

Computer Vision II - Lecture 11

Multi-Object Tracking I

17.06.2014

Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de

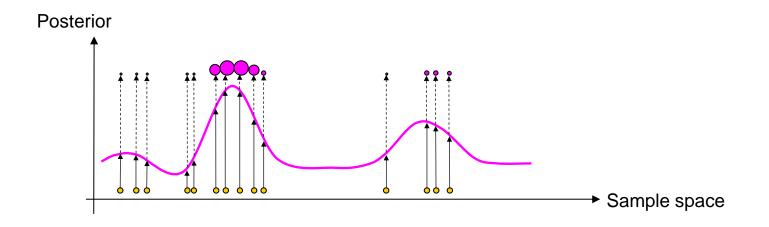
leibe@vision.rwth-aachen.de

Course Outline

- Single-Object Tracking
- Bayesian Filtering
 - Kalman filters
 - Particle filters
 - Case studies
- Multi-Object Tracking
 - Introduction
 - MHT, JPDAF
 - Network Flow Optimization
- Articulated Tracking

Recap: Particle Filtering

- Many variations, one general concept:
 - Represent the posterior pdf by a set of randomly chosen weighted samples (particles)



- Randomly Chosen = Monte Carlo (MC)
- As the number of samples become very large the characterization becomes an equivalent representation of the true pdf.

Computer Vision II, Summer'14

Recap: Sequential Importance Sampling

Normalize weights

end

Computer Vision II, Summer'14

Slide adapted from Michael Rubinstein

 $w_t^i = w_t^i / \eta$

B. Leibe

Recap: Sequential Importance Sampling

$$\begin{array}{ll} \mbox{function} \left[\left\{ \mathbf{x}_t^i, w_t^i \right\}_{i=1}^N \right] = SIS \left[\left\{ \mathbf{x}_{t-1}^i, w_{t-1}^i \right\}_{i=1}^N, \mathbf{y}_t \right] \\ \eta = 0 & \mbox{Initialize} \\ \mbox{for } i = 1:N & \mbox{Sample from proposal pdf} \\ & \mathbf{x}_t^i \sim q(\mathbf{x}_t | \mathbf{x}_{t-1}^i, \mathbf{y}_t) & \mbox{Sample from proposal pdf} \\ & w_t^i = w_{t-1}^i \frac{p(\mathbf{y}_t | \mathbf{x}_t^i) p(\mathbf{x}_t^i | \mathbf{x}_{t-1}^i)}{q(\mathbf{x}_t | \mathbf{x}_{t-1}^i)} & \mbox{Update weights} \\ & \eta = \eta + w_t^i & \mbox{Update norm. factor} \\ \mbox{end} & \mbox{for } i = 1:N & \mbox{we need to define the} \\ & \mbox{if } = w_t^i / \eta & \mbox{Normalize weights} \\ \mbox{end} & \mbox{Normalize weights} \end{array}$$

Recap: SIS Algorithm with Transitional Prior

$$\begin{aligned} & \text{function } \left[\left\{ \mathbf{x}_{t}^{i}, w_{t}^{i} \right\}_{i=1}^{N} \right] = SIS \left[\left\{ \mathbf{x}_{t-1}^{i}, w_{t-1}^{i} \right\}_{i=1}^{N}, \mathbf{y}_{t} \right] \\ & \eta = 0 & \qquad \text{Initialize} \\ & \text{for } i = 1:N & \\ & \mathbf{x}_{t}^{i} \sim p(\mathbf{x}_{t} | \mathbf{x}_{t-1}^{i}) & \qquad \text{Sample from proposal pdf} \\ & w_{t}^{i} = w_{t-1}^{i} p(\mathbf{y}_{t} | \mathbf{x}_{t}^{i}) & \qquad \text{Update weights} \\ & \eta = \eta + w_{t}^{i} & \qquad \text{Update norm. factor} \\ & \text{end} & \\ & \text{for } i = 1:N & \\ & w_{t}^{i} = w_{t}^{i} / \eta & \qquad \text{Normalize weights} \\ & \text{end} & \\ & \text{one has a state of the state of t$$

Computer Vision II, Summer'14

B. Leibe

Recap: Resampling

- Degeneracy problem with SIS
 - After a few iterations, most particles have negligible weights.
 - > Large computational effort for updating particles with very small contribution to $p(\mathbf{x}_t \mid \mathbf{y}_{1:t})$.

