Computer Vision II - Lecture 12

Multi-Object Tracking II

01.07.2014

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de
leibe@vision.rwth-aachen.de

Course Outline

- Single-Object Tracking
- Bayesian Filtering
, Kalman filters
, Particle filters
, Case studies
- Multi-Object Tracking
, Introduction
, MHT, JPDAF
, Network Flow Optimization
- Articulated Tracking

Topics of This Lecture

- Recap: Track-Splitting Filter
, Motivation
, Ambiguities
- Multi-Hypothesis Tracking (MHT)
, Basic idea
, Hypothesis Generation
, Assignment
, Measurement Likelihood
, Practical considerations

Recap: Motion Correspondence Ambiguities

1. Predictions may not be supported by measurements
, Have the objects ceased to exist, or are they simply occluded?
2. There may be unexpected measurements
, Newly visible objects, or just noise?
3. More than one measurement may match a prediction

- Which measurement is the correct one (what about the others)?

4. A measurement may match to multiple predictions
, Which object shall the measurement be assigned to?

Let's Formalize This

- Multi-Object Tracking problem
, We represent a track by a state vector x, e.g.,

$$
\mathbf{x}=\left[x, y, v_{x}, v_{y}\right]^{T}
$$

, As the track evolves, we denote its state by the time index k :

$$
\mathbf{x}^{(k)}=\left[x^{(k)}, y^{(k)}, v_{x}^{(k)}, v_{y}^{(k)}\right]^{T}
$$

, At each time step, we get a set of observations (measurements)

$$
\mathbf{Y}^{(k)}=\left\{\mathbf{y}_{1}^{(k)}, \ldots, \mathbf{y}_{M_{k}}^{(k)}\right\}
$$

, We now need to make the data association between tracks

$$
\begin{aligned}
& \left\{\mathbf{x}_{1}^{(k)}, \ldots, \mathbf{x}_{N_{k}}^{(k)}\right\} \text { and observations }\left\{\mathbf{y}_{1}^{(k)}, \ldots, \mathbf{y}_{M_{k}}^{(k)}\right\}: \\
& z_{l}^{(k)}=j \text { iff } \mathbf{y}_{j}^{(k)} \text { is associated with } \mathbf{x}_{l}^{(k)}
\end{aligned}
$$

Recap: Reducing Ambiguities

- Gating
, Only consider measurements within a certain area around the predicted location.
\Rightarrow Large gain in efficiency, since only a small region needs to be searched
- Nearest-Neighbor Filter
> Among the candidates in the gating region, only take the one closest to the prediction \mathbf{x}_{p}

$$
z_{l}^{(k)}=\arg \min _{j}\left(\mathbf{x}_{p, l}^{(k)}-\mathbf{y}_{j}^{(k)}\right)^{T}\left(\mathbf{x}_{p, l}^{(k)}-\mathbf{y}_{j}^{(k)}\right)
$$

, Better: the one most likely under a Gaussian prediction model

$$
z_{l}^{(k)}=\arg \max _{j} \mathcal{N}\left(\mathbf{y}_{j}^{(k)} ; \mathbf{x}_{p, l}^{(k)}, \boldsymbol{\Sigma}_{p, l}^{(k)}\right)
$$

which is equivalent to taking the Mahalanobis distance

$$
z_{l}=\arg \min _{j}\left(\mathbf{x}_{p, l}-\mathbf{y}_{j}\right)^{T} \boldsymbol{\Sigma}_{p, l}^{-1}\left(\mathbf{x}_{p, l}-\mathbf{y}_{j}\right)
$$

Recap: Track-Splitting Filter

- Idea
, Instead of assigning the measurement that is currently closest, as in the NN algorithm, select the sequence of measurements that minimizes the total Mahalanobis distance over some interval!

, Form a track tree for the different association decisions
- Modified log-likelihood provides the merit of a particular node in the track tree.
, Cost of calculating this is low, since most terms are needed anyway for the Kalman filter.
- Problem
, The track tree grows exponentially, may generate a very large number of possible tracks that need to be maintained.

