Computer Vision Il - Lecture 14

Articulated Tracking |
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Outline of This Lecture

e Single-Object Tracking

e Bayesian Filtering
> Kalman Filters, EKF
> Particle Filters

e Multi-Object Tracking
> Data association
> MHT, (JPDAF, MCMCDA)
> Network flow optimization

e Articulated Tracking

> GP body pose estimation
> (Model-based tracking, AAMs)
> Pictorial Structures
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Image sources: Andreas Ess, Deva Ramanan, lan Matthews



RWTH
Recap: Linear Assignment Formulation

e Form a matrix of pairwise similarity scores

e Example: Similarity based on motion prediction

~ Predict motion for each trajectory and assign scores for each
measurement based on inverse (Mahalanobis) distance, such

that closer measurements get higher scores. ail  ai2

> Choose at most one match in each row and column to maximize
sum of scores
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Slide credit: Robert Collins B. Leibe



RWTH
Recap: Linear Assignment Problem

e Formal definition
N M
> Maximize Zzwijzij
i=1 j=1
subject to o zia=11=1,2.....N
) 23_1 " ’ P Those constraints

> i1%i=1;7=1,2...,M > ensure that Z is a
ermutation matrix
Zij € {O ].} P

./

> The permutation matrix constraint ensures that we can only
match up one object from each row and column.

> Note: Alternatively, we can minimize
arg min E E CijZij

cost rather than maximizing weights. Zi;

1=1 7=1
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Slide adapted from Robert Collins B. Leibe



Recap: Optimal Solution

e Greedy Algorithm

~ Easy to program, quick to run, and yields “pretty good”
solutions in practice.

~ But it often does not yield the optimal solution

e Hungarian Algorithm

» There is an algorithm called Kuhn-Munkres or “Hungarian”
algorithm specifically developed to efficiently solve the linear
assignment problem.

» Reduces assignment problem to bipartite graph matching.
- When starting from an Nx N matrix, it runs in O(N3).
= If you need LAP, you should use it.
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Slide credit: Robert Collins B. Leibe
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Recap: Min-Cost Flow
-3
CODEN
-3
0 -2
s .'1 w2
0 -3

e Conversion into flow graph

- Transform weights into costs = Q= W

> Add source/sink nodes with 0 cost.

- Directed edges with a capacity of 1.
Slide credit: Robert Collins B. Leibe
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Recap: Min-Cost Flow
@ o
[+3] _° -2 0 __ [-3]
®© © o o

4

5
1

e Conversion into flow graph
> Pump N units of flow from source to sink.

- Internal nodes pass on flow (2. flow in = 2. flow out).
= Find the optimal paths along which to ship the flow.

Slide credit: Robert Collins B. Leibe
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Recap: Min-Cost Flow

[-3]

e Conversion into flow graph
> Pump N units of flow from source to sink.

- Internal nodes pass on flow (2. flow in = 2. flow out).
= Find the optimal paths along which to ship the flow.

Slide credit: Robert Collins B. Leibe
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RWTH/A/
Recap: Using Network Flow for Tracking

e Complication 1
> Tracks can start later than frame1 (and end earlier than frame4)
= Connect the source and sink nodes to all intermediate nodes.
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Slide credit: Robert Collins B. Leibe
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Recap: Using Network Flow for Tracking

e Complication 2
> Trivial solution: zero cost flow!

Slide credit: Robert Collins B. Leibe
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Recap: Network Flow Approach

Solution: Divide
each detection
into 2 nodes

(s,u;)) & :v;, 1)

(u; ‘-’f). (Vi 1) )

Observation edges Transition edges Enter/exit edges

Zhang, Li, Nevatia, Global Data Association for Multi-Object Tracking
using Network Flows, CYPR’08.
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image source: [Zhang, Li, Nevatia, CYPR’08]



vision.cse.psu.edu/courses/Tracking/vlpr12/lzhang_cvpr08global.pdf
vision.cse.psu.edu/courses/Tracking/vlpr12/lzhang_cvpr08global.pdf
vision.cse.psu.edu/courses/Tracking/vlpr12/lzhang_cvpr08global.pdf
vision.cse.psu.edu/courses/Tracking/vlpr12/lzhang_cvpr08global.pdf
vision.cse.psu.edu/courses/Tracking/vlpr12/lzhang_cvpr08global.pdf
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Recap: Min-Cost Formulation

e Objective Function
Tx = arg;nin Z Cinilini+ Z Ci,out Ji,0ut

+2.Cijfi;+2.Cifi
1,7 i

e subject to
> Flow conservation at all nodes
fini+ Y fii=Ffi = fouri+ Y fij Vi
J J
- Edge capacities
fi <1
B. Leibe

