 3D rendering pipeline

Orientation () \\
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3 Motion
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S Pose Data (p) 3D Rendering Silhouettes (s)

Slide adapted from Stefan Gammeter B. Leibe



Recap: Latent Variable Models

To A

—

-

1 yi
Low-dim. latent space (X) Joint angle pose space (V)

e Joint angle pose space is huge!
> Only a small portion contains valid body poses.

= Restrict estimation to the subspace of valid poses for the task
> Latent variable models: PCA, FA, GPLVM, etc.
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RWTH
Recap: Articulated Motion in Latent Space

e Regressors need to be learned from training data.

<

e walking cycles have one additional DOF encode
E main (periodic) DOF ,walking style“
=)

7]

=8 ¢ Regression from latent space to

c

E - Pose —> p(pose | z)

; - Silhouette p(silhouette | z)

5

Q

£

O

&)

Slide adapted from Stefan Gammeter B. Leibe



RWTH
Recap: Learning a Generative Mapping

Body Pose _ - ==~ _Learn dim. red. (LLE)

-~ ~)

X : Body Pose p x : Body Pose
(high dim.) reconstruct |  (low dim.) “
pose
.g dynamic pri
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< Y : Image e > y : Appearance
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T. Jaeggli, E. Koller-Meier, L. Van Gool, "Learning Generative Models for
Monocular Body Pose Estimation”, ACCV 2007.

Slide credit: Tobias Jaeggli



ftp://ftp.vision.ee.ethz.ch/publications/proceedings/eth_biwi_00514.pdf
ftp://ftp.vision.ee.ethz.ch/publications/proceedings/eth_biwi_00514.pdf
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Recap: Gaussian Process Regression

¥
L B

e “Regular” regression: y = f(x)

%e .. ’ ;" . ® /:"’L;tm °
Y .:;' S "':. - K y .':" . ".\.:'\\ P f(X)
" . . . \\ / . o o ,////

X
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Slide credit: Stefan Gammeter B. Leibe



RWTH
Recap: GP Prediction w/ Noisy Observations

e Calculation of posterior:

~ Corresponds to conditioning the joint Gaussian prior distribution
on the observations:

£, X,, X, t ~N(f,cov[f]) £, = E[f|X,X,,t]

f, = K(X,,X)(K(X,X)+02I) 't
covlf,] = K(X,,X,)— K(X,,X) (K(X,X)+02I)" K(X, X,)

= This is the key result that defines Gaussian process regression!

- The predictive distribution is a Gaussian whose mean and variance
depend on the test points X. and on the kernel k(x,x’), evaluated
on the training data X.
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RWTH
Recap: Articulated Multi-Person Tracking

1...N
‘Multi-Person Tracker "\ (Articulated Tracker Tracklet;
Top-down ,ﬁ]%
Prior h\
Human Multi-Person Z 1
[T F— : e :
e Detection Tracking | ‘fk
. Body ,| Body Pose L\
Segmentation Estimation "“;
L VRN Shape prediction Body PO%)

e |dea: Only perform articulated tracking where it’s easy!
e Multi-person tracking
~ Solves hard data association problem

e Articulated tracking

> Only on individual “tracklets” between occlusions
> GP regression on full-body pose
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[Gammeter, Ess, Jaeggli, Schindler, Leibe, Van Gool, ECCV’08]




<
-—
"
(]
=
£
-
(7p)
c
L)
2
>
-
(]
-
-
(o
=
(o]
O

Topics of This Lecture

Pictorial Structures
> Model components

> Prior
> Likelihood Model

Recap: Inference
> Sum-Product algorithm
> Max-Sum algorithm

Efficient Inference in Pictorial Structures
> Generalized Distance Transform
> Effect on Computation

Results

12



RWTHAACHEN
. . UNIVERSITY
Today: Pictorial Structures

(2)
JFtt:;pu_.heau:l

e Pose estimation as inference in a graphical model

» [Fischler & Elschlaeger, 1973; Felzenszwalb & Huttenlocher, 00]
13
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Slide adapted from Bernt Schiele B. Leibe



Pictorial Structures

e Each body part one variable node
» Torso, head, etc. (11 total)

e Each variable represented as tupel
E.g., v,.,..., = (z,y,0,s) with

Y

(x,y) image coordinates

Y

> 0 rotation of the part
> Sscale

e Discretize label space y into L states
- E.g., size of L for y = (z,y,0,s)
> L =125 x 125 x 8 x 4 ~ 500000
= Efficient search needed to make this feasible!