Recap: Pruning Strategies

- In order to keep this feasible, need to apply pruning
, Deleting unlikely tracks
- May be accomplished by comparing the modified log-likelihood $\lambda(k)$, which has a χ^{2} distribution with $k n_{z}$ degrees of freedom, with a threshold α (set according to χ^{2} distribution tables).
- Problem for long tracks: modified log-likelihood gets dominated by old terms and responds very slowly to new ones.
\Rightarrow Use sliding window or exponential decay term.
, Merging track nodes
- If the state estimates of two track nodes are similar, merge them.
- E.g., if both tracks validate identical subsequent measurements.
, Only keeping the most likely N tracks
- Rank tracks based on their modified log-likelihood.

Summary: Track-Splitting Filter

- Properties
, Very old algorithm
- P. Smith, G. Buechler, A Branching Algorithm for Discriminating and Tracking Multiple Objects, IEEE Trans. Automatic Control, Vol. 20, pp. 101-104, 1975.
, Improvement over NN assignment.
- Assignment decisions are delayed until more information is available.
- Many problems remain
, Exponential complexity, heuristic pruning needed.
> Merging of track nodes is necessary, because tracks may share measurements, which is physically unrealistic.
\Rightarrow Would need to add exclusion constraints such that each measurement may only belong to a single track.
\Rightarrow Impossible in this framework...

Topics of This Lecture

- Recap: Track-Splitting Filter
, Motivation
- Ambiguities
- Multi-Hypothesis Tracking (MHT)
, Basic idea
, Hypothesis Generation
, Assignment
, Measurement Likelihood
, Practical considerations

Multi-Hypothesis Tracking (MHT)

- Ideas
, Again associate sequences of measurements.
- Evaluate the probabilities of all association hypotheses.
, For each sequence of measurements (a hypothesized track), a standard KF yields the state estimate and covariance
- Differences to Track-Splitting Filter
, Instead of forming a track tree, keep a set of hypotheses that generate child hypotheses based on the associations.
> After each hypothesis generation step, merge and prune the current hypothesis set to keep the approach feasible.
. Integrate track generation into the assignment process.
D. Reid, An Algorithm for Tracking Multiple Targets, IEEE Trans. Automatic Control, Vol. 24(6), pp. 843-854, 1979.

\section*{| R |
| :--- |}

Target vs. Measurement Orientation

- Target-oriented approaches
, Evaluate the probability that a measurement belongs to an established target.
- Measurement-oriented approaches
, Evaluate the probability that an established target or a new target gave rise to a certain measurement sequence.
- This makes it possible to include track initiation of new targets within the algorithmic framework.
- MHT
, Measurement-oriented
, Handles track initialization and termination

Challenge: Exponential Complexity

- Strategy
, Generate all possible hypotheses and then depend on pruning these hypotheses to avoid the combinatorial explosion.
\Rightarrow Exhaustive search
, Tree data structures are used to keep this search efficient
- Commonly used pruning techniques
, Clustering to reduce the combinatorial complexity
, Pruning of low-probability hypotheses
, N-scan pruning
, Merging of similar hypotheses

MHT Outline

Hypothesis Generation

- Formalization
, Set of hypotheses at time $k: \boldsymbol{\Omega}^{(\mathbf{k})}=\left\{\Omega_{j}^{(k)}\right\}$
, This set is obtained from $\Omega^{(k-1)}$ and the latest set of measurements

$$
\mathbf{Y}^{(k)}=\left\{\mathbf{y}_{1}^{(k)}, \ldots, \mathbf{y}_{M_{k}}^{(k)}\right\}
$$

, The set $\boldsymbol{\Omega}^{(k)}$ is generated from $\boldsymbol{\Omega}^{(k-1)}$ by performing all feasible associations between the old hypotheses and the new measurements $\mathbf{Y}^{(k)}$.