Slide credit: Laura Leal
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Topics of This Lecture

e Articulated Tracking
> Motivation
~ Classes of Approaches

e Body Pose Estimation as High-Dimensional Regression
> Representations
> Training data generation
~ Latent variable space
~ Learning a mapping between pose and appearance

e Review: Gaussian Processes

> Formulation
> GP Prediction
> Algorithm

e Applications
» Articulated Tracking under Egomotion

13



Articulated Tracking

e Examples
- Recover a person’s body articulation
~ Track facial expressions
» Track detailed hand motion

>

e Common properties
- Detailed parameterization in terms of
joint locations or joint angles

> Two steps
- Pose estimation (in single frame)
- Tracking (using dynamics model)

> Challenging problem
- High-dimensional
- Hitting the limits of sensor data
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image sources: T. Svoboda, D. Ramanan, |. Matthews, J. Oikonomidis




Basic Classes of Approaches

e Global methods

~ Entire body configuration is treated as a point
in some high-dimensional space.

- Observations are also global feature vectors.

= View of pose estimation as a high-dimensional
regression problem.

= Often in a subspace of “typical” motions...

e Part-based methods

~ Body configuration is modeled as an assembly
of movable parts with kinematic constraints.

» Local search for part configurations that
provide a good explanation for the observed
appearance under the kinematic constraints.

= View of pose estimation as probabilistic
inference in a dynamic Graphical Model. -

image sources: T. Jaeggli, D. Ramanan, T. Svoboda
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Why s It Difficult?

e Challenges
~ Poor imaging, motion blur, occlusions, etc.
~ Difficult to extract sufficiently good figure-ground information

~ Mapping is generally multi-modal: an image observation can
represent more than one pose!

Slide credit: Raquel Urtasun B. Leibe
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Topics of This Lecture

e Body Pose Estimation as High-Dimensional Regression
> Representations
> Training data generation
~ Latent variable space
~ Learning a mapping between pose and appearance
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Body Representation

e The body can be approximated as kinematic tree

e Parametrization via

%

> Joint locations

Y

Y

I
l
si% -
Joint angles
Relative joint angles along kinematic chain / \

e Example using in the following TR
> 3D joint locations of 20 joints
= 60-dimensional space
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B. Leibe image source: R. Urtasun

Slide adapted from Raquel Urtasun



Image Representation

e Many possibilities...

e Popular choice: Silhouettes

~ Easy to extract using background
modeling techniques.

> Capture important information
about body shape.

= We will use them as an example
for today’s lecture...
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B. Leibe Video source: Hedvig Sidhenbladh




RWTH
Another Advantage of Silhouette Data

e Synthetic training data generation possible!
» Create sequences of ,,Pose + Silhouette* pairs
~ Poses recorded with Mocap, used to animate 3D model
~ Silhouette via 3D rendering pipeline

Orientation (o) \\

Motion
Capture >
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Pose Data (p) 3D Rendering Silhouettes (s) 2
B. Leibe

Slide adapted from Stefan Gammeter



Synthetic Training Data Generation

TrrT

s Varying body proportions Different clothes models
5

=)

n

= i‘

9

&

>

o Animate with MoCap data Resulting synthetic training data

é. (depth, body part labels, silhouette)
o

o

21
Image source: Umer Rafi




RWTH
Synthetic Training Data Generation

Example training sequence

22
Video source: Umer Rafi



RWTH
Learning a Mapping b/w Pose and Appearance

e Appearance prediction .
~ Regression problem ‘k
~ High-dimensional data on both sides

= Low-dim. representation needed
for learning! /

e 3D joint locations « segm. image
e ~60-dim. e ~2500-dim.

