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Outline of This Lecture 

• Single-Object Tracking 
 

• Bayesian Filtering 

 Kalman Filters, EKF 

 Particle Filters 
 

• Multi-Object Tracking 

 Data association 

 MHT, (JPDAF, MCMCDA) 

 Network flow optimization 
 

• Articulated Tracking 

 GP body pose estimation 

 (Model-based tracking, AAMs) 

 Pictorial Structures 

 2 
Image sources: Andreas Ess, Deva Ramanan, Ian Matthews 
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Recap: Linear Assignment Formulation 

• Form a matrix of pairwise similarity scores 

• Example: Similarity based on motion prediction 

 Predict motion for each trajectory and assign scores for each 

measurement based on inverse (Mahalanobis) distance, such  

that closer measurements get higher scores. 

 

 

 

 

 

 

 
 

 Choose at most one match in each row and column to maximize 

sum of scores 
3 

B. Leibe Slide credit: Robert Collins 
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Recap: Linear Assignment Problem 

• Formal definition 
 

 Maximize 

 
 

 

subject to  

 

 

 

 

 The permutation matrix constraint ensures that we can only 

match up one object from each row and column. 
 

 Note: Alternatively, we can minimize  

cost rather than maximizing weights. 

4 
B. Leibe Slide adapted from Robert Collins 

Those constraints  

ensure that Z is a  

permutation matrix 
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Recap: Optimal Solution 

• Greedy Algorithm 

 Easy to program, quick to run, and yields “pretty good” 

solutions in practice. 

 But it often does not yield the optimal solution 
 

• Hungarian Algorithm 

 There is an algorithm called Kuhn-Munkres or “Hungarian” 

algorithm specifically developed to efficiently solve the linear 

assignment problem. 

 Reduces assignment problem to bipartite graph matching. 

 When starting from an N£N matrix, it runs in O(N3).  

 If you need LAP, you should use it. 
 

5 
B. Leibe Slide credit: Robert Collins 
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Recap: Min-Cost Flow 

 

 

 

 

 

 

 

 
 

• Conversion into flow graph 

 Transform weights into costs 

 Add source/sink nodes with 0 cost. 

 Directed edges with a capacity of 1. 
6 

B. Leibe Slide credit: Robert Collins 
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Recap: Min-Cost Flow 

 

 

 

 

 

 

 

 
 

• Conversion into flow graph 

 Pump N units of flow from source to sink. 

 Internal nodes pass on flow ( flow in =  flow out). 

 Find the optimal paths along which to ship the flow. 

 
7 

B. Leibe Slide credit: Robert Collins 
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Recap: Min-Cost Flow 

 

 

 

 

 

 

 

 
 

• Conversion into flow graph 

 Pump N units of flow from source to sink. 

 Internal nodes pass on flow ( flow in =  flow out). 

 Find the optimal paths along which to ship the flow. 

 
8 

B. Leibe Slide credit: Robert Collins 
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Recap: Using Network Flow for Tracking 

 

 

 

 

 

 

 

 
 

• Complication 1 

 Tracks can start later than frame1 (and end earlier than frame4) 

 Connect the source and sink nodes to all intermediate nodes. 

9 
B. Leibe Slide credit: Robert Collins 
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Recap: Using Network Flow for Tracking 

 

 

 

 

 

 

 

 
 

• Complication 2 

 Trivial solution: zero cost flow! 

10 
B. Leibe Slide credit: Robert Collins 
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Recap: Network Flow Approach 

 

11 

Zhang, Li, Nevatia, Global Data Association for Multi-Object Tracking 

using Network Flows, CVPR’08. 

image source: [Zhang, Li, Nevatia, CVPR’08] 

Solution: Divide 

each detection 

into 2 nodes 
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Recap: Min-Cost Formulation 

• Objective Function 

 

 

 

 
 

• subject to 

 Flow conservation at all nodes 

 

 
 

 Edge capacities 

 