Idea: Resampling

Eliminate particles with low importance weights and increase the number of particles with high importance weight.

$$\left\{\mathbf{x}_{t}^{i}, w_{t}^{i}\right\}_{i=1}^{N} \rightarrow \left\{\mathbf{x}_{t}^{i*}, \frac{1}{N}\right\}_{i=1}^{N}$$

> The new set is generated by sampling with replacement from the discrete representation of $p(\mathbf{x}_t \mid \mathbf{y}_{1:t})$ such that

$$Pr\left\{\mathbf{x}_t^{i*} = \mathbf{x}_t^j\right\} = w_t^j$$

Slide adapted from Michael Rubinstein

B. Leibe

Recap: Efficient Resampling Approach

• From Arulampalam paper:

Algorithm 2: Resampling Algorithm $[\{\mathbf{x}_{k}^{j*}, w_{k}^{j}, i^{j}\}_{j=1}^{N_{s}}] = \text{RESAMPLE} [\{\mathbf{x}_{k}^{i}, w_{k}^{i}\}_{i=1}^{N_{s}}]$ • Initialize the CDF: $c_1 = 0$ • FOR i = 2: N_s - Construct CDF: $c_i = c_{i-1} + w_k^i$ END FOR • Start at the bottom of the CDF: i=1• Draw a starting point: $u_1 \sim \mathbb{V}[0, N_s^{-1}]$ • FOR $j = 1: N_s$ - Move along the CDF: $u_j = u_1 + N_s^{-1}(j-1)$ - WHILE $u_i > c_i$ * i = i + 1- END WHILE - Assign sample: $\mathbf{x}_k^{j*} = \mathbf{x}_k^i$ - Assign weight: $w_k^j = N_s^{-1}$ - Assign parent: $i^{j} = i$ END FOR

Basic idea: choose one initial small random number; deterministically sample the rest by "crawling" up the cdf. This is $\mathcal{O}(N)$!

Recap: Generic Particle Filter

function
$$\left[\left\{\mathbf{x}_{t}^{i}, w_{t}^{i}\right\}_{i=1}^{N}\right] = PF\left[\left\{\mathbf{x}_{t-1}^{i}, w_{t-1}^{i}\right\}_{i=1}^{N}, \mathbf{y}_{t}\right]$$

Apply SIS filtering $\left[\left\{\mathbf{x}_{t}^{i}, w_{t}^{i}\right\}_{i=1}^{N}\right] = SIS\left[\left\{\mathbf{x}_{t-1}^{i}, w_{t-1}^{i}\right\}_{i=1}^{N}, \mathbf{y}_{t}\right]$

Calculate
$$N_{eff} = \frac{1}{\sum_{i=1}^{N} (w_t^i)^2}$$

if $N_{eff} < N_{thr}$
 $\left[\left\{ \mathbf{x}_t^i, w_t^i \right\}_{i=1}^N \right] = RESAMPLE \left[\left\{ \mathbf{x}_t^i, w_t^i \right\}_{i=1}^N \right]$

end

Computer Vision II, Summer'14

- We can also apply resampling selectively
 - > Only resample when it is needed, i.e., N_{eff} is too low.
 - \Rightarrow Avoids drift when there the tracked state is stationary.

