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Outline of This Lecture
¢ Single-Object Tracking

¢ Bayesian Filtering
» Kalman Filters, EKF
» Particle Filters

¢ Multi-Object Tracking
» Data association
. MHT, (JPDAF, MCMCDA)
» Network flow optimization

o Articulated Tracking
» GP body pose estimation
» (Model-based tracking, AAMs)
» Pictorial Structures
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Image sources: Andreas Fss, Deva Ramanan, lan Matthes
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Recap: Linear Assighment Formulation

¢ Form a matrix of pairwise similarity scores

¢ Example: Similarity based on motion prediction
» Predict motion for each trajectory and assign scores for each
measurement based on inverse (Mahalanobis) distance, such
that closer measurements get higher scores.
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ide credit: Rohert Collin B. Leibe

Recap: Optimal Solution

¢ Greedy Algorithm

» Easy to program, quick to run, and yields “pretty good”
solutions in practice.

» But it often does not yield the optimal solution

¢ Hungarian Algorithm

» There is an algorithm called Kuhn-Munkres or “Hungarian”
algorithm specifically developed to efficiently solve the linear
assignment problem.

» Reduces assignment problem to bipartite graph matching.
~ When starting from an Nx N matrix, it runs in O(N?).
= If you need LAP, you should use it.
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ide credit: Rohert Collin B. Leibe

RWTHCHEN
Recap: Linear Assighment Problem

¢ Formal definition
N M

» Maximize ZZEW’:‘/

i=15=1

Those constraints
ensure that Zis a
permutation matrix

» The permutation matrix constraint ensures that we can only
match up one object from each row and column.
N M

argminé E Cij Zij
215

i=1 j=1

~ Note: Alternatively, we can minimize
cost rather than maximizing weights.
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ide adapted from Robert Collin B. Leibe

Recap: Min-Cost Flow
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e Conversion into flow graph
» Transform weights into costs Gy Wy
» Add source/sink nodes with 0 cost.
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» Directed edges with a capacity of 1.

ide credit: Robert Collin B. Leibe




Recap: Min-Cost Flow
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g e Conversion into flow graph
8 » Pump N units of flow from source to sink.
3
g » Internal nodes pass on flow (X flow in = . flow out).
3 = Find the optimal paths along which to ship the flow. ;
ide credit: Rohert Collin B. Leibe
RWTHCHEN

Recap: Using Network Flow for Tracking

frame2 frame3

e Complication 1
» Tracks can start later than frame1 (and end earlier than frame4)
= Connect the source and sink nodes to all intermediate nodes.
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B. Leibe

ide credit: Rohert Collin:
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Recap: Network Flow Approach
Solution: Divide

each detection
into 2 nodes

(AP

Observation edges

(s,u7) & (vif)
Enter/exit edges

e,
Transition edges

Zhang, Li, Nevatia, Global Data Association for Multi-Object Tracking
using Network Flows, CVPR’08.
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Recap: Min-Cost Flow

-3]

¢ Conversion into flow graph
» Pump N units of flow from source to sink.
» Internal nodes pass on flow (X flow in = ¥, flow out).
= Find the optimal paths along which to ship the flow.

B. Leibe

ide credit: Rohert Collin:
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Recap: Using Network Flow for Tracking

frame2

e Complication 2
» Trivial solution: zero cost flow!

ide credit: Robert Collin B. Leibe
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Recap: Min-Cost Formulation
¢ Objective Function
Tx= argmin Z Cin,ifin,i + Z Ci,outfi,uut
T i i

+2Cijfig+ 2 Cifi
7 i

¢ subject to
» Flow conservation at all nodes

Fin +Xf;.i = fi = fouti + Xf;.; i
J J

~ Edge capacities
fis1

ide credit: lauraleal B. Leibe
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Topics of This Lecture

¢ Articulated Tracking
» Motivation
» Classes of Approaches

¢ Body Pose Estimation as High-Dimensional Regression
» Representations
» Training data generation
» Latent variable space
» Learning a mapping between pose and appearance

¢ Review: Gaussian Processes
» Formulation
» GP Prediction
» Algorithm

¢ Applications
» Articulated Tracking under Egomotion

Computer Vision Il, Summer’14

Articulated Tracking

* Examples
~ Recover a person’s body articulation
» Track facial expressions
» Track detailed hand motion

e Common properties
» Detailed parameterization in terms of
joint locations or joint angles

» Two steps
- Pose estimation (in single frame)
- Tracking (using dynamics model)

» Challenging problem
- High-dimensional
- Hitting the limits of sensor data

Computer Vision Il, Summer’14

image sources: T. Svoboda, D. Ramanan, |. Matthews, J. Oi

Basic Classes of Approaches

¢ Global methods

» Entire body configuration is treated as a point
in some high-dimensional space.