e Training with Motion-capture stimuli
> Real dynamics from human actors
> Synthesized silhouettes for training
> Background subtraction for test
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T. Jaeggli, E. Koller-Meier, L. Van Gool, "Learning Generative Models for

. . 23
Monocular Body Pose Estimation”, ACCV 2007. image source: T, Jaegali



ftp://ftp.vision.ee.ethz.ch/publications/proceedings/eth_biwi_00514.pdf
ftp://ftp.vision.ee.ethz.ch/publications/proceedings/eth_biwi_00514.pdf

Latent Variable Models

8

To A

f Y21

—

-

1 yi
Low-dim. latent space (X) Joint angle pose space (V)

e Joint angle pose space is huge!
> Only a small portion contains valid body poses.

= Restrict estimation to the subspace of valid poses for the task
> Latent variable models: PCA, FA, GPLVM, etc.
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B. Leibe image source: R. Urtasun




RWTH
Example: Subspace of Walking Motion

e Pose modeling in a subspace
> Pose model has 60 (highly dependent) DoF
» But gait is cyclic, can be represented by a 2D latent space

» Capture the dependency by dimensionality reduction
(PCA, FA, CCA, LLE, GPLVM, ...) 25

B. Leibe image sources: S. Gammeter, T. Jaeggli

<
-
"
(]
£
£
-
(7p)
c
L)
2
>
-
(]
-
-
(o
£
(o]
(&)




<
-—
"
(]
£
£
-
(7p)
c
L)
2
>
-
(]
-
-
(o
£
(o]
(&)

RWTH
Articulated Motion in the Latent Space

walking cycles have one additional DOF encode
main (periodic) DOF ,walking style“

e Regression from latent space to
- Pose p(pose | z)
. Silhouette = p(silhouette | z)

e Regressors need to be learned from training data.

Slide adapted from Stefan Gammeter B. Leibe
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Learning a Generative Mapping

Body Pose _ - ==~ _Learn dim. red. (LLE)

-~ ~)

X : Body Pose p x : Body Pose
(high dim.) reconstruct |  (low dim.) “
pose
.g dynamic pri
o
£
3 v
= 2
s + | likelihood
=2 8’,,v
n
< Y : Image e > y : Appearance
(o] t BPCA
® (high dim.) ':ro]ec ton ( Descriptor: (low dim.)
>
1 5
..g Appearance
Q
S
o
&

T. Jaeggli, E. Koller-Meier, L. Van Gool, "Learning Generative Models for
Monocular Body Pose Estimation”, ACCV 2007.

Slide credit: Tobias Jaeggli



ftp://ftp.vision.ee.ethz.ch/publications/proceedings/eth_biwi_00514.pdf
ftp://ftp.vision.ee.ethz.ch/publications/proceedings/eth_biwi_00514.pdf

Example Results

e Difficulties
> Changing viewpoints
> Low resolution (50 px)
> Compression artifacts
~ Disturbing objects (umbrella, bag)
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Original video

B. Leibe Video sources: Hedvig Sidhenbladh, Tobias Jaeggli



Representing Multiple Activities

e Learn multiple models oo, =5
[ X el 1"
- One model per activity e
- Separate LLE errTbeddmg — [ gy
- Separate dynamics popema l
Y
Y |y ]

e Learn transition function
» Link the LLE spaces
» Find similar pose pairs
> Learn smooth transition

e , ‘L _
Pnoswitch P i (trtl'rt—l) it At = at—1

(¢, aplTe_1, ar_q1) o |
p(xy, t’ t—1,Qt—1) {psu'itch pfl.t_lﬁﬁl.t(mﬁlmt_l) else
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Slide credit: Tobias Jaeggli B. Leibe



RO INVERSITY
Switching b/w Multiple Activities

e Activity switching
> Low-res. traffic scene
> Transition from Walking to Running
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Activity switching 5,
Videos by Tobias Jaeggli

B. Leibe
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Topics of This Lecture

e Review: Gaussian Processes

> Formulation
> GP Prediction
> Algorithm
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In classification: y € {-1, 1}

Slide credit: Raquel Urtasun
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B. Leibe

