Computer Vision Il, Summer’14

Computer Vision I, Summer’14

RWTHCHEN RWTHCHEN
Course Outline
¢ Single-Object Tracking
Computer Vision Il - Lecture 12 + Bayesian Filtering
» Kalman filters
Multi-Obiect T Ki 1 » Particle filters
utti- jec rac lng » Case studies
01.07.2014 = ¢ Multi-Object Tracking
g » Introduction
E » MHT, JPDAF
:. » Network Flow Optimization
Bastian Leibe | « Articulated Tracking
RWTH Aachen >
http://www.vision.rwth-aachen.de ]
=3
£
leibe@vision.rwth-aachen.de S )
RWTHCHEN RWTHCHEN
Topics of This Lecture Recap: Motion Correspondence Ambiguities
¢ Recap: Track-Splitting Filter PN PN N PN
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¢ Multi-Hypothesis Tracking (MHT)
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Practical considerations
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1. Predictions may not be supported by measurements
» Have the objects ceased to exist, or are they simply occluded?

2. There may be unexpected measurements
» Newly visible objects, or just noise?

3. More than one measurement may match a prediction
» Which measurement is the correct one (what about the others)?

4. A measurement may match to multiple predictions

» Which object shall the measurement be assigned to?
B. Leibe
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Let’s Formalize This

¢ Multi-Object Tracking problem
» We represent a track by a state vector x, e.g.,

x = [z, y, vy, '".e.r]j

» As the track evolves, we denote its state by the time index k:

p
X — [J.u-}__,fu-,w_,“t"k,w_ i )1

» At each time step, we get a set of observations (measurements)

k) _ [ (k) (k)
Y {Y1 s---sygm.}
» We now need to make the data association between tracks
%) (& %) (k
{XE ’,-A-,xk-_f} and observations{yll J,-A-:YH,(:_}:

() (E), . . k)
7 =jiff yi is associated with x\"
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Recap: Reducing Ambiguities
¢ Gating o~
~ Only consider measurements within a certain ‘; . ,' X
area around the predicted location. re ’x
= Large gain in efficiency, since only a small .
region needs to be searched
¢ Nearest-Neighbor Filter —
~ Among the candidates in the gating region, ,70 o)
only take the one closest to the prediction x, 1 o® ,
k . k)BT (k) (K "
21( - arg nun_f-(x‘(,_{ —¥; )I (xf}_{ -y ))
» Better: the one most likely under a Gaussian prediction model
z,“"J = argmax; ."\"—(ysk): xffﬁ. E‘(f{))
which is equivalent to taking the Mahalanobis distance
z = argming(X,; — yj)j EI_‘JL(X“,,‘) - ¥;) .
B. Leibe




Recap: Track-Splitting Filter

¢ |dea

» Instead of assigning the measurement that is
currently closest, as in the NN algorithm,
select the sequence of measurements
that minimizes the total Mahalanobis distance
over some interval! e

Form a track tree for the different association decisions
Modified log-likelihood provides the merit of a particular
node in the track tree.

Cost of calculating this is low, since most terms are needed
anyway for the Kalman filter.

v

¢ Problem

» The track tree grows exponentially, may generate a very large
number of possible tracks that need to be maintained.
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Recap: Pruning Strategies

¢ In order to keep this feasible, need to apply pruning
~ Deleting unlikely tracks

- May be accomplished by comparing the modified log-likelihood A(%),
which has a x? distribution with kn_ degrees of freedom, with a
threshold « (set according to x? distribution tables).

- Problem for long tracks: modified log-likelihood gets dominated by
old terms and responds very slowly to new ones.

= Use sliding window or exponential decay term.

» Merging track nodes
- If the state estimates of two track nodes are similar, merge them.
- E.g., if both tracks validate identical subsequent measurements.

» Only keeping the most likely N tracks
- Rank tracks based on their modified log-likelihood.

Computer Vision Il, Summer’14
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Multi-Hypothesis Tracking (MHT)

¢ |deas
~ Again associate sequences of measurements.
» Evaluate the probabilities of all association hypotheses.