12 
B. Leibe Slide credit: Laura Leal 

vision.cse.psu.edu/courses/Tracking/vlpr12/lzhang_cvpr08global.pdf
vision.cse.psu.edu/courses/Tracking/vlpr12/lzhang_cvpr08global.pdf
vision.cse.psu.edu/courses/Tracking/vlpr12/lzhang_cvpr08global.pdf
vision.cse.psu.edu/courses/Tracking/vlpr12/lzhang_cvpr08global.pdf
vision.cse.psu.edu/courses/Tracking/vlpr12/lzhang_cvpr08global.pdf
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Topics of This Lecture 

• Articulated Tracking 
 Motivation 

 Classes of Approaches 
 

• Body Pose Estimation as High-Dimensional Regression 
 Representations 

 Training data generation 

 Latent variable space 

 Learning a mapping between pose and appearance 
 

• Review: Gaussian Processes 
 Formulation 

 GP Prediction 

 Algorithm 
 

• Applications 
 Articulated Tracking under Egomotion 
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Articulated Tracking 

• Examples 

 Recover a person’s body articulation 

 Track facial expressions 

 Track detailed hand motion 

 ... 
 

• Common properties 

 Detailed parameterization in terms of  

joint locations or joint angles 

 Two steps 

– Pose estimation (in single frame) 

– Tracking (using dynamics model) 

 Challenging problem 

– High-dimensional 

– Hitting the limits of sensor data 

 
14 

image sources: T. Svoboda, D. Ramanan, I. Matthews, J. Oikonomidis 
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Basic Classes of Approaches 

• Global methods 

 Entire body configuration is treated as a point 

in some high-dimensional space. 

 Observations are also global feature vectors. 

 View of pose estimation as a high-dimensional  

regression problem. 

 Often in a subspace of “typical” motions... 
 

• Part-based methods 

 Body configuration is modeled as an assembly 

of movable parts with kinematic constraints. 

 Local search for part configurations that 

provide a good explanation for the observed 

appearance under the kinematic constraints. 

 View of pose estimation as probabilistic 
inference in a dynamic Graphical Model. 
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= 

= 

image sources: T. Jaeggli, D. Ramanan, T. Svoboda 
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Why Is It Difficult? 

 

 

 

 

 

 

 

• Challenges 

 Poor imaging, motion blur, occlusions, etc. 

 Difficult to extract sufficiently good figure-ground information 

 Mapping is generally multi-modal: an image observation can 

represent more than one pose! 

16 
B. Leibe Slide credit: Raquel Urtasun 
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Topics of This Lecture 

• Articulated Tracking 
 Motivation 

 Classes of Approaches 
 

• Body Pose Estimation as High-Dimensional Regression 
 Representations 

 Training data generation 

 Latent variable space 

 Learning a mapping between pose and appearance 
 

• Review: Gaussian Processes 
 Formulation 

 GP Prediction 

 Algorithm 
 

• Applications 
 Articulated Tracking under Egomotion 
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Body Representation 

• The body can be approximated as kinematic tree 

 

• Parametrization via 

 Joint locations 

 Joint angles 

 Relative joint angles along kinematic chain 

 ... 
 

 

 

• Example using in the following 

 3D joint locations of 20 joints  

 60-dimensional space 

 

 
18 

B. Leibe Slide adapted from Raquel Urtasun image source: R. Urtasun 
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Image Representation 

• Many possibilities... 
 

• Popular choice: Silhouettes 

 Easy to extract using background  

modeling techniques. 

 Capture important information 

about body shape. 

 We will use them as an example 

for today’s lecture... 

 

19 
B. Leibe Video source: Hedvig Sidhenbladh 
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Another Advantage of Silhouette Data 

• Synthetic training data generation possible! 

 Create sequences of „Pose + Silhouette“ pairs 

 Poses recorded with Mocap, used to animate 3D model 

 Silhouette via 3D rendering pipeline 

 

20 
B. Leibe 

Motion  

Capture 

3D Rendering 

Orientation () 

Pose Data (p) Silhouettes (s) 

Slide adapted from Stefan Gammeter 
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Synthetic Training Data Generation 
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Different clothes models Varying body proportions 

Animate with MoCap data Resulting synthetic training data 

(depth, body part labels, silhouette) 

Image source: Umer Rafi 
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Synthetic Training Data Generation 

22 
Video source: Umer Rafi 

 

 

 

 

 

 

 

 

 

 

 Example training sequence 
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• Appearance prediction 

 Regression problem 

 High-dimensional data on both sides 

 Low-dim. representation needed  

 for learning! 

