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Course Outline 

• Single-Object Tracking 

• Bayesian Filtering 

 Kalman filters 

 Particle filters 

 Case studies 
 

• Multi-Object Tracking 

 Introduction 

 MHT, JPDAF 

 Network Flow Optimization 
 

• Articulated Tracking 
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Topics of This Lecture 

• Recap: Track-Splitting Filter 
 Motivation 

 Ambiguities 
 

• Multi-Hypothesis Tracking (MHT) 
 Basic idea 

 Hypothesis Generation 

 Assignment 

 Measurement Likelihood 

 Practical considerations 
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Recap: Motion Correspondence Ambiguities 

 

 

 

 

1. Predictions may not be supported by measurements 

 Have the objects ceased to exist, or are they simply occluded? 
 

2. There may be unexpected measurements 

 Newly visible objects, or just noise? 
 

3. More than one measurement may match a prediction 

 Which measurement is the correct one (what about the others)? 
 

4. A measurement may match to multiple predictions 

 Which object shall the measurement be assigned to? 
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Let’s Formalize This  

• Multi-Object Tracking problem 

 We represent a track by a state vector x, e.g., 

 
 

 As the track evolves, we denote its state by the time index k:  

 

 

 At each time step, we get a set of observations (measurements) 

 

 

 We now need to make the data association between tracks 

 

                            and observations                           : 

 

                              is associated with  
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Recap: Reducing Ambiguities 

• Gating 

 Only consider measurements within a certain 

area around the predicted location. 

 Large gain in efficiency, since only a small 

region needs to be searched 
 

• Nearest-Neighbor Filter 

 Among the candidates in the gating region, 

only take the one closest to the prediction xp 

 
 

 Better: the one most likely under a Gaussian prediction model 

 
which is equivalent to taking the Mahalanobis distance 
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Recap: Track-Splitting Filter 

• Idea 

 Instead of assigning the measurement that is 

currently closest, as in the NN algorithm, 

select the sequence of measurements 

that minimizes the total Mahalanobis distance 

over some interval!  
 

 Form a track tree for the different association decisions 

 Modified log-likelihood provides the merit of a particular  

node in the track tree. 

 Cost of calculating this is low, since most terms are needed 

anyway for the Kalman filter. 
 

• Problem 

 The track tree grows exponentially, may generate a very large 

number of possible tracks that need to be maintained. 
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Recap: Pruning Strategies 

• In order to keep this feasible, need to apply pruning 

 Deleting unlikely tracks 

– May be accomplished by comparing the modified log-likelihood ̧ (k), 

which has a Â2 distribution with knz degrees of freedom, with a 

threshold ® (set according to Â2 distribution tables). 

– Problem for long tracks: modified log-likelihood gets dominated by 

old terms and responds very slowly to new ones. 

 Use sliding window or exponential decay term. 
 

 Merging track nodes 

– If the state estimates of two track nodes are similar, merge them. 

– E.g., if both tracks validate identical subsequent measurements. 
 

 Only keeping the most likely N tracks 

– Rank tracks based on their modified log-likelihood. 
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Summary: Track-Splitting Filter 

• Properties 

 Very old algorithm 

– P. Smith, G. Buechler, A Branching Algorithm for Discriminating and 

Tracking Multiple Objects, IEEE Trans. Automatic Control, Vol. 20, 

pp. 101-104, 1975. 

 Improvement over NN assignment. 

 Assignment decisions are delayed until more information is 

available. 
 

• Many problems remain 

 Exponential complexity, heuristic pruning needed. 

 Merging of track nodes is necessary, because tracks may share 

measurements, which is physically unrealistic. 

 Would need to add exclusion constraints such that each 

measurement may only belong to a single track. 

 Impossible in this framework... 
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Topics of This Lecture 

• Recap: Track-Splitting Filter 
 Motivation 

 Ambiguities 
 

• Multi-Hypothesis Tracking (MHT) 
 Basic idea 

 Hypothesis Generation 

 Assignment 

 Measurement Likelihood 

 Practical considerations 
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Multi-Hypothesis Tracking (MHT) 

• Ideas 

 Again associate sequences of measurements. 

 Evaluate the probabilities of all association hypotheses. 

 For each sequence of measurements (a hypothesized track), a 

standard KF yields the state estimate and covariance 
 

• Differences to Track-Splitting Filter 

 Instead of forming a track tree, keep a set of hypotheses 

that generate child hypotheses based on the associations. 

 After each hypothesis generation step, merge and 

prune the current hypothesis set to keep the  

approach feasible. 