» For each sequence of measurements (a hypothesized track), a
standard KF yields the state estimate and covariance

» Differences to Track-Splitting Filter
» Instead of forming a track tree, keep a set of hypotheses ®~*
that generate child hypotheses based on the associations. 4
» After each hypothesis generation step, merge and
prune the current hypothesis set to keep the
approach feasible.
~ Integrate track generation into the assignment process.

D. Reid, An Algorithm for Tracking Multiple Targets, IEEE Trans.
Automatic Control, Vol. 24(6), pp. 843-854, 1979.

B. Leibe
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Summary: Track-Splitting Filter Topics of This Lecture
¢ Properties
» Very old algorithm
- P. Smith, G. Buechler, A Branching Algorithm for Discriminating and
Tracking Multiple Objects, IEEE Trans. Automatic Control, Vol. 20, . ) )
pp. 101-104, 1975. ¢ Multi-Hypothesis Tracking (MHT)
» Improvement over NN assignment. ~ Basic idea
. Assignment decisions are delayed until more information is = - Hypothesis Generation
available. ‘a:' » Assignment
o M bl : E » Measurement Likelihood
any problems remain a » Practical considerations
» Exponential complexity, heuristic pruning needed. =
» Merging of track nodes is necessary, because tracks may share §
measurements, which is physically unrealistic. 2
= Would need to add exclusion constraints such that each g
measurement may only belong to a single track. 2
= Impossible in this framework... 3
B. Leibe 9 B. Leibe "
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Target vs. Measurement Orientation

¢ Target-oriented approaches

» Evaluate the probability that a measurement belongs to an
established target.

¢ Measurement-oriented approaches

» Evaluate the probability that an established target or a new
target gave rise to a certain measurement sequence.

» This makes it possible to include track initiation of new targets
within the algorithmic framework.
o MHT
» Measurement-oriented
» Handles track initialization and termination
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http://dx.doi.org/10.1109/TAC.1979.1102177
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Challenge: Exponential Complexity

e Strategy

» Generate all possible hypotheses and then depend on pruning
these hypotheses to avoid the combinatorial explosion.
= Exhaustive search

» Tree data structures are used to keep this search efficient

¢ Commonly used pruning techniques
» Clustering to reduce the combinatorial complexity
» Pruning of low-probability hypotheses
» N-scan pruning
» Merging of similar hypotheses

B. Leibe
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MHT Outline

Hypotheses at time k-
k1

Hypotheses at time k
n*

—

ypothesis Manageme
(pruning, merging)

[T—— —
Generate Predictions

pothesis Generatio

TR [~}
Predicted Features Hypothesis Matriz
1k}
Observed Features

| Feature Extraction
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Raw Sensor Data

) 15
B. Leibe Image source: [Cox, IJICV’93]

Hypothesis Generation

¢ Formalization
. Set of hypotheses at time k: (k) = {QE_“';’}

. This set is obtained from Q(*1) and the latest set of
measurements

X k) k
Y = {yg ..... yfui}

. The set Q" is generated from Q(*-1) by performing all feasible
associations between the old hypotheses and the new
measurements Y%,

¢ Feasible associations can be
» A continuation of a previous track
» Afalse alarm
» A new target

B. Leibe
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Hypothesis Matrix

¢ Visualize feasible associations by a hypothesis matrix
X1 XoXfe Xy

1011 %

I U B
=10 11 1] ¥s
00 1 1| ¥4

¢ Interpretation
Columns represent tracked objects
Rows represent measurements

v

v

v

A non-zero element at matrix position (4,j) denotes that
measurement y; is contained in the validation region of track x;.
Extra column x, for association as false alarm.

v
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v

Extra column x,, for association as new track.
B. Leibe

Assighments

¢ Turning feasible associations into assignments

For each feasible association, we generate a new hypothesis.
Let il'j“ be the j-th hypothesis alt time k and Q_{j':f,” be the
parent hypothesis from which {]L},ﬂ“" was derived.