Slide adapted from Michael Rubinstein

RWTHAACHEN UNIVERSITY Sampling-Importance-Resampling Algorithm

function $[\mathcal{X}_t] = SIR [\mathcal{X}_{t-1}, \mathbf{y}_t]$ $\mathcal{X}_t = \mathcal{X}_t = \emptyset$ for i = 1:NSample $\mathbf{x}_t^i \sim p(\mathbf{x}_t | \mathbf{x}_{t-1}^i)$ $w_t^i = p(\mathbf{y}_t | \mathbf{x}_t^i)$ end for i = 1:NDraw i with probability $\propto w_t^i$ Add \mathbf{x}_t^i to \mathcal{X}_t end

Initialize

Generate new samples

Update weights

Resample

Computer Vision II, Summer'14

UIIU

Slide adapted from Michael Rubinstein

Sampling-Importance-Resampling Algorithm

function $[\mathcal{X}_t] = SIR [\mathcal{X}_{t-1}, \mathbf{y}_t]$ $\mathcal{X}_t = \mathcal{X}_t = \emptyset$ for i = 1:NSample $\mathbf{x}_t^i \sim p(\mathbf{x}_t | \mathbf{x}_{t-1}^i)$ $w_t^i = p(\mathbf{y}_t | \mathbf{x}_t^i)$ end for i = 1:NDraw i with probability $\propto w_t^i$ Add \mathbf{x}_t^i to \mathcal{X}_t

Important property:

Particles are distributed according to pdf from previous time step.

Particles are distributed according to posterior from this time step.

end

Slide adapted from Michael Rubinstein

Today: Multi-Object Tracking

12 [Ess, Leibe, Schindler, Van Gool, CVPR'08; ICRA'09; PAMI'09]

Topics of This Lecture

• Multi-Object Tracking

- Motivation
- > Ambiguities

Simple Approaches

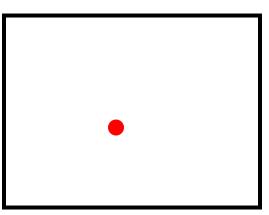
- Gating
- Mahalanobis distance
- Nearest-Neighbor Filter

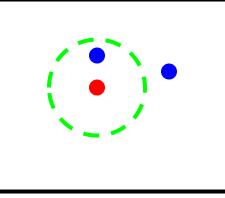
• Track-Splitting Filter

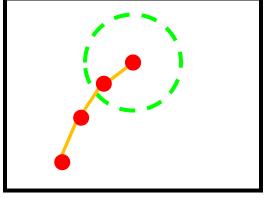
- > Derivation
- > Properties

Outlook

Elements of Tracking







Detection

Data association

Detection

Lecture 7

- > Where are candidate objects?
- Data association

Today's topic

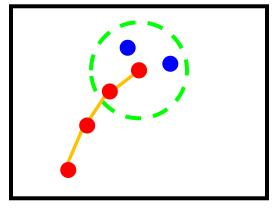
Lectures 8-10

- > Which detection corresponds to which object?
- Prediction
 - > Where will the tracked object be in the next time step?

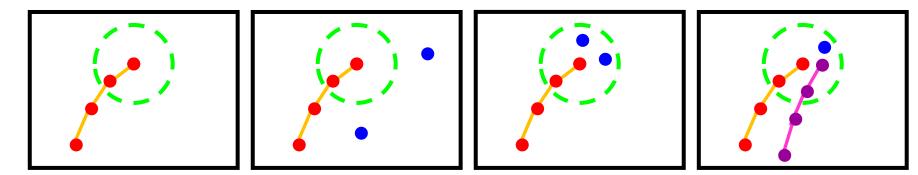
B. Leibe

Motion Correspondence

- Motion correspondence problem
 - Do two measurements at different times originate from the same object?
- Why is it hard?
 - First make predictions for the expected locations of the current set of objects
 - Match predictions to actual measurements
 - This is where ambiguities may arise...



Motion Correspondence Ambiguities



1. Predictions may not be supported by measurements

- > Have the objects ceased to exist, or are they simply occluded?
- 2. There may be unexpected measurements
 - Newly visible objects, or just noise?
- 3. More than one measurement may match a prediction
 - Which measurement is the correct one (what about the others)?

4. A measurement may match to multiple predictions

> Which object shall the measurement be assigned to?