P. Felzenszwalb, D. Huttenlocher, Pictorial Structures for Object Recognition,
IJCV, Vol. 61(1), 2005.

Slide adapted from Bernt Schiele
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http://cs.brown.edu/~pff/papers/blobrecJ.pdf

Recap: Factor Graphs

vl

e Joint probability .
~ Can be expressed as product of factors: p(x) = > H fs(xs)
» Factor graphs make this explicit through separate factor nodes.

e Converting a directed polytree
» Conversion to undirected tree creates loops due to moralization!
» Conversion to a factor graph again results in a tree!

B. Leibe
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Image source: C. Bishop, 2006




Two Model Components

e Prior p(L)
- Models kinematic dependencies between
body parts

» Tree-structured prior (constraints b/w
body parts) lead to efficient inference

» Generalized distance transform provide
additional efficiency

e Likelihood of body parts p(E | L)

~ Models possible appearances of body parts

> Substantial improvements in recent years
in appearance modeling and detection

e Finding body parts = Pose estimation
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Slide adapted from Bernt Schiele B. Leibe



RWNTH
Pictorial Structures: Model Components

e Body is represented as flexible combination of parts

posterior over body poses

\
p(L|E) x p(E|L)p(L)

7 ~
likelihood of observations prior on body poses
[ - likelihood |[ A
orientation K of part N estimated part

| R f". ¥
- ma

pose posteriors

Iy

P
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Slide adapted from Bernt Schiele B. Leibe



RWNTH
Pictorial Structures: Model Components

e Body is represented as flexible combination of parts

posterior over body poses

\
p(L|E) x p(E|L)p(L)

7 ~
likelihood of observations prior on body poses
g o likelihood |
orientation K of part N estimated part
. pose posteriors
G
e #5755
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Slide adapted from Bernt Schiele B. Leibe
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Human Body Pose Models - Prior p(L)

e E.g., [Felzenszwalb & Huttenlocher, IJCV’05]

e E.g., [Andriluka et al., IJCV’12]

Slide credit: Bernt Schiele
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Pictorial Structures

e Potentials (= energies = factors)
> Unaries for each body part (torso, head, ...)
~ Pairwise between connected body parts

e Body pose estimation
~ Find most likely part location
= Sum-product algorithm (marginals)
> Find the best overall configuration
= Max-sum algorithm (MAP estimate)

e Complexity
» Let k£ be the number of body parts (e.g., £ =10)
> L is the size of the label space (e.g., several 100k)
.~ Max-sum algorithm in general: O(k L?)
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- For specific pairwise potentials: O(k L)
B. Leibe

20

Slide adapted from Bernt Schiele



Kinematic Tree Prior

e Notation
> (from [Andriluka et al., IJCV’12])
» Body configuration

L = {l07l17"'7lN}
- Each body part: [, = (z,, y,, 0., s,)

e Prior

p(lo) Hp!l

(i,7)€G

- with p(l,) assumed uniform
» with p(l; | I;) modeled using a Gaussian
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Slide credit: Bernt Schiele B. Leibe



Kinematic Tree Prior

 Gaussian assumption for p(/; | /)

> This may seem like a significant limitation. lp| ©
~ E.g., distribution of forearm configuration given e, L,
the upper arm is semi-circular, rather than
Gaussian!
- B Solution [Felzenszwalb & Huttenlocher, IJCV’05]
% - Transform part configuration [, into coordinate system of the
E joint, where the distribution is captured well by a Gaussian:
7] x4 5;d)} cos0; — s;d]" sin ;-
= 7.1y = | T sid)! sin0; + s;dl} cos 0,
L) gz( 7,) — 0
Iz i
=
B - Si :
é—  with @i — d’*| position of the joint between parts i and 7,
S - d;z represented in the coordinate system of part :

22
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Kinematic Tree Prior

()
. : 0,0’¥0.0
e Represent pairwise part relations @e -
p(L)=p(lo) [] »llL) ©
(4,)€G
pa%”]) — N (Tﬂ(lz) TZJ (lj)“”’?,jﬂ ZZJ)
Bl
E Part locations Transformed
g relative to joint part locations
MR E
‘» op /' o _10} .. .,
> T RN
2 @ .| Ve ,ﬂ,@? ~ | w0l . .
=) “ N ~
Q. 30t I ] a0l
€ a0/ a0
o} .
&) %o 0 50 o 0 5(
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Slide credit: Bernt Schiele B. Leibe
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Mean pose

20F

401
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1001

=50

0

Slide credit: Bernt Schiele

50

Kinematic Tree Prior

* Prior parameters {7}, X}
» Learned using maximum likelihood

Several independent samples

a0 a0 H‘l:

1o 100 100l

I:l]ﬂlil 20 20 -] B 129‘50 -0 40 I?-cﬂl -&0

-50 T &0 T T _enf

—a0 —40 _aoh

. . i

40 40 40

&0 &0 (=0 3

0 80 sl

I:-‘:IEIZI 20 20 E;J BO 129‘8!3 -E:Il & -0 2;3 40 B0 IE—“H-] -EjD mmmmmmm
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posterior over body poses

