

Idea

> Instead of assigning the measurement that is currently closest, as in the NN algorithm, select the sequence of measurements that minimizes the total Mahalanobis distance over some interval!

UNIVERS

- Form a track tree for the different association decisions
- Modified log-likelihood provides the merit of a particular node in the track tree.
- Cost of calculating this is low, since most terms are needed anyway for the Kalman filter.

B. Lei

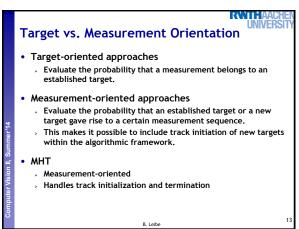
Problem

Properties

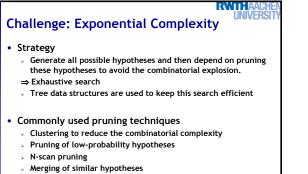
available.

Very old algorithm

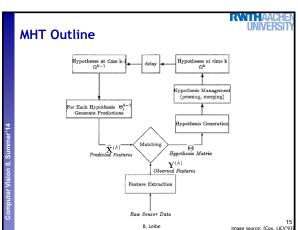
• Many problems remain

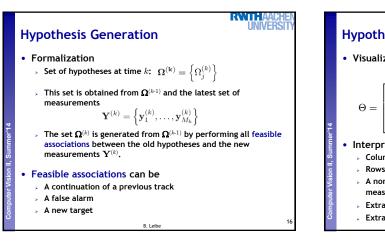

pp. 101-104, 1975.

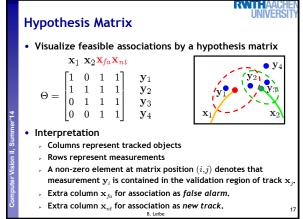
The track tree grows exponentially, may generate a very large number of possible tracks that need to be maintained.



RWTH/ INVERS Summary: Track-Splitting Filter **Topics of This Lecture** Recap: Track-Splitting Filter Motivation Ambiguities P. Smith, G. Buechler, A Branching Algorithm for Discriminating and Tracking Multiple Objects, IEEE Trans. Automatic Control, Vol. 20, Multi-Hypothesis Tracking (MHT) Improvement over NN assignment. Basic idea Assignment decisions are delayed until more information is Hypothesis Generation Assignment Measurement Likelihood Practical considerations > Exponential complexity, heuristic pruning needed. Merging of track nodes is necessary, because tracks may share measurements, which is physically unrealistic. \Rightarrow Would need to add exclusion constraints such that each measurement may only belong to a single track. \Rightarrow Impossible in this framework... B. Leib

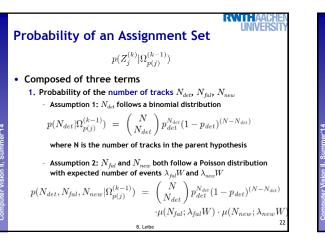

RYN HAA0 Multi-Hypothesis Tracking (MHT) Ideas Again associate sequences of measurements. Evaluate the probabilities of all association hypotheses. For each sequence of measurements (a hypothesized track), a standard KF yields the state estimate and covariance • Differences to Track-Splitting Filter (1)Instead of forming a track tree, keep a set of hypotheses (2) that generate child hypotheses based on the associations. $z_1^{(3)}$ After each hypothesis generation step, merge and prune the current hypothesis set to keep the $z_1^{(4)}$ $b z_2^{(4)}$. approach feasible. Integrate track generation into the assignment process. D. Reid, <u>An Algorithm for Tracking Multiple Targets</u>, IEEE Trans. Automatic Control, Vol. 24(6), pp. 843-854, 1979. 12 B. Leibe

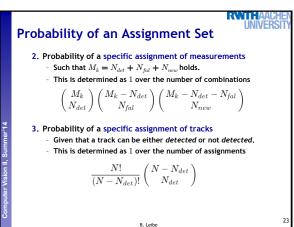


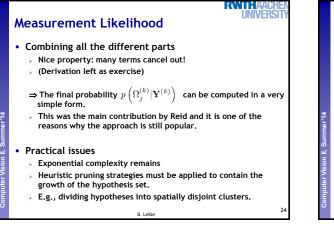

2

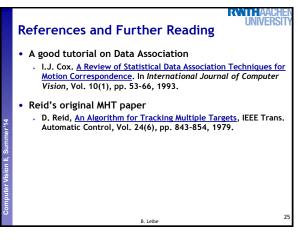
B. Lei

Assignments


UNIVERSITY


- Turning feasible associations into assignments
 - > For each feasible association, we generate a new hypothesis. > Let $\Omega_j^{(k)}$ be the *j*-th hypothesis at time *k* and $\Omega_{p(j)}^{(k-1)}$ be the parent hypothesis from which $\Omega_j^{(k)}$ was derived.
 - > Let $Z_i^{(k)}$ denote the set of assignments that gives rise to $\Omega_i^{(k)}$.
 - Assignments are again best visualized in matrix form


Z_{j}	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_{fa}	\mathbf{x}_{nt}
\mathbf{y}_1	0	0	1	0
\mathbf{y}_2	1	0	0	0
\mathbf{y}_3	0	1	0	0
\mathbf{y}_4	0	0	0	1
		B. Leibe		


Assignr	nents				R	UNIVERSIT
	Z_{j}	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_{fa}	\mathbf{x}_{nt}	
	\mathbf{y}_1	0	0	1	0	
	\mathbf{y}_2	1	0	0	0	
	\mathbf{y}_3	0	1	0	0	
	\mathbf{y}_4	0	0	0	1	
→ A me ⇒ Any → An o time	e constrain easurement row has on bject can h step. column has	can orig ly a singl ave at m	le non-ze	ero value associate	e. ed measur	
			B. Leibe			1