Topics of This Lecture

Multi-Object Tracking

- Motivation
- > Ambiguities

• Simple Approaches

- Gating
- Mahalanobis distance
- Nearest-Neighbor Filter
- Track-Splitting Filter
 - > Derivation
 - > Properties

• Outlook

Let's Formalize This

- Multi-Object Tracking problem
 - > We represent a track by a state vector x, e.g.,

$$\mathbf{x} = [x, y, v_x, v_y]^T$$

- > As the track evolves, we denote its state by the time index k: $\mathbf{x}^{(k)} = \left[x^{(k)}, y^{(k)}, v^{(k)}_x, v^{(k)}_y\right]^T$
- > At each time step, we get a set of observations (measurements)

$$\mathbf{Y}^{(k)} = \left\{ \mathbf{y}_1^{(k)}, \dots, \mathbf{y}_{M_k}^{(k)}
ight\}$$

We now need to make the data association between tracks

$$\begin{cases} \mathbf{x}_1^{(k)}, \dots, \mathbf{x}_{N_k}^{(k)} \end{cases} \text{ and observations} \begin{cases} \mathbf{y}_1^{(k)}, \dots, \mathbf{y}_{M_k}^{(k)} \end{cases} \\ z_l^{(k)} = j \text{ iff } \mathbf{y}_j^{(k)} \text{ is associated with } \mathbf{x}_l^{(k)} \end{cases}$$

Reducing Ambiguities: Simple Approaches

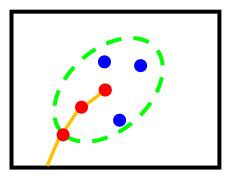
- Gating
 - Only consider measurements within a certain area around the predicted location.
 - ⇒ Large gain in efficiency, since only a small region needs to be searched
- Nearest-Neighbor Filter
 - > Among the candidates in the gating region, only take the one closest to the prediction \mathbf{x}_p

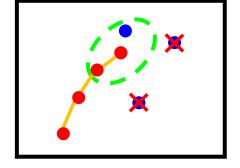
$$z_l^{(k)} = \arg \min_j (\mathbf{x}_{p,l}^{(k)} - \mathbf{y}_j^{(k)})^T (\mathbf{x}_{p,l}^{(k)} - \mathbf{y}_j^{(k)})$$

Better: the one most likely under a Gaussian prediction model $z_l^{(k)} = \operatorname{arg\,max}_j \mathcal{N}(\mathbf{y}_j^{(k)}; \mathbf{x}_{p,l}^{(k)}, \mathbf{\Sigma}_{p,l}^{(k)})$

which is equivalent to taking the Mahalanobis distance

$$z_l = \operatorname{arg\,min}_j (\mathbf{x}_{p,l} - \mathbf{y}_j)^T \mathbf{\Sigma}_{p,l}^{-1} (\mathbf{x}_{p,l} - \mathbf{y}_j)$$
 19





Gating with Mahalanobis Distance

- Recall: Kalman filter
 - Provides exactly the quantities necessary to perform this
 - \succ Predicted mean location \mathbf{x}_p
 - \succ Prediction covariance $\mathbf{\Sigma}_p$
 - The Kalman filter prediction covariance also defines a useful gating area.
 - \Rightarrow E.g., choose the gating area size such that 95% of the probability mass is covered.

• Side note

- > The Mahalanobis distance is χ^2 distributed with the number of degrees of freedom n_z equal to the dimension of x.
- > For a given probability bound, the corresponding threshold on the Mahalanobis distance can be got from χ^2 distribution tables.

Mahalanobis Distance

- Additional notation
 - > Our KF state of track \mathbf{x}_l is given by

the prediction $\mathbf{x}_{p,l}^{(k)}$ and covariance $\mathbf{\Sigma}_{p,l}^{(k)}$.