In regression: y € R
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Gaussian Process Regression

e “Regular” regression: y = f(x)

. : v A, . ° /.i’.’;‘* .
y .'..:':'t'. * "':: — g ° .’:" . "... . P f(X)
.:.- o . q I -' ° . ////
X
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B. Leibe

Slide credit: Stefan Gammeter
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Gaussian Process Regression

e GP Regression
» Very easy to apply
~ Automatic confidence estimate of the result
~ Well-suited for pose regression tasks

e In the following, | will give a quick intro to GPs
~ Focus on main concepts and results

- A far more detailed discussion will be given in the Advanced
Machine Learning lecture (next semester).

B. Leibe

34
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Gaussian Process

e Gaussian distribution
» Probability distribution over scalars / vectors.

e Gaussian process (generalization of Gaussian distrib.)
- Describes properties of functions.

> Function: Think of a function as a long vector where each entry
specifies the function value f(x;) at a particular point x,.

» Issue: How to deal with infinite number of points?

- If you ask only for properties of the function at a finite number of
points...

- Then inference in Gaussian Process gives you the same answer if
you ignore the infinitely many other points.

e Definition

> A Gaussian process (GP) is a collection of random variables any

finite number of which has a joint Gaussian distribution.

. 35
Slide credit: Bernt Schiele B. Leibe



Gaussian Process

e Example prior over functions p(f) )
» Represents our prior belief about 1
functions before seeing any data. -
- Although specific functions don’t have
mean of zero, the mean of f(x) values B
for any fixed x is zero (here). ‘20 " |

input, x

~ Favors smooth functions
- l.e. functions cannot vary too rapidly

- Smoothness is induced by the covariance function of the
Gaussian Process.

> Learning in Gaussian processes

- Is mainly defined by finding suitable properties of the covariance
function.
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Slide credit: Bernt Schiele B. Leibe Image source: Rasmussen & Williams, 2006
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Gaussian Process

e A Gaussian process is completely defined by
» Mean function m(x) and

m(x) = B|f(x)]

» Covariance function k(x,x’)

k(x,x') = E[(f(x) —m(x)(f(x) —m(x'))]

> We write the Gaussian process (GP)

f(x) ~ GP(m(x), k(x,x))

Slide adapted from Bernt Schiele B. Leibe

37
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RWTH
Gaussian Process: Squared Exponential

e Typical covariance function

> Squared exponential (SE)

- Covariance function specifies the covariance between pairs of
random variables

ol ). 0] = ) =0 { Lo )

e Remarks

~ Covariance between the outputs is written as a function
between the inputs.

» The squared exponential covariance function corresponds to a
Bayesian linear regression model with an infinite number of
basis functions.

» For any positive definite covariance function £(.,.), there exists
a (possibly infinite) expansion in terms of basis functions.

. 38
Slide credit: Bernt Schiele B. Leibe



RWNTH
Gaussian Process: Prior over Functions

e Distribution over functions:

~ Specification of covariance function implies distribution over
functions.

- l.e. we can draw samples from the distribution of functions
evaluated at a (finite) number of points.

3 ~ Procedure

'g - We choose a number of input points X,

E - We write the corresponding covariance

n matrix (e.g. using SE) element-wise: £ \\'ﬁm . /\\

— - . X [
c K(X*7 X*) g2 73 ,’f \ v
o ) s | \ / \ /\k
2 - Then we generate a random Gaussian -1 \ / \ /

; vector with this covariance matrix: ) \/

‘lé_ Jx NN(Oa K(X*aX*)) 5 | ét 5
= input, x ]

3 Example of 3 functions

. sampled 39
Slide credit: Bernt Schiele B. Leibe Image source: Rasmussen & Williams, 2006



RWTH
GP Prediction with Noisy Observations

e Assume we have a set of observations:
{(Xn, fn) | n=1,..., N} with noise o,

e Joint distribution of the training outputs f and test
outputs f. according to the prior:

v (MRS X))

> K(X, X.) contains covariances for all pairs of training and test
points.

e To get the posterior (after including the observations)

» We need to restrict the above prior to contain only those
functions which agree with the observed values.