2
p(L|E) o< p(E|L)p(L)
-7 A

RWNTH
Pictorial Structures: Model Components

e Body is represented as flexible combination of parts

likelihood of observations prior on body poses

| . likelihood
orientation K of part N

[ e &
-, -

estimated
pose

~\

part
posteriors

Computer Vision Il, Summer’14

Slide credit: Bernt Schiele B. Leibe




Likelihood Model

e Assumption

» Evidence (image features) for each part
independent of all other parts

p(E|L) = Hp E|l;)

e The assumption is clearly not correct, but
~ Allows efficient computation
~ Works rather well in practice

» Training data for different body parts should cover
“all” appearances

<
-
"
(]
=
£
-
(7p)
c
L)
2
>
-
(]
-
-
(o
=
(o]
O

26

Slide credit: Bernt Schiele B. Leibe
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Likelihood Model

e Many variants have been proposed over the years...

> [Felzenszwalb, IJCV’05]

- Modeled using rectangular
parts based on fg/bg
probabilities

— N,: #fg pixels inside rectangle

— A;: size of rectangle
— N,: #fg pixels inside border Aq

— A,: size of border area

—t : #pixels in image
- Part likelihood
p(E|l) =g (1 — gt M) (1 — g5~ "2)0.50 A

27
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Likelihood Model

e Many variants have been proposed over the years...
» [Felzenszwalb, IJCV’05] '

[Ramanan, PAMI’07]

- Learn person-specific body part
appearance models by clustering

- Initially only color models
- Later extended by edge models

h

T [NIPS’06]

£

£

>

7p)

; . il Candidate arms

Iz iﬂ "'—_“- _ 87 1B TR

> Edge model build a..i l{.l e

£ [NIPstoe]  [{f] TR
-

g- I | I I person Bryan John Deva

8 model model  model model

B. Leibe



Likelihood Model

e Many variants have been proposed over the years...
[Felzenszwalb, 1JCV’05]
[Ramanan, PAMI’07]

Y

Y

[Andriluka, IJCV’12]

- Boosted classifiers based on
local feature descriptors
(e.g., Shape context, SIFT)

- Part likelihood derived from Boosting score

Y

Decision stump weight Decision stump output

p(E|l;) = max (Zt agf;iiz(lz)) , EEL

/ Small constant to deal

Part location with partial occlusions
29
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Slide adapted from Bernt Schiele B. Leibe



Computer Vision Il, Summer’14

Likelihood Models - Part Likelihoods

Input image Head Torso

[Ramanan,
NIPS’06]

[Andriluka,
IJCV’12]

Slide credit: Bernt Schiele B. Leibe
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Topics of This Lecture

e Recap: Inference

> Sum-Product algorithm
> Max-Sum algorithm
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Recap: Sum-Product Algorithm

e Objectives
~ Efficient, exact inference algorithm for finding marginals.

e Procedure:
» Pick an arbitrary node as root.

~» Compute and propagate messages from the leaf nodes to the
root, storing received messages at every node.

~» Compute and propagate messages from the root to the leaf
nodes, storing received messages at every node.

~» Compute the product of received messages at each node for
which the marginal is required, and normalize if necessary.

p(z) o< | [ 1p.-sa(2)

e Computational effort
» Total number of messages = 2 - number of graph edges.

Slide adapted from Chris Bishop B. Leibe
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Recap: Sum-Product Algorithm

e Two kinds of messages

~ Message from factor node to variable nodes:
- Sum of factor contributions

bt (@ ZF z, X;)

— Zfs Xs H M., — fs wm)

mene(fs)\x

Fs(l'a Xs)

~ Message from variable node to factor node:
- Product of incoming messages

tene(z )\ /:

= Simple propagation scheme.
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Recap: Sum-Product from Leaves to Root

O—a—O—a——(O
fa T £,

Message definitions:

T p5.00(0) = 3210050 T b (o)

£

g &4 Ky — s (ZUm) = | | :u'fl—>xm mm
= lene(zm )\ fs

c

=

€

o}

(&)

34

B. Leibe Image source: C. Bishop, 2006



Recap: Sum-Product from Root to Leaves

O—a—(O—w—0O
fa 1 £,

Message definitions:

| p5.00(0) = 3210050 T b (o)

£

g &4 Ky — s (ZUm) = | | :u'fl—>xm mm
= lene(zm )\ fs

c

=

€

o}

(&)
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B. Leibe Image source: C. Bishop, 2006
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Recap: Max-Sum Algorithm

e Objective: an efficient algorithm for finding
- Value x™** that maximises p(x);
- Value of p(xmax),
= Application of dynamic programming in graphical models.

e Key ideas
> We are interested in the maximum value of the joint distribution
p(x™™) = max p(x)
X
=> Maximize the product p(x).
» For numerical reasons, use the logarithm.
In (maxp(x)) = max In p(x).
X X

= Maximize the sum (of log-probabilities).