» Observations are also global feature vectors.

_L,A;g .

regression problem.
= Often in a subspace of “typical” motions...

¢ Part-based methods
» Body configuration is modeled as an assembly
of movable parts with kinematic constraints. :|
» Local search for part configurations that ’
provide a good explanation for the observed
appearance under the kinematic constraints.
= View of pose estimation as probabilistic
inference in a dynamic Graphical Model.

im; rces: T,
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i, D. Ramanan, T, Svc

Topics of This Lecture

¢ Body Pose Estimation as High-Dimensional Regression
» Representations
» Training data generation
» Latent variable space
» Learning a mapping between pose and appearance
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= View of pose estimation as a high-dimensional E
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Why Is It Difficult?

-

¢ Challenges
» Poor imaging, motion blur, occlusions, etc.
» Difficult to extract sufficiently good figure-ground information

~ Mapping is generally multi-modal: an image observation can
represent more than one pose!

Computer Vision Il, Summer’14

ide credit: Raguel Lrtasun B. Leibe

RWTHCHEN
Body Representation

¢ The body can be approximated as kinematic tree
!
e Parametrization via e
» Joint locations J
» Joint angles i
» Relative joint angles along kinematic chain / \,

¢ Example using in the following PR
» 3D joint locations of 20 joints
= 60-dimensional space
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ide adapted from Raquel Uirtasun B. Leibe
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Image Representation Another Advantage of Silhouette Data

¢ Many possibilities... ¢ Synthetic training data generation possible!
» Create sequences of ,,Pose + Silhouette“ pairs
~ Poses recorded with Mocap, used to animate 3D model
. Silhouette via 3D rendering pipeline

Orientation (m)\

¢ Popular choice: Silhouettes
» Easy to extract using background
modeling techniques.
» Capture important information
about body shape.
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TOWNTHITCHEN
Synthetic Training Data Generation

TrrTT

Varying body proportions Different clothes models

TOWTH/ACHEN
Synthetic Training Data Generation
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2 Animate with MoCap data Resulting synthetic training data 2 Example training sequence
E_ (depth, body part labels, silhouette) E. P 8 seq
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Learning a Mapping b/w Pose and Appearance Latent Variable Models

¢ Appearance prediction .
» Regression problem -k
» High-dimensional data on both sides "'\

= Low-dim. representation needed
for learning!

e

« 3D joint locations « segm. image]
+ ~60-dim. « ~2500-dim.

sl ]

T. Jaeggli, E. Koller-Meier, L. Van Gool, “Learning Generative Models for
Monocular Body Pose Estimation”, ACCV 2007. N

a Y1
Low-dim. latent space (X) Joint angle pose space (y)

¢ Training with Motion-capture stimuli
~ Real dynamics from human actors
» Synthesized silhouettes for training
» Background subtraction for test

-

¢ Joint angle pose space is huge!
» Only a small portion contains valid body poses.
= Restrict estimation to the subspace of valid poses for the task
» Latent variable models: PCA, FA, GPLVM, etc.
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Example: Subspace of Walking Motion

RWTHZACHET]

RWTHCHEN
Articulated Motion in the Latent Space
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b walking cycles have one additional DOF encode
g main (periodic) DOF w»walking style
=3
2
L = e« Regression from latent space to
* Pose modeling in a subspace 5 Pose plpose | z)
» Pose model has 60 (highly dependent) DoF g . .
. K (highly dep ) ; » Silhouette - p(silhouette | z)
» But gait is cyclic, can be represented by a 2D latent space S
" : . " o P
- Capture the dependency by dimensionality reduction = ¢ Regressors need to be learned from training data.
(PCA, FA, CCA, LLE, GPLVM, ...) 2 o 2%
B. Leibe image sources: S T. Jaeggll ide adapted from Stefan B. Leibe
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Learning a Generative Mapping Example Results
¢ Difficulties
Body Pose ~ - =~ _Learn dim. red. (LLE) . . .
e ~9 » Changing viewpoints
X : Body Pose x : Body Pose » Low resolution (50 px)
(high dim.) | reconsiruct |_(low dim.) | ] . Compression artifacts )
]
g dynamic pri ~ Disturbing objects (umbrella, bag) i
o
3
£ <
> T
% | likelihood 5
L 3
—_ =
ge s | ¥ :Appearance c
Appearance g
o
T. Jaeggli, E. Koller-Meier, L. Van Gool, “Learning Generative Models for § =& 2
Monocular Body Pose Estimation”, ACCV 2007. 27 ® Original video
ide credit: Tohiac Jaegoli B. Leibe lideg sources; Hedvig Tobias Jaegel
RWTHCHEN RWTHCHEN