> We define the innovation that measurement y_j brings to track x_l at time k as

$$\mathbf{v}_{j,l}^{(k)} = (\mathbf{y}_{j}^{(k)} \!-\! \mathbf{x}_{p,l}^{(k)})$$

> With this, we can write the observation likelihood shortly as

$$p(\mathbf{y}_{j}^{(k)}|\mathbf{x}_{l}^{(k)}) \sim \exp\left\{-\frac{1}{2}\mathbf{v}_{j,l}^{(k)^{T}}\boldsymbol{\Sigma}_{p,l}^{(k)^{-1}}\mathbf{v}_{j,l}^{(k)}\right\}$$

> We define the ellipsoidal gating or validation volume as

$$V^{(k)}(\gamma) = \left\{ \mathbf{y} | (\mathbf{y} - \mathbf{x}_{p,l}^{(k)})^T \mathbf{\Sigma}_{p,l}^{(k)^{-1}} (\mathbf{y} - \mathbf{x}_{p,l}^{(k)}) \le \gamma \right\}$$

Problems with NN Assignment

Limitations

- > For NN assignments, there is always a finite chance that the association is incorrect, which can lead to serious effects.
- ⇒ If a Kalman filter is used, a misassigned measurement may lead the filter to lose track of its target.
- The NN filter makes assignment decisions only based on the current frame.
- > More information is available by examining subsequent images.
- ⇒ Let's make use of this information by postponing the decision process until a future frame will resolve the ambiguity...

Topics of This Lecture

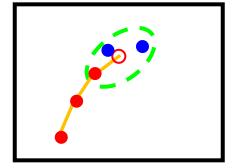
- Multi-Object Tracking
 - Motivation
 - > Ambiguities
- Simple Approaches
 - Gating
 - Mahalanobis distance
 - » Nearest-Neighbor Filter
- Track-Splitting Filter
 - > Derivation
 - > Properties
- Outlook

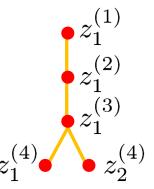
Track-Splitting Filter

• Idea

- Problem with NN filter was hard assignment.
- Rather than arbitrarily assigning the closest measurement, form a tree.
- Branches denote alternate assignments.
- No assignment decision is made at this stage!
- \Rightarrow Decisions are postponed until additional measurements have been gathered...

- Track trees can quickly become very large due to combinatorial explosion.
- ⇒ We need some measure of the likelihood of a track, so that we can prune the tree!



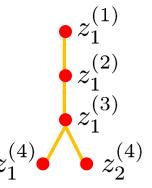


Track Likelihoods

Expressing track likelihoods

> Given a track l, denote by $\theta_{k,l}$ the event that the sequence of assignments

$$Z_{k,l} = \left\{ z_{i_1,l}^{(1)}, \dots, z_{i_k,l}^{(k)} \right\}$$



from time $1 \ {\rm to} \ k$ originate from the same object.

> The likelihood of $\theta_{k,l}$ is the joint probability over all observations in the track k

$$L(\theta_{k,l}) = \prod_{j=1}^{l} p(z_{i_j,l}^{(j)} | Z_{(j-1),l}, \theta_{k,l})$$

If we assume Gaussian observation likelihoods, this becomes

$$L(\theta_{k,l}) = \prod_{j=1}^{k} \frac{1}{(2\pi)^{\frac{d}{2}} |\mathbf{\Sigma}_{l}^{(j)}|^{\frac{1}{2}}} \exp\left[-\frac{1}{2} \sum_{j=1}^{k} \mathbf{v}_{i_{j},l}^{(j)^{T}} \mathbf{\Sigma}_{l}^{(j)^{-1}} \mathbf{v}_{i_{j},l}^{(j)}\right]_{25}$$

B. Leibe

Track Likelihoods (2)

Starting from the likelihood

$$L(\theta_{k,l}) = \prod_{j=1}^{k} \frac{1}{(2\pi)^{\frac{d}{2}} |\mathbf{\Sigma}_{l}^{(j)}|^{\frac{1}{2}}} \exp\left[-\frac{1}{2} \sum_{j=1}^{k} \mathbf{v}_{i_{j},l}^{(j)^{T}} \mathbf{\Sigma}_{l}^{(j)^{-1}} \mathbf{v}_{i_{j},l}^{(j)}\right]$$