- Feasible associations can be
- A continuation of a previous track
, A false alarm
, A new target

Hypothesis Matrix

- Visualize feasible associations by a hypothesis matrix

$$
\Theta=\begin{gathered}
\mathbf{x}_{1} \mathbf{x}_{2} \mathbf{x}_{f a} \mathbf{x}_{n t} \\
{\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1
\end{array}\right]}
\end{gathered} \begin{aligned}
& \mathbf{y}_{1} \\
& \mathbf{y}_{2} \\
& \mathbf{y}_{3} \\
& \mathbf{y}_{4}
\end{aligned}
$$

- Interpretation
, Columns represent tracked objects
, Rows represent measurements
, A non-zero element at matrix position (i, j) denotes that measurement \mathbf{y}_{i} is contained in the validation region of track \mathbf{x}_{j}.
, Extra column $\mathbf{x}_{f a}$ for association as false alarm.
, Extra column $\mathbf{x}_{n t}$ for association as new track.

Assignments

- Turning feasible associations into assignments
, For each feasible association, we generate a new hypothesis.
, Let $\Omega_{j}^{(k)}$ be the j-th hypothesis at time k and $\Omega_{p(j)}^{(k-1)}$ be the parent hypothesis from which $\Omega_{j}^{(k)}$ was derived.
, Let $Z_{j}^{(k)}$ denote the set of assignments that gives rise to $\Omega_{j}^{(k)}$.
, Assignments are again best visualized in matrix form

Z_{j}	\mathbf{x}_{1}	\mathbf{x}_{2}	$\mathbf{x}_{f a}$	$\mathbf{x}_{n t}$
\mathbf{y}_{1}	0	0	1	0
\mathbf{y}_{2}	1	0	0	0
\mathbf{y}_{3}	0	1	0	0
\mathbf{y}_{4}	0	0	0	1

Assignments

Z_{j}	\mathbf{x}_{1}	\mathbf{x}_{2}	$\mathbf{x}_{f a}$	$\mathbf{x}_{n t}$
\mathbf{y}_{1}	0	0	1	0
\mathbf{y}_{2}	1	0	0	0
\mathbf{y}_{3}	0	1	0	0
\mathbf{y}_{4}	0	0	0	1

- Impose constraints
, A measurement can originate from only one object.
\Rightarrow Any row has only a single non-zero value.
- An object can have at most one associated measurement per time step.
\Rightarrow Any column has only a single non-zero value, except for $\mathbf{x}_{f a}, \mathbf{x}_{n t}$

Calculating Hypothesis Probabilities

- Probabilistic formulation
, It is straightforward to enumerate all possible assignments.
, However, we also need to calculate the probability of each child hypothesis.
, This is done recursively:

$$
\begin{aligned}
& p\left(\Omega_{j}^{(k)} \mid \mathbf{Y}^{(k)}\right)=p\left(Z_{j}^{(k)}, \Omega_{p(j)}^{(k-1)} \mid \mathbf{Y}^{(k)}\right) \\
& \stackrel{\text { Bayes }}{=} \eta p\left(\mathbf{Y}^{(k)} \mid Z_{j}^{(k)}, \Omega_{p(j)}^{(k-1)}\right) p\left(Z_{j}^{(k)}, \Omega_{p(j)}^{(k-1)}\right) \\
&=\eta p\left(\mathbf{Y}^{(k)} \mid Z_{j}^{(k)}, \Omega_{p(j)}^{(k-1)}\right) \\
& \underbrace{p\left(Z_{j}^{(k)} \mid \Omega_{p(j)}^{(k-1)}\right)}_{\begin{array}{c}
\text { Normalization } \\
\text { factor }
\end{array}} \underbrace{p\left(\Omega_{p(j)}^{(k-1)}\right)}_{\begin{array}{c}
\text { Measurement } \\
\text { likelihood }
\end{array}}
\end{aligned}
$$