Representing Multiple Activities

¢ Learn multiple models
» One model per activity

» Separate LLE embedding
. Separate dynamics

¢ Learn transition function
» Link the LLE spaces
» Find similar pose pairs
~ Learn smooth transition

if a; = ay
else

P ()
prr T (i)

Dnoswiteh
plae, ag|ze_y,ai_y) x Prosuitch
Pswiteh

ide credit: Tobias Jaecoli B. Leibe
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Switching b/w Multiple Activities

e Activity switching
» Low-res. traffic scene
» Transition from Walking to Running

Activiﬁ( sw}tchiné 30

lideos by Tobias Jaeggl]

B. Leibe



ftp://ftp.vision.ee.ethz.ch/publications/proceedings/eth_biwi_00514.pdf
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Topics of This Lecture Classification vs. Regression

¢ Review: Gaussian Processes
» Formulation
» GP Prediction
» Algorithm

In classification: y € {-1, 1} In regression: y € R

Computer Vision Il, Summer’14
Computer Vision Il, Summer’14

ide credit: Raquel Urtasin B. Lebe
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Gaussian Process Regression Gaussian Process Regression
e “Regular” regression: y = f(x) ¢ GP Regression
» Very easy to apply
o ) » Automatic confidence estimate of the result
—_ ~ T N :
\; e » Well-suited for pose regression tasks

- 3 * In the following, | will give a quick intro to GPs
§ 'q:, » Focus on main concepts and results
3 * GP regression: plyx) ~ N(p(x),o(x)) E . A far more detailed discussion will be given in the Advanced
3 @ Machine Learning lecture (next semester).
= - b ()+o(x) =
5 - 5
= (%) ®
= 7 X-o(x) =
2 . 2
2 2
£ =
o o
S 33 S 34

ide credit: Stefan G B. Leibe B. Leibe
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Gaussian Process Gaussian Process

¢ Gaussian distribution

* Example prior over functions p(f) J A
» Probability distribution over scalars / vectors. » Represents our prior belief about B =
. L . L. functions before seeing any data. . \
¢ Gaussian process (generalization of Gaussian distrib.) . Although specific functions don’t have f ﬂf
» Describes properties of functions. mean of zero, the mean of f(x) values "‘Q( \
» Function: Think of a function as a long vector where each entry for any fixed x is zero (here). b ,/
specifies the function value f(x;) at a particular point x;. o, »

Favors smooth functions
- l.e. functions cannot vary too rapidly

- Smoothness is induced by the covariance function of the
Gaussian Process.

v

» Issue: How to deal with infinite number of points?
- If you ask only for properties of the function at a finite number of
points...
- Then inference in Gaussian Process gives you the same answer if

you ignore the infinitely many other points. » Learning in Gaussian processes

- Is mainly defined by finding suitable properties of the covariance
function.

¢ Definition
» A Gaussian process (GP) is a collection of random variables any
finite number of which has a joint Gaussian distribution.
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ide credit: Bernt Schiele B. Leibe ide credit: Bernt Schiele B. Leibe Jmage source: Rasmussen & Williams, 200
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Gaussian Process

¢ A Gaussian process is completely defined by
» Mean function m(x) and

m(x) = E[f(x)]

. Covariance function k(x,x’)

k(x,x') = E[(f(x) — m(x)(f(x) —m(x))]
» We write the Gaussian process (GP)
f(x) ~ GP(m(x), k(x,x))
ibe 37
RWTHCHEN

Gaussian Process: Prior over Functions

e Distribution over functions:
~ Specification of covariance function implies distribution over
functions.
» l.e. we can draw samples from the distribution of functions
evaluated at a (finite) number of points.

» Procedure

- We choose a number of input points X, |

- We write the corresponding covariance
matrix (e.g. using SE) element-wise:

K(X,,X,)

- Then we generate a random Gaussian -1
vector with this covariance matrix:

f* ’\‘N(O) K(X*7X*))

output, fix)

input, x
Example of 3 functions
sampled 39

8. Leibe Lmage source: Rasmussen & Williams, 200

ide credit: Bernt Schiele
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Result: Prediction with Noisy Observations

¢ Calculation of posterior:
» Corresponds to conditioning the joint Gaussian prior distribution
on the observations:

f.|X., X, t ~ N(f,,cov[f,]) f, = E[f.|X,X,,t]