 

 
 

• Training with Motion-capture stimuli 

 Real dynamics from human actors 

 Synthesized silhouettes for training 

 Background subtraction for test 

 

Learning a Mapping b/w Pose and Appearance 

23 

•  3D joint locations 

•  ~60-dim. 

•  segm. image 

•  ~2500-dim. 

T. Jaeggli,  E. Koller-Meier,  L. Van Gool,  "Learning Generative Models for 

Monocular Body Pose Estimation",  ACCV 2007. 
image source: T. Jaeggli 
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Latent Variable Models 

 

 

 

 

 

 

 
 

• Joint angle pose space is huge! 

 Only a small portion contains valid body poses. 

 Restrict estimation to the subspace of valid poses for the task 

 Latent variable models: PCA, FA, GPLVM, etc.  

24 
B. Leibe image source: R. Urtasun 

ftp://ftp.vision.ee.ethz.ch/publications/proceedings/eth_biwi_00514.pdf
ftp://ftp.vision.ee.ethz.ch/publications/proceedings/eth_biwi_00514.pdf
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Example: Subspace of Walking Motion 

 

 

 

 

 

 

 

 

• Pose modeling in a subspace 

 Pose model has 60 (highly dependent) DoF 

 But gait is cyclic, can be represented by a 2D latent space 

 Capture the dependency by dimensionality reduction 

(PCA, FA, CCA, LLE, GPLVM, ...) 
25 

B. Leibe image sources: S. Gammeter, T. Jaeggli 
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Articulated Motion in the Latent Space 

 

 

 

 

 

 

 
 

• Regression from latent space to 

 Pose    p(pose | z) 

 Silhouette  p(silhouette | z) 
 

• Regressors need to be learned from training data. 

26 
B. Leibe 

walking cycles have one 

main (periodic) DOF  

additional DOF encode 

„walking style“ 

Slide adapted from Stefan Gammeter 
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Learning a Generative Mapping 

27 

projection (BPCA)  

Learn dim. red. (LLE) 

reconstruct 
pose 

Body Pose 

Appearance 

X : Body Pose 

(high dim.) 

x : Body Pose 

(low dim.) 

Y : Image 

(high dim.) 

y : Appearance  

Descriptor: (low dim.) 

dynamic prior 

likelihood 

g
e
n
e
ra

ti
v
e
 m

a
p
p
in

g
 

Slide credit: Tobias Jaeggli 

T. Jaeggli,  E. Koller-Meier,  L. Van Gool,  "Learning Generative Models for 

Monocular Body Pose Estimation",  ACCV 2007. P
e
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Example Results 

• Difficulties 

 Changing viewpoints 

 Low resolution (50 px) 

 Compression artifacts 

 Disturbing objects (umbrella, bag) 
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B. Leibe 

Original video 

Video sources: Hedvig Sidhenbladh,  Tobias Jaeggli 
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Representing Multiple Activities 

• Learn multiple models 

 One model per activity 

 Separate LLE embedding 

 Separate dynamics 

 

 

• Learn transition function 

 Link the LLE spaces 

 Find similar pose pairs 

 Learn smooth transition 
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B. Leibe 

Body Pose 

Appearance 

X x 

Y y 

Body Pose 

Appearance 

X x 

Y y 

Body Pose 

Appearance 

X x 

Y y 

walk run 

Slide credit: Tobias Jaeggli 
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Switching b/w Multiple Activities 

• Activity switching 

 Low-res. traffic scene 

 Transition from Walking to Running 

 

30 
B. Leibe 

Activity switching 

Original video 

Pose Estim. Input 

Videos by Tobias Jaeggli 

ftp://ftp.vision.ee.ethz.ch/publications/proceedings/eth_biwi_00514.pdf
ftp://ftp.vision.ee.ethz.ch/publications/proceedings/eth_biwi_00514.pdf
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Topics of This Lecture 