Measurement Likelihood

- Use KF prediction
, Assume that a measurement $\mathbf{y}_{i}^{(k)}$ associated to a track \mathbf{x}_{j} has a Gaussian pdf centered around the measurement prediction $\hat{\mathbf{x}}_{j}^{(k)}$ with innovation covariance $\widehat{\boldsymbol{\Sigma}}_{j}^{(k)}$.
, Further assume that the pdf of a measurement belonging to a new track or false alarm is uniform in the observation volume W (the sensor's field-of-view) with probability W^{-1}.
, Thus, the measurement likelihood can be expressed as

$$
\begin{aligned}
p\left(\mathbf{Y}^{(k)} \mid Z_{j}^{(k)}, \Omega_{p(j)}^{(k-1)}\right) & =\prod_{i=1}^{M_{k}} \mathcal{N}\left(\mathbf{y}_{i}^{(k)} ; \hat{\mathbf{x}}_{j}, \widehat{\boldsymbol{\Sigma}}_{j}^{(k)}\right)^{\delta_{i}} W^{-\left(1-\delta_{i}\right)} \\
& =W^{-\left(N_{\text {fal }}+N_{\text {new }}\right)} \prod_{i=1}^{M_{k}} \mathcal{N}\left(\mathbf{y}_{i}^{(k)} ; \hat{\mathbf{x}}_{j}, \widehat{\boldsymbol{\Sigma}}_{j}^{(k)}\right)^{\delta_{i}}
\end{aligned}
$$

Probability of an Assignment Set

$$
p\left(Z_{j}^{(k)} \mid \Omega_{p(j)}^{(k-1)}\right)
$$

- Composed of three terms

1. Probability of the number of tracks $N_{\text {det }}, N_{\text {fal }}, N_{\text {new }}$

- Assumption 1: $N_{\text {det }}$ follows a binomial distribution

$$
p\left(N_{d e t} \mid \Omega_{p(j)}^{(k-1)}\right)=\binom{N}{N_{d e t}} p_{d e t}^{N_{d e t}}\left(1-p_{d e t}\right)^{\left(N-N_{d e t}\right)}
$$

where N is the number of tracks in the parent hypothesis

- Assumption 2: $N_{\text {fal }}$ and $N_{\text {new }}$ both follow a Poisson distribution with expected number of events $\lambda_{\text {fal }} W$ and $\lambda_{\text {new }} W$

$$
\begin{aligned}
p\left(N_{\text {det }}, N_{\text {fal }}, N_{\text {new }} \mid \Omega_{p(j)}^{(k-1)}\right)= & \binom{N}{N_{\text {det }}} p_{d e t}^{N_{\text {det }}}\left(1-p_{\text {det }}\right)^{\left(N-N_{\text {det }}\right)} \\
& \cdot \mu\left(N_{\text {fal }} ; \lambda_{\text {fal }} W\right) \cdot \mu\left(N_{\text {new }} ; \lambda_{\text {new }} W\right)
\end{aligned}
$$

Probability of an Assignment Set

2. Probability of a specific assignment of measurements

- Such that $M_{k}=N_{d e t}+N_{f a l}+N_{n e w}$ holds.
- This is determined as 1 over the number of combinations

$$
\binom{M_{k}}{N_{d e t}}\binom{M_{k}-N_{d e t}}{N_{\text {fal }}}\binom{M_{k}-N_{\text {det }}-N_{f a l}}{N_{\text {new }}}
$$

3. Probability of a specific assignment of tracks

- Given that a track can be either detected or not detected.
- This is determined as 1 over the number of assignments

$$
\frac{N!}{\left(N-N_{d e t}\right)!}\binom{N-N_{d e t}}{N_{d e t}}
$$

Measurement Likelihood

- Combining all the different parts
, Nice property: many terms cancel out!
> (Derivation left as exercise)
\Rightarrow The final probability $p\left(\Omega_{j}^{(k)} \mid \mathbf{Y}^{(k)}\right)$ can be computed in a very simple form.
, This was the main contribution by Reid and it is one of the reasons why the approach is still popular.
- Practical issues
, Exponential complexity remains
- Heuristic pruning strategies must be applied to contain the growth of the hypothesis set.
, E.g., dividing hypotheses into spatially disjoint clusters.

References and Further Reading

- A good tutorial on Data Association
, I.J. Cox. A Review of Statistical Data Association Techniques for Motion Correspondence. In International Journal of Computer Vision, Vol. 10(1), pp. 53-66, 1993.
- Reid's original MHT paper
> D. Reid, An Algorithm for Tracking Multiple Targets, IEEE Trans. Automatic Control, Vol. 24(6), pp. 843-854, 1979.