» with:
- - - P -1
f, = K(X.,X) (K(X,X)+o1) "t
cov[f,] = K(X., X.)- K(X..X) (K{X. X)+ n;’,[) ! KX, X,)
= This is the key result that defines Gaussian process regression!
- The predictive distribution is a Gaussian whose mean and variance
depend on the test points X. and on the kernel k(x,x’), evaluated

on the training data X.
4

ide credit: Bernt Schiele 8. Leibe
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Gaussian Process: Squared Exponential

¢ Typical covariance function
» Squared exponential (SE)
- Covariance function specifies the covariance between pairs of
random variables

cov[f(x,), f(x4)] = k(x,,%,) = exp {—%hcﬂ —x, 2}

e Remarks

~ Covariance between the outputs is written as a function
between the inputs.

» The squared exponential covariance function corresponds to a
Bayesian linear regression model with an infinite number of
basis functions.

.~ For any positive definite covariance function k(.,.), there exists
a (possibly infinite) expansion in terms of basis functions.

B. Leibe

ide credit: Bernt Schiele
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GP Prediction with Noisy Observations

¢ Assume we have a set of observations:
{(xns fu) [ n=1...., N} with noise o,
¢ Joint distribution of the training outputs f and test
outputs f. according to the prior:

{ t ]N I (0 [K(X.X)-o,-jj K(X,X,) D
£\ 7| K(X.X)  K(X.X,)

» K(X, X.) contains covariances for all pairs of training and test
points.

¢ To get the posterior (after including the observations)

» We need to restrict the above prior to contain only those
functions which agree with the observed values.

» Think of generating functions from the prior and rejecting those
that disagree with the observations (obviously prohibitive).

40
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ide credit: Bernt Schiele
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GP Regression Algorithm

e Very simple algorithm

input: X (inputs), y (targets), & (covariance function), 2 (noise level),
X, (test inpur)
2: L= cholesky(K + #21)
. ';':7;(; r.:'I \¥) } predictive mean eq. (2.25)
v:=L\k, sredictive vari  eq. (2.96
6 V£ = k(x..%,) vTv } predictive variance eq. (2.26)
logp(y|X) == -4y o — ¥, log Ly — 3 log 27 eq. (2.30)
& return: f, (mean), ¥[f.| (variance), log p(y|X) (log marginal likelihood)

» Based on the following equations (Matrix inv. <> Cholesky fact.)
foo= K (K+02D) '
cov[f] = kixo,x) — K (K +020) 'k,
1., 9 o\ — 1 5 N
logp(t|X) = —Et; (K + rrf,I) Yt Elfn; K+l - T1(1;: 2m
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Jmage source: Rasmussen & Williame, 200




Tracklet)

(Multi-Person Tracker

(Articulated Tracke[

¢ Idea: Only perform articulated tracking where it’s easy!
e Multi-person tracking

» Solves hard data association problem
e Articulated tracking

~ Only on individual “tracklets” between occlusions
» GP regression on full-body pose
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RWTHCHEN
Articulated Tracking under Egomotion

¢ Guided segmentation for each frame
» No reliance on background modeling
» Approach applicable to scenarios with moving camera
» Feedback from body pose estimate to improve segmentation

Computer Vision I, Summer’14

47
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Computational Complexity Topics of This Lecture
¢ Complexity of GP model
» Training effort: O(/N3) through matrix inversion
. Test effort: O(IN?) through vector-matrix multiplication
¢ Complexity of basis function model
» Training effort: O(M?3)
E . Test effort: O(M?) E
£ £
5 * Discussion §
= » Exact GP methods become infeasible for large training sets. =
é = Need to use approximate techniques whenever #training .§
> examples > 2500-3000. >
£ 3 e« Applications
® . e s ® . Articulated Tracking under Egomotion 44
RWTHCHEN RWTHCHEN
Articulated Multi-Person Tracking using GP Articulated Multi-Person Tracking
1...N

Computer Vision Il, Summer’14

¢ Multi-Person tracking
» Recovers trajectories and solves data association

e Articulated Tracking
» Estimates detailed body pose for each tracked person

46
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RWTHCHEN
Summary: Articulated Tracking with Global Models

* Pros:
» View as regression problem (pose <> appearance)
» Lots of machine learning techniques available
» Research focus on handling the ambiguities
» Training on MoCap data possible
- Accurate models for human dynamics

e Cons:
» High-dimensional problem
» Global model
- Can handle only those articulations it has previously seen
- Not robust against partial occlusion
~ Difficult to get good appearance representation
- MoCap data = Can synthesize silhouettes, but not appearance

- Restricted to background subtraction
48
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