v

v

(k)

Let Z;i"" denote the set of assignments that gives rise to {} 5

v

Assignments are again best visualized in matrix form

v

Z x| x| x| %
yvi | 0 0 1 0
¥s 1 0 0 0
ys | 0 1 0 0
vi | 0 0 0 1

B. Leibe
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Assighments
Z; ‘ X1 ‘ X ‘ Xfa ‘ Xt
Vi 0 0 1 0
Vs 1 0 0 0
Vs 0 1 0 0
Vs 0 0 0 1

¢ Impose constraints
» A measurement can originate from only one object.
= Any row has only a single non-zero value.

» An object can have at most one associated measurement per
time step.
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= Any column has only a single non-zero value, except for x,, X,
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Calculating Hypothesis Probabilities

¢ Probabilistic formulation
It is straightforward to enumerate all possible assignments.

However, we also need to calculate the probability of each child
hypothesis.

This is done recursively:
PO = p(z ol Yy ®)

v

mﬂu] oY \Z") U:A—l\) [Z(ﬁ) QU\—J)

pli)

— wJ(Y(“|Z”“ nf!.—i )p( ‘“f’t:]“ “LﬂEI—)L))

_ -

Normalization Measurement Prob. of Prob. of
factor likelihood assignment set  parent
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Measurement Likelihood

¢ Use KF prediction
» Assume that a measurement y(” associated to a track x; has a

Gaussian pdf centered around the measurement prediction x(“

with innovation covariance E"“

» Further assume that the pdf of a measurement belonging to a
new track or false alarm is uniform in the observation volume W
(the sensor’s field-of-view) with probability 171,

» Thus, the measurement likelihood can be expressed as

My
) (k) (=10} _ M™%
P (Y |Z QF(JJ ) - H\ (

i=1

= WMt

2(“) W (1=64)

i
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Probability of an Assignment Set

11,
o )

[)(ZJE'R"\ {

¢ Composed of three terms
1. Probability of the number of tracks Ny.;, Ny, Ny
- Assumption 1: N, follows a binomial distribution

Fecl=Dy = N _ (N=Na)
P(Nawtl ) = (Nd.‘f)p'“ (1= paer)

RWTHCHEN
Probability of an Assignment Set
2. Probability of a specific assignment of measurements

- Such that M; = Ny, + Ny, + N, holds.
- This is determined as 1 over the number of combinations

M;, M. — Nyt ) (_"‘.-f;,. — Nier — Npai )
Noet Niai Niew

Measurement Likelihood

¢ Combining all the different parts
~ Nice property: many terms cancel out!
~ (Derivation left as exercise)

= The final probability p ( o \YL”) can be computed in a very
simple form.

» This was the main contribution by Reid and it is one of the
reasons why the approach is still popular.

¢ Practical issues
» Exponential complexity remains

» Heuristic pruning strategies must be applied to contain the
growth of the hypothesis set.

» E.g., dividing hypotheses into spatially disjoint clusters.
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st st
T T 3. Probability of a specific assignment of tracks
é where N is the number of tracks in the parent hypothesis é - Given that a track can be either detected or not detected.
a a - This is determined as 1 over the number of assignments
= - Assumption 2: Ny, and N,,,,, both follow a Poisson distribution =
§ with expected number of events \;,,Wand )\, W §
7] 7]
2 -1) N N (N s
g P(Nace, Nyar, A\n.wlilm ) = |y, )Fad (U= pac)” 5
= Vet 3
£ . 2
] il '\m AraW) - p(New: Apew W S
2 23
B. Leibe B. Leibe

References and Further Reading

¢ A good tutorial on Data Association

» 1.J. Cox. A Review of Statistical Data Association Techniques for
Motion Correspondence. In International Journal of Computer
Vision, Vol. 10(1), pp. 53-66, 1993.

¢ Reid’s original MHT paper

» D. Reid, An Algorithm for Tracking Multiple Targets, IEEE Trans.
Automatic Control, Vol. 24(6), pp. 843-854, 1979.
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