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Recap: Particle Filtering

¢ Many variations, one general concept:

» Represent the posterior pdf by a set of randomly chosen
weighted samples (particles)

Posterior

Sample space

» Randomly Chosen = Monte Carlo (MC)

» As the number of samples become very large - the
characterization becomes an equivalent representation
of the true pdf.

ide adapted from Michael B. Leibe
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Recap: Sequential Importance Sampling
function {{x;.w,’}j\: lJ = 81§ [{XLL- u-;fl}:v L y,J
=0
for i = I:N

Initialize

Xp ~ q(X¢ X1, ¥¢)

Sample from proposal pdf]

Update weights

Update norm. factor

For a concrete algorithm,
we need to define the
importance density g(.|.)!

end
for i = I:N

wi = wiin Normalize weights

end

ide adapted from Michael B. Leibe
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Recap: Sequential Importance Sampling
function {{x;.w,’}j\: lJ = 81§ [{XLL- u-;fl}:v L y,J

'f] =0
for i = I:N

Initialize
X, ~ q(xe|x;_ 1, ¥¢) Sample from proposal pdf]

plydxp(xilxi_y)

i Ji

wy =Wy : Update weights
q(xe/x; 1, ¥1)
n=n+ u.':: Update norm. factor
end
for i = I:N
wi = wifn Normalize weights
end

ide adapted from Michael B, Letbe
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Recap: SIS Algorithm with Transitional Prior
function {{x;.w,’}j\: lJ = 81§ [{XLL- u-;fl}:v L y,J
?j _ U
for i = I:N

Initialize

Xi ~ p(x, XLL) Sample from proposal pdf]

wy = wi_p(yi|x;) Update weights

n=n+ u.':: Update norm. factor

Transitional prior

q(x|x_,¥1)

end

for i = N plxilxi_y)

wi = wifn Normalize weights

B. Leibe
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Recap: Resampling

¢ Degeneracy problem with SIS
» After a few iterations, most particles have negligible weights.

» Large computational effort for updating particles with very small
contribution to p(x, | y,,).

¢ |dea: Resampling

RWTH/ACHEN
UNIVERSITY]

~ Eliminate particles with low importance weights and increase
the number of particles with high importance weight.
{xi wi}N - {x“ ! }N
(it 3 . AEEEY
L N
» The new set is generated by sampling with replacement from
the discrete representation of p(x, | y,,) such that
Pr {xé* = xi} = w]
ide adapted from Michael B. Leibe 7
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Recap: Generic Particle Filter
. i iV i i N
function {{x“wt}ml} = PF {{xt,].uJFI}L=l ,yt}
Apply SIS filtering [{xz u'ﬁ}fﬂ] = 5IS {{Xi_l.‘ u':—l}ii J’L]
1
Calculate Nojy = -
2oy (wi)?
if Nogp < Ny
[{xiwi} L] = rESAMPLE [{xi, i}
end
¢ We can also apply resampling selectively
- Only resample when it is needed, i.e., NV, is too low.
= Avoids drift when there the tracked state is stationary.
ide adapted from Michael B. Leibe 9
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Sampling-Importance-Resampling Algorithm

function [X;] = SIR[X,_1. v
X=x=0
for i = I:N

Important property:

Sample x; ~ p(x,[x; ) Particles are distributed
according to pdf from
”,;: = Ii(y;\x{) previous time step.
end

for i = I:N

Particles are distributed
according to posterior
from this time step.

Draw i with probability :x w:
Add x} to X,

end

ide adapted from Michael

B. Leibe
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Recap: Efficient Resampling Approach

¢ From Arulampalam paper:

Algorithm 2: Resampling Algorithm
W, wf, #1] = rResamers [, wi)Ys]
+ Initialize the CDF: ¢ =0

® FOR i =2: N,

— Construct CDF: ¢ :Ci—l‘f”w{

END FOR

-
# Start at the bottom of the CDF: i=1
# Draw a starting point: uy ~ U0, N7V
% FOR j=1: Ng
— Move along the CDF: u; —u +N7(j—1}
— WHILE 1wy > ¢
® i=d+1 PP . P
= ) e Basic idea: choose one initial

_ mesign sample: x)" =x) sn?a.ll r.andom number; deter-

— nssign weight: ministically sample the rest

— Ageign parent: + = by “crawling” up the cdf.
This is O(N)!