36

Slide adapted from Chris Bishop B. Leibe
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Recap: Max-Sum Algorithm

e |nitialization (leaf nodes)
N:c—u"(m) =0 Mf—m(gj) = In f(z)

e Recursion

> Messages

prog(z) = _max In f(x,21,...,20) + Z L, — £ (Tm)

o mene(fu)\z
poes@ =Y (@)
lene(z)\ f

» For each node, keep a record of which values of the variables

gave rise to the maximum state:

p(x) = argmax |Inf(z,z1,....x0m)+ Y Hap—s(Tm)
Tloeo®M mene(f.)\z
B. Leibe

Slide adapted from Chris Bishop
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Recap: Max-Sum Algorithm

e Termination (root node)
» Score of maximal configuration

» Value of root node variable giving rise to that maximum

pmax. arg max Z [Lfs_m;(ﬂf)

o s€ne(x)

~ Back-track to get the remaining
variable values

T = ()

Slide adapted from Chris Bishop B. Leibe
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Topics of This Lecture

e Efficient Inference in Pictorial Structures
> Generalized Distance Transform
> Effect on Computation
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O ERLE!

Efficient Inference

e Best location given by MAP

N

mpx p(LIE) = mpx [ | (p(Ello)peils)
N

= min zg (—Inp(lillo) — Inp(ei|l;))

~ Consider case of 2 parts

min (— In p(ep|lo) — Inp(eq|ly) — Inp(li]ly))

lo.l1

> Rename things
= min (mo(lo) +mi(l1) +d(li, o))

lo.lq
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Slide credit: Bernt Schiele B. Leibe



Efficient Inference

e Assume d to have quadratic form
d(ly,lo) = ||l = Ti(lo)|]?

e Then min (mg(lo) + m1(ly) +d(lq,1p))

lo.l1

= min (mg(lg) + min (mq (1) + d({, ZO)))

lo [

~ with the second term a generalized distance transform (gDT).
» Algorithms exist to compute gDT efficiently.

> Thus = n}in (mo(lo) + D15, (T1(1o)))

= Finding the best part configuration can be done sequentially,
rather than simultaneously!
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Slide credit: Bernt Schiele B. Leibe



Distance Transform

e Given points p € Pon a grid (e.g., image) GG
> Distance Transform associates to each location z € G the
distance to the nearest point p € P

DTp(z) = min {d(z, p)}

~ or equivalent

. | 0 ifqeP
: DTp(@) =min{dlz.0)+ 1@} 1) ={ o BIET
£
£
% ¢ Example G G
c
2 d(xz,q) = |x —q| o e
S .
5 DTp(z) = min{| — q| + 1(q)} s
2
g ep [q ep [Iq
(&)

42

Slide credit: Bernt Schiele B. Leibe



<
-—
"
(]
=
£
-
(7p)
c
L)
2
>
-
(]
-
-
(o
=
(o]
O

RWNTH
Generalized Distance Transform

e Replace binary function 1(q) with general function f(q)
DTy(x) = min{d(x.q) + f(q)}

» We can assign “soft membership of all grid elements to P.
> f(q) is sampled on the entire grid G.

e |In our case
> f corresponds to m,.
. Distance corresponds to d(li,ly) = ||l — Ty (ly)]|

DT, (T1lo)) = min {ma (L) +d(h, 1)}

1

Slide credit: Bernt Schiele B. Leibe
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Example: Part Model of Motorbikes

e Model

» 2 parts (use both wheels),
simple translation between
them given by (x,y) position

=
o
s
S
e

=
—t

T~
=t
N—

1. Part unaries (log prob)
— my(ly) and my (1)

2. Distance transform of m(l;)

3. Simply find minimum of sum

H}(i,n (mo(lo) + DT, (T1(lo)))
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Slide credit: Bernt Schiele B. Leibe Example from Dan Huttenlocher



CHEN
, , UNIVERSITY
Topics of This Lecture

e Pictorial Structures
- Model components

> Prior
> Likelihood Model

e Recap: Inference
> Sum-Product algorithm
> Max-Sum algorithm

Efficient Inference in Pictorial Structures
> Generalized Distance Transform
» Effect on Computation

e Results
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RWNTH
Results

e Tracking and interpreting detailed body motion.

D. Ramanan, D.A. Forsyth, A. Zisserman. Tracking People by Learning
their Appearance, PAMI 2007.

B. Leibe [D. Ramanan, D. Forsyth, PAMI’07]


http://www.ics.uci.edu/~dramanan/papers/tracker_journal_draft.pdf
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