• Articulated Tracking 
 Motivation 

 Classes of Approaches 
 

• Body Pose Estimation as High-Dimensional Regression 
 Representations 

 Training data generation 

 Latent variable space 

 Learning a mapping between pose and appearance 
 

• Review: Gaussian Processes 
 Formulation 

 GP Prediction 

 Algorithm 
 

• Applications 
 Articulated Tracking under Egomotion 
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Classification vs. Regression 

 

32 
B. Leibe 

In classification: y 2 {-1, 1} In regression: y 2 R 

Slide credit: Raquel Urtasun 

P
e
rc

e
p
tu

a
l 
a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

C
o

m
p

u
te

r 
V

is
io

n
 I
I,
 S

u
m

m
e

r’
1

4
 

Gaussian Process Regression 

• “Regular” regression: 

 

 

 

 

 

• GP regression: 

 

33 
B. Leibe 

x 

y f(x) 

x 

y 
μ (x) 

μ (x)+σ(x) 

μ (x)-σ(x) 

Slide credit: Stefan Gammeter 
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Gaussian Process Regression 

• GP Regression 

 Very easy to apply 

 Automatic confidence estimate of the result 

 Well-suited for pose regression tasks 

 

• In the following, I will give a quick intro to GPs 

 Focus on main concepts and results 

 A far more detailed discussion will be given in the Advanced 

Machine Learning lecture (next semester). 

34 
B. Leibe 
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Gaussian Process 

• Gaussian distribution 

 Probability distribution over scalars / vectors. 
 

• Gaussian process (generalization of Gaussian distrib.) 

 Describes properties of functions. 

 Function: Think of a function as a long vector where each entry 

specifies the function value f(xi) at a particular point xi. 

 Issue: How to deal with infinite number of points? 

– If you ask only for properties of the function at a finite number of 
points…  

– Then inference in Gaussian Process gives you the same answer if 

you ignore the infinitely many other points. 
 

• Definition 

 A Gaussian process (GP) is a collection of random variables any 

finite number of which has a joint Gaussian distribution. 

 
35 

B. Leibe Slide credit: Bernt Schiele 
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Gaussian Process 

• Example prior over functions p(f)  

 Represents our prior belief about  

functions before seeing any data. 

 Although specific functions don’t have  

mean of zero, the mean of f(x) values  

for any fixed x is zero (here). 
 

 Favors smooth functions 

– I.e. functions cannot vary too rapidly 

– Smoothness is induced by the covariance function of the  

Gaussian Process. 
 

 Learning in Gaussian processes 

– Is mainly defined by finding suitable properties of the covariance 

function. 

36 
B. Leibe Slide credit: Bernt Schiele Image source: Rasmussen & Williams, 2006 
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Gaussian Process 

• A Gaussian process is completely defined by 

 Mean function m(x) and 

 

 

 Covariance function k(x,x’)  

 

 

 
 

 We write the Gaussian process (GP) 

37 
B. Leibe 

m(x) = E[f(x)]

k(x;x0) = E[(f(x)¡m(x)(f(x0)¡m(x0))]

f(x) » GP(m(x); k(x;x0))

Slide adapted from Bernt Schiele 
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Gaussian Process: Squared Exponential 

• Typical covariance function 

 Squared exponential (SE) 

– Covariance function specifies the covariance between pairs of 

random variables 

 

 
 

• Remarks 

 Covariance between the outputs is written as a function 

between the inputs. 

 The squared exponential covariance function corresponds to a 

Bayesian linear regression model with an infinite number of 

basis functions. 

 For any positive definite covariance function k(.,.), there exists 

a (possibly infinite) expansion in terms of basis functions. 

38 
B. Leibe Slide credit: Bernt Schiele 
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Gaussian Process: Prior over Functions 

• Distribution over functions: 

 Specification of covariance function implies distribution over 

functions. 

 I.e. we can draw samples from the distribution of functions 

evaluated at a (finite) number of points. 

 

 Procedure 

– We choose a number of input points 

– We write the corresponding covariance 

matrix (e.g. using SE) element-wise: 

 
 

– Then we generate a random Gaussian 
vector with this covariance matrix: 

 

39 
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X?

K(X?;X?)

f? »N(0;K(X?;X?))

