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Announcement 

• Problems with exam registration fixed... 

 ...for Master CS and Master SSE 

 You should now be able to register 

 I extended the registration deadline until this Friday (30.05.) 

 

• Exchange students can register directly with us 

 If registration is not possible via ZPA 

 

• Please let us know if problems persist. 

2 
B. Leibe 
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Course Outline 

• Single-Object Tracking 

 Background modeling 

 Template based tracking 

 Color based tracking 

 Contour based tracking 

 Tracking by online classification 

 Tracking-by-detection 
 

• Bayesian Filtering 

 Kalman filters 

 Particle filters 

 Case studies 
 

• Multi-Object Tracking 
 

• Articulated Tracking 
3 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

C
o

m
p

u
te

r 
V

is
io

n
 I

I,
 S

u
m

m
e
r’

1
4

 

Today: Beyond Gaussian Error Models 
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Figure from Isard & Blake 
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Topics of This Lecture 

• Recap: Extended Kalman Filter 
 Detailed algorithm 

 

• Particle Filters: Detailed Derivation 
 Recap: Basic idea 

 Importance Sampling 

 Sequential Importance Sampling (SIS) 

 Transitional prior 

 Resampling 

 Generic Particle Filter 

 Sampling Importance Resampling (SIR) 
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Recap: Kalman Filter 

• Algorithm summary 

 Assumption: linear model 

 

 
 

 Prediction step 

 

 

 

 Correction step 
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Recap: Extended Kalman Filter (EKF) 

• Algorithm summary 

 Nonlinear model 

 

 
 

 Prediction step 

 

 

 

 Correction step 

7 
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with the Jacobians 
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Topics of This Lecture 

• Recap: Extended Kalman Filter 
 Detailed algorithm 

 

• Particle Filters: Detailed Derivation 
 Recap: Basic idea 

 Importance Sampling 

 Sequential Importance Sampling (SIS) 

 Transitional prior 

 Resampling 

 Generic Particle Filter 

 Sampling Importance Resampling (SIR) 
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Recap: Propagation of General Densities 

 

9 
B. Leibe Slide credit: Svetlana Lazebnik Figure from  Isard & Blake 
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Recap: Factored Sampling 

 

 

 

 

 
 

• Idea: Represent state distribution non-parametrically 

 Prediction: Sample points from prior density for the state, P(X) 

 Correction: Weight the samples according to P(Y |X) 
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Slide credit: Svetlana Lazebnik Figure from  Isard & Blake 
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Particle Filtering 

• Many variations, one general concept: 

 Represent the posterior pdf by a set of randomly chosen 

weighted samples (particles) 

 

 

 

 

 

 

 

 Randomly Chosen = Monte Carlo (MC) 

 As the number of samples become very large – the 

characterization becomes an equivalent representation  

of the true pdf. 

 11 
B. Leibe Slide adapted from Michael Rubinstein 

Sample space 

Posterior 
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Particle filtering 

• Compared to Kalman Filters and their extensions 

 Can represent any arbitrary distribution 

 Multimodal support 

 Keep track of as many hypotheses as there are particles 

 Approximate representation of complex model rather than exact 

representation of simplified model 

 

• The basic building-block: Importance Sampling 
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Recap: Monte-Carlo Sampling 

• Objective:  

 Evaluate expectation of a function f(z)  

w.r.t. a probability distribution p(z). 

 

 

• Monte Carlo Sampling idea 

 Draw L independent samples z(l) with l = 1,…,L from p(z). 

 This allows the expectation to be approximated by a finite sum 

 

 
 

 As long as the samples z(l) are drawn independently from p(z), 
then 
 

 Unbiased estimate, independent of the dimension of z! 
13 

B. Leibe Slide adapted from Bernt Schiele 

f̂ =
1

L

LX

l=1

f(zl)

Image source: C.M. Bishop, 2006 
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Monte Carlo Integration 

• We can use the same idea for computing integrals 

 Assume we are trying to estimate a complicated integral of a 

function f over some domain D: 

 

 

 

 Also assume there exists some PDF p defined over D. Then 

 

 

 

 For any pdf p over D, the following holds 
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Slide adapted from Michael Rubinstein 
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Monte Carlo Integration 

• Idea (cont’d) 

 Now, if we have i.i.d random samples x1,..., xN sampled from p, 

then we can approximate the expectation 

 

 
 

 by 

 

 
 

 Guaranteed by law of large numbers: 

 

 

 

 Since it guides sampling, p is often called a proposal distribution. 
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Importance Sampling 

• Let’s consider an example 

 

 
 

 f/p is the importance weight of a  

sample. 

 What can go wrong here? 

 

• What if p(x)=0 ? 

 If p is very small, then f/p can get arbitrarily large! 