# END FOR

ide adapted from Robert Collin: B. Lethe

. . UN,IUERSITY
Sampling-Importance-Resampling Algorithm

function [X;] = SIR[X;_1, v

X=X =0
for i = I:N

Initialize

Sample x; ~ p(x,|x;_|) Generate new samples

”-'i = 1’(3’1,\3‘1) Update weights
end
for i = 1N
Draw i with probability «x w:
. Resample
Add x; to X,
end ”
ide adapted from Michael B. Leibe
RWTHCHEN
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Topics of This Lecture

¢ Multi-Object Tracking
» Motivation
» Ambiguities

¢ Simple Approaches
» Gating
» Mahalanobis distance
» Nearest-Neighbor Filter

¢ Track-Splitting Filter
» Derivation
» Properties

¢ Outlook

B. Leibe

RWTHCHEN
Elements of Tracking
- N
/e N I 1
I e 1 ® ‘e °,
L4 ~S_ . / e —7
°
Detection Data association Prediction
¢ Detection Lecture 7

~ Where are candidate objects?

¢ Data association
~ Which detection corresponds to which object?

Today’s topic

¢ Prediction Lectures 8-10
~ Where will the tracked object be in the next time step?

Computer Vision Il, Summer’14

B. Leibe
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Motion Correspondence Motion Correspondence Ambiguities
¢ Motion correspondence problem N . e T
. Do two measurements at different times l\. ° /‘ l\. ° ./‘ (. ° /‘
originate from the same object? ¢~ - ¢~ - -
.. L] L] °
e Why is it hard? N
- First make predictions for the expected | o’ o 1. Predictions may not be supported by measurements
locations of the current set of objects R 4 = s : . N
Match predictions to actual measurements e - b ~ Have the objects ceased to exist, or are they simply occluded?
. @
. This is where ambiguities may arise. .. ® 2| 2. There may be unexpected measurements
3_ » Newly visible objects, or just noise?
§ 3. More than one measurement may match a prediction
> » Which measurement is the correct one (what about the others)?
@
é. 4. A measurement may match to multiple predictions
- 3 » Which object shall the measurement be assigned to? 16
B. Leibe B. Leibe
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Topics of This Lecture

¢ Simple Approaches
» Gating
~ Mahalanobis distance
» Nearest-Neighbor Filter

B. Leibe

Let’s Formalize This

¢ Multi-Object Tracking problem
» We represent a track by a state vector x, e.g.,

x = [z, y. vy, '".e.r]j

» As the track evolves, we denote its state by the time index k:

T
X — [J.w_”w_ o), vk )1

» At each time step, we get a set of observations (measurements)
(k) _ (k) (k)
Y {Y1 [EREER 4 VA
- We now need to make the data association between tracks
J (R
Kp e

(# . N
1 XL\?} and 0I>servations{y[l L .,y%{:.}:
" = iff y‘.l,ki is associated with x|/
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Reducing Ambiguities: Simple Approaches Gating with Mahalanobis Distance
¢ Gating PR ¢ Recall: Kalman filter
» Only consider measurements within a certain ‘; ° ,' X » Provides exactly the quantities necessary to perform this
area around the predicted location. re “x - Predicted mean location x,,
= Large gain in efficiency, since only a small ° . Prediction covariance X

region needs to be searched r
W . Nearest-Neighbor Filter — . > ;‘:gnl(ga;n:an filter prediction covariance also defines a useful
T i i i i s \ T )
g - Among the candidates in the gating "7’3‘?“’ 4 : ° 2 = E.g., choose the gating area size such that 95% of the
£ only take the one closest to the prediction x, ! o Y’ g probability mass is covered.
a 2B argmin (x(F) T ) _ gty | ¥ @
= i T arg i\ Xpi Y pd Y = .
s Better: th t likely under a Gaussi dicti del | © Side note
g - e“_fr' € one mos ] e(:\un(;r a (Sussmn prediction mode g » The Mahalanobis distance is x? distributed with the number of
5 z = argmax; Ny X0 20 ) s degrees of freedom 7, equal to the dimension of x.
2 which is equivalent to taking the Mahalanobis distance 2 » For a given probability bound, the corresponding threshold on
S ; Ty s the Mahalanobis dist. be got from x? distribution tabl
S z = argming (X, — ;) Ep.ﬂ (%1 — ¥5) " 3 e Mahalanobis distance can be got from x> distribution tal es.Zo

B. Leibe

B. Leibe
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Mahalanobis Distance Problems with NN Assignment
¢ Additional notation ¢ Limitations
~ Our KF state of track x; is given by P ’.’ \‘ .~ For NN assignments, there is always a finite chance that the
: (*) . s 4 1 association is incorrect, which can lead to serious effects.
the predictionx,/ and covariance X' . ’ ) ! ) . . A
F e | ® ’ = If a Kalman filter is used, a misassigned measurement may lead
. We define the innovation that measure- "4 e ’ the filter to lose track of its target.
ment y . brings to track x; at time k as -
Yi g * » The NN filter makes assignment decisions only based on the
vj";’ - (y"“ —x:kf) current frame.

» More information is available by examining subsequent images.

= Let’s make use of this information by postponing the decision
process until a future frame will resolve the ambiguity...