 Integrate track generation into the assignment process. 
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Target vs. Measurement Orientation 

• Target-oriented approaches  

 Evaluate the probability that a measurement belongs to an 

established target. 
 

• Measurement-oriented approaches 

 Evaluate the probability that an established target or a new 

target gave rise to a certain measurement sequence. 

 This makes it possible to include track initiation of new targets 

within the algorithmic framework. 
 

• MHT 

 Measurement-oriented 

 Handles track initialization and termination 
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Challenge: Exponential Complexity 

• Strategy 

 Generate all possible hypotheses and then depend on pruning 

these hypotheses to avoid the combinatorial explosion. 

 Exhaustive search 

 Tree data structures are used to keep this search efficient 

 

• Commonly used pruning techniques 

 Clustering to reduce the combinatorial complexity 

 Pruning of low-probability hypotheses 

 N-scan pruning 

 Merging of similar hypotheses 
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MHT Outline 

15 
B. Leibe Image source: [Cox, IJCV’93] 
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Hypothesis Generation 
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• Formalization 

 Set of hypotheses at time k: 
 

 This set is obtained from (k-1) and the latest set of 

measurements 

 
 

 The set (k) is generated from (k-1) by performing all feasible 

associations between the old hypotheses and the new 

measurements Y(k). 
 

• Feasible associations can be  

 A continuation of a previous track 

 A false alarm 

 A new target 
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Hypothesis Matrix 

• Visualize feasible associations by a hypothesis matrix 

 

 

 

 

 

 

• Interpretation 

 Columns represent tracked objects 

 Rows represent measurements 

 A non-zero element at matrix position (i,j) denotes that 

measurement yi is contained in the validation region of track xj. 

 Extra column xfa for association as false alarm. 

 Extra column xnt for association as new track. 
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Assignments 

• Turning feasible associations into assignments 

 For each feasible association, we generate a new hypothesis. 
 

 Let          be the j-th hypothesis at time k and              be the 
 

parent hypothesis from which         was derived. 
 

 Let          denote the set of assignments that gives rise to        . 
 

 Assignments are again best visualized in matrix form 
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Zj x1 x2 xfa xnt 

y1 0 0 1 0 

y2 1 0 0 0 

y3 0 1 0 0 

y4 0 0 0 1 
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Assignments 

 

 

 

 

 

 
 

• Impose constraints 

 A measurement can originate from only one object. 

 Any row has only a single non-zero value. 
 

 An object can have at most one associated measurement per 

time step. 

 Any column has only a single non-zero value, except for xfa, xnt 
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Zj x1 x2 xfa xnt 

y1 0 0 1 0 

y2 1 0 0 0 

y3 0 1 0 0 

y4 0 0 0 1 
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Calculating Hypothesis Probabilities 

• Probabilistic formulation 

 It is straightforward to enumerate all possible assignments. 

 However, we also need to calculate the probability of each child 

hypothesis.  

 This is done recursively: 
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Measurement 

likelihood 

Prob. of 

parent 

Normalization 

factor 

Prob. of 

assignment set 
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Measurement Likelihood 

• Use KF prediction 

 Assume that a measurement         associated to a track xj has a 
 

Gaussian pdf centered around the measurement prediction 
 

with innovation covariance        . 
 

 Further assume that the pdf of a measurement belonging to a 

new track or false alarm is uniform in the observation volume W 

(the sensor’s field-of-view) with probability W -1. 
 

 Thus, the measurement likelihood can be expressed as 
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Probability of an Assignment Set 
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• Composed of three terms 

1. Probability of the number of tracks Ndet, Nfal, Nnew 

– Assumption 1: Ndet follows a binomial distribution 

 

 

 
 

where N is the number of tracks in the parent hypothesis 
 

– Assumption 2: Nfal and Nnew both follow a Poisson distribution  

with expected number of events ¸falW and ¸newW  
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Probability of an Assignment Set 

2. Probability of a specific assignment of measurements 

– Such that Mk = Ndet + Nfal + Nnew holds. 

– This is determined as 1 over the number of combinations 

 

 

 
 

3. Probability of a specific assignment of tracks 

– Given that a track can be either detected or not detected.  

– This is determined as 1 over the number of assignments 
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Measurement Likelihood 

• Combining all the different parts 

 Nice property: many terms cancel out!  

 (Derivation left as exercise) 

 

 The final probability                           can be computed in a very 

simple form. 

 This was the main contribution by Reid and it is one of the 

reasons why the approach is still popular. 

 

• Practical issues 

 Exponential complexity remains 

 Heuristic pruning strategies must be applied to contain the 

growth of the hypothesis set. 

 E.g., dividing hypotheses into spatially disjoint clusters. 
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