Example of 3 functions  

sampled 
Slide credit: Bernt Schiele Image source: Rasmussen & Williams, 2006 
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GP Prediction with Noisy Observations 

• Assume we have a set of observations: 

 

• Joint distribution of the training outputs f and test 

outputs f* according to the prior: 

 

 

 K(X, X*) contains covariances for all pairs of training and test 

points. 
 

• To get the posterior (after including the observations) 

 We need to restrict the above prior to contain only those 

functions which agree with the observed values. 

 Think of generating functions from the prior and rejecting those 

that disagree with the observations (obviously prohibitive). 
40 

B. Leibe Slide credit: Bernt Schiele 

with noise ¾n 
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Result: Prediction with Noisy Observations 

• Calculation of posterior: 

 Corresponds to conditioning the joint Gaussian prior distribution 

on the observations: 

 

 

 

 with: 

 

 

 
 

 This is the key result that defines Gaussian process regression! 

– The predictive distribution is a Gaussian whose mean and variance 

depend on the test points X* and on the kernel k(x,x’), evaluated 

on the training data X. 

41 
B. Leibe Slide credit: Bernt Schiele 

¹f? = E[f?jX;X?; t]
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GP Regression Algorithm 

• Very simple algorithm 

 

 

 

 

 

 

 

 Based on the following equations (Matrix inv.   Cholesky fact.) 

42 
B. Leibe Image source: Rasmussen & Williams, 2006 
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Computational Complexity 

• Complexity of GP model 

 Training effort: O(N3) through matrix inversion 

 Test effort: O(N2) through vector-matrix multiplication 
 

• Complexity of basis function model 

 Training effort: O(M3)  

 Test effort: O(M2)  
 

• Discussion 

 Exact GP methods become infeasible for large training sets. 

 Need to use approximate techniques whenever #training 

examples > 2500-3000. 

43 
B. Leibe 
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Topics of This Lecture 

• Articulated Tracking 
 Motivation 

 Classes of Approaches 
 

• Body Pose Estimation as High-Dimensional Regression 
 Representations 

 Training data generation 

 Latent variable space 

 Learning a mapping between pose and appearance 
 

• Review: Gaussian Processes 
 Formulation 

 GP Prediction 

 Algorithm 
 

• Applications 
 Articulated Tracking under Egomotion 
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45 

Articulated Multi-Person Tracking using GP 

 

 

 

 

 

 

• Idea: Only perform articulated tracking where it’s easy! 

• Multi-person tracking  

 Solves hard data association problem 

• Articulated tracking  

 Only on individual “tracklets” between occlusions 

 GP regression on full-body pose 

1...N 

[Gammeter, Ess, Jaeggli, Schindler, Leibe, Van Gool, ECCV’08] 

P
e
rc

e
p
tu

a
l 
a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

C
o

m
p

u
te

r 
V

is
io

n
 I
I,
 S

u
m

m
e

r’
1

4
 

46 

 

 

 

 

 

 

 
 

• Multi-Person tracking 
 Recovers trajectories and solves data association 

 

• Articulated Tracking 
 Estimates detailed body pose for each tracked person 

Articulated Multi-Person Tracking 

[Gammeter, Ess, Jaeggli, Schindler, Leibe, Van Gool, ECCV’08] 
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• Guided segmentation for each frame 

 No reliance on background modeling 

 Approach applicable to scenarios with moving camera 

 Feedback from body pose estimate to improve segmentation 

 
47 

Articulated Tracking under Egomotion 

[Gammeter, Ess, Jaeggli, Schindler, Leibe, Van Gool, ECCV’08] 
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Summary: Articulated Tracking with Global Models 

• Pros: 

 View as regression problem (pose  appearance) 

 Lots of machine learning techniques available 

 Research focus on handling the ambiguities 

 Training on MoCap data possible 

– Accurate models for human dynamics 
 

• Cons: 

 High-dimensional problem 

 Global model 

– Can handle only those articulations it has previously seen 

– Not robust against partial occlusion 

 Difficult to get good appearance representation 

– MoCap data  Can synthesize silhouettes, but not appearance 

– Restricted to background subtraction 
48 
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