With this, we can write the observation likelihood shortly as

(k) (k) 1 )7 @)=t (%)
p(y_} ]|x, )mexp{—avﬁ_,) b }

v

pl o Vil

We define the ellipsoidal gating or validation volume as

V() = {y (¥ x:'fﬁj)j E;(frr (¥ x:'fﬁj) < “-f}

v
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Topics of This Lecture Track-Splitting Filter

¢ |dea -
» Problem with NN filter was hard assignment. ‘./'o i
7

Rather than arbitrarily assigning the closest
measurement, form a tree.

Branches denote alternate assignments.
: i s . 1
» No assignment decision is made at this stage! LES

= Decisions are postponed until additional
measurements have been gathered...
¢ Track-Splitting Filter
. Derivation * Potential problems?
» Properties

» Track trees can quickly become very large due
to combinatorial explosion.

= We need some measure of the likelihood of a track,
so that we can prune the tree!

Computer Vision Il, Summer’14
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Track Likelihoods

* Expressing track likelihoods

-~ Given a track /, denote by 6, ; the event that
the sequence of assignments

_ [ (k)
Zpi = {2h.! ..... z; }

from time 1 to k originate from the same object.

Track Likelihoods (2)

¢ Starting from the likelihood
&

L) = H

r
1 IS )}
—————exp ——E v B v
4 5a(7) 14 2 !
jou (2m)E |2 -

il ij,l
Ji=1

» Define the modified log-likelihood ), for track [ as

= A(k) = —2log Lk
» The likelihood of ¢, , is the joint probability over all observations 5 - 1‘[’\_‘ L(2m) %\E;"]| i
i ’ £ j=1\F
in the track * [ £ .
L(t) = [T oz 12 _1y0. 00 o _ DT ()™ ()
(B.1) HP | ZG-n.0:00) = = Z";_,J 7 via
Jj=1 §
» If we assume Gaussian observation likelihoods, this becomes g - )+ V[A‘_)' Eckr‘ o
i k 8 - ixd <1 ixd
1 Tt £
L) = H — TP |5 Z v:J'_J, Ef") VE::_), 2 = Recursive calculation, sum of Mahalanobis distances of all the
o1 (2m)z[Z)2 ‘=1 S measurements assigned to track /.
B. Leibe = B. Leibe 2%
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Track-Splitting Filter

o Effect

» Instead of assigning the measurement that is
currently closest, as in the NN algorithm,
we can select the sequence of measurements
that minimizes the total Mahalanobis distance
over some interval! e

Modified log-likelihood provides the merit of a particular
node in the track tree.

Cost of calculating this is low, since most terms are needed
anyway for the Kalman filter.

v

v

¢ Problem

» The track tree grows exponentially, may generate a very large
number of possible tracks that need to be maintained.

27

B. Leibe

Pruning Strategies

¢ In order to keep this feasible, need to apply pruning
.~ Deleting unlikely tracks
- May be accomplished by comparing the modified log-likelihood A(%),
which has a x? distribution with kn, degrees of freedom, with a
threshold « (set according to x? distribution tables).

- Problem for long tracks: modified log-likelihood gets dominated by
old terms and responds very slowly to new ones.
= Use sliding window or exponential decay term.

» Merging track nodes
- If the state estimates of two track nodes are similar, merge them.
- E.g., if both tracks validate identical subsequent measurements.

» Only keeping the most likely [V tracks
- Rank tracks based on their modified log-likelihood.

Computer Vision Il, Summer’14
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Summary: Track-Splitting Filter

¢ Properties
» Very old algorithm

- P. Smith, G. Buechler, A Branching Algorithm for Discriminating and
Tracking Multiple Objects, IEEE Trans. Automatic Control, Vol. 20,
pp. 101-104, 1975.

» Improvement over NN assignment.

~ Assignment decisions are delayed until more information is
available.

¢ Many problems remain

» Exponential complexity, heuristic pruning needed.

~ Merging of track nodes is necessary, because tracks may share
measurements, which is physically unrealistic.

= Would need to add exclusion constraints such that each
measurement may only belong to a single track.

= Impossible in this framework...

29
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Topics of This Lecture

e Outlook
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Outlook for the Next Lectures References and Further Reading

¢ More powerful approaches
» Multi-Hypothesis Tracking (MHT)
- Well-suited for KF, EKF approaches [Reid, 1979]

* A good tutorial on Data Association

» L.J. Cox. A Review of Statistical Data Association Techniques for
Motion Correspondence. In International Journal of Computer

Vision, Vol. 10(1), pp. 53-66, 1993.
» Joint Probabilistic Data Association Filters (JPDAF)

- Well-suited for PF approaches [Fortmann, 1983]

* Data association as convex optimization problem
~ Bipartite Graph Matching (Hungarian algorithm)
» Network Flow Optimization
= Efficient, globally optimal solutions for subclass of problems.
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