> Think of generating functions from the prior and rejecting those
that disagree with the observations (obviously prohibitive).
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. 40
Slide credit: Bernt Schiele B. Leibe



RWTH
Result: Prediction with Noisy Observations

e Calculation of posterior:

~ Corresponds to conditioning the joint Gaussian prior distribution
on the observations:

£, X,, X, t ~N(f,cov[f]) £, = E[f|X,X,,t]

f, = K(X,,X)(K(X,X)+02I) 't
covlf,] = K(X,,X,)— K(X,,X) (K(X,X)+02I)" K(X, X,)

= This is the key result that defines Gaussian process regression!

- The predictive distribution is a Gaussian whose mean and variance
depend on the test points X. and on the kernel k(x,x’), evaluated
on the training data X.
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Slide credit: Bernt Schiele B. Leibe



GP Regression Algorithm

e Very simple algorithm

input: X (inputs), y (targets), k& (covariance function), o2 (noise level),
X, (test input)
2: L := cholesky (K + 021)
a: LT\(L\y) odict: -
i Fo=k o } predictive mean eq. (2.25)
v .= L\k, e
E 6: V[f.] = k(x0.%,) — VTV } predictive variance eq. (2.26)
= logp(y|X) = -3y a—Y,logLi — % log2r | _eq. (2.30)
§ 8: return: f, (mea,n) V[f.] ( xallance) Iog p( X) (log marginal likelihood)
i » Based on the following equations (Matrix inv. < Cholesky fact.)
9 _ 5 o\ —
2 fo = K (K+on0) 't
P s —1
*;i covife] = k(Xu,Xy) — k*T (K + ai]) k,
£ L 5 \—1 1 5 N
z logp(t| X) = —§t (K +0.1) t—§10g|K—|—anI|—7log27r Y
B. Leibe

Image source: Rasmussen & Williams, 2006
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Computational Complexity

e Complexity of GP model
. Training effort: O(IN3) through matrix inversion
. Test effort: O(IN?) through vector-matrix multiplication

e Complexity of basis function model
. Training effort: O(M3)
. Test effort: O(M?)

e Discussion
> Exact GP methods become infeasible for large training sets.

= Need to use approximate techniques whenever #training
examples > 2500-3000.

B. Leibe
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Topics of This Lecture

e Applications
» Articulated Tracking under Egomotion

44



RWTH
Articulated Multi-Person Tracking using GP

1...N
‘Multi-Person Tracker "\ (Articulated Tracker Tracklet;
Top-down ,ﬁ]%
Prior h\
Human Multi-Person Z 1
[T F— : e :
e Detection Tracking | ‘fk
. Body ,| Body Pose L\
Segmentation Estimation "“;
L VRN Shape prediction Body PO%)

e |dea: Only perform articulated tracking where it’s easy!
e Multi-person tracking
~ Solves hard data association problem

e Articulated tracking

> Only on individual “tracklets” between occlusions
> GP regression on full-body pose
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45
[Gammeter, Ess, Jaeggli, Schindler, Leibe, Van Gool, ECCV’08]




Articulated Multi-Person Tracking

e Multi-Person tracking
~ Recovers trajectories and solves data association

e Articulated Tracking
» Estimates detailed body pose for each tracked person
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[Gammeter, Ess, Jaeggli, Schindler, Leibe, Van Gool, ECCV’08]




Articulated Tracking under Egomotion

e Guided segmentation for each frame
> No reliance on background modeling
~ Approach applicable to scenarios with moving camera

S
5
S
S
=)
7p}
=
9
Iz
>
g . . .
3 » Feedback from body pose estimate to improve segmentation
5

o

47
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Summary: Articulated Tracking with Global Models

e Pros:

>

>

>

Y

View as regression problem (pose <> appearance)
Lots of machine learning techniques available
Research focus on handling the ambiguities

Training on MoCap data possible
- Accurate models for human dynamics

e Cons:

>

>

>

High-dimensional problem
Global model
- Can handle only those articulations it has previously seen
- Not robust against partial occlusion
Difficult to get good appearance representation
- MoCap data = Can synthesize silhouettes, but not appearance
- Restricted to background subtraction

B. Leibe
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