> Define the modified log-likelihood λ_l for track l as

$$\begin{split} \mathbf{A}_{l}(k) &= -2\log\left[\frac{L(\theta_{k,l})}{\prod_{j=1}^{k}(2\pi)^{-\frac{d}{2}}|\mathbf{\Sigma}_{l}^{(j)}|^{-\frac{1}{2}}}\right] \\ &= \sum_{j=1}^{k}\mathbf{v}_{i_{j},l}^{(j)^{T}}\mathbf{\Sigma}_{l}^{(j)^{-1}}\mathbf{v}_{i_{j},l}^{(j)} \\ &= \lambda_{l}(k-1) + \mathbf{v}_{i_{k},l}^{(k)^{T}}\mathbf{\Sigma}_{l}^{(k)^{-1}}\mathbf{v}_{i_{k},l}^{(k)} \end{split}$$

 \Rightarrow Recursive calculation, sum of Mahalanobis distances of all the measurements assigned to track l.

B. Leibe

Track-Splitting Filter

- Effect
 - Instead of assigning the measurement that is currently closest, as in the NN algorithm, we can select the sequence of measurements that minimizes the total Mahalanobis distance over some interval!
 - Modified log-likelihood provides the merit of a particular node in the track tree.
 - Cost of calculating this is low, since most terms are needed anyway for the Kalman filter.

Problem

The track tree grows exponentially, may generate a very large number of possible tracks that need to be maintained.

Pruning Strategies

- In order to keep this feasible, need to apply pruning
 - Deleting unlikely tracks
 - May be accomplished by comparing the modified log-likelihood $\lambda(k)$, which has a χ^2 distribution with kn_z degrees of freedom, with a threshold α (set according to χ^2 distribution tables).
 - Problem for long tracks: modified log-likelihood gets dominated by old terms and responds very slowly to new ones.
 - \Rightarrow Use sliding window or exponential decay term.
 - > Merging track nodes
 - If the state estimates of two track nodes are similar, merge them.
 - E.g., if both tracks validate identical subsequent measurements.
 - > Only keeping the most likely N tracks
 - Rank tracks based on their modified log-likelihood.

Summary: Track-Splitting Filter

- Properties
 - Very old algorithm
 - P. Smith, G. Buechler, A Branching Algorithm for Discriminating and Tracking Multiple Objects, IEEE Trans. Automatic Control, Vol. 20, pp. 101-104, 1975.
 - > Improvement over NN assignment.
 - Assignment decisions are delayed until more information is available.
- Many problems remain
 - Exponential complexity, heuristic pruning needed.
 - > Merging of track nodes is necessary, because tracks may share measurements, which is physically unrealistic.
 - \Rightarrow Would need to add exclusion constraints such that each measurement may only belong to a single track.
 - \Rightarrow Impossible in this framework...

Topics of This Lecture

- Multi-Object Tracking
 - Motivation
 - > Ambiguities
- Simple Approaches
 - Gating
 - Mahalanobis distance
 - » Nearest-Neighbor Filter
- Track-Splitting Filter
 - > Derivation
 - > Properties

Outlook

[Reid, 1979]

[Fortmann, 1983]

Outlook for the Next Lectures

- More powerful approaches
 - Multi-Hypothesis Tracking (MHT)
 - Well-suited for KF, EKF approaches
 - Joint Probabilistic Data Association Filters (JPDAF)
 - Well-suited for PF approaches
 - Data association as convex optimization problem
 - » Bipartite Graph Matching (Hungarian algorithm)
 - Network Flow Optimization
 - \Rightarrow Efficient, globally optimal solutions for subclass of problems.

References and Further Reading

- A good tutorial on Data Association
 - I.J. Cox. <u>A Review of Statistical Data Association Techniques for</u> <u>Motion Correspondence</u>. In *International Journal of Computer Vision*, Vol. 10(1), pp. 53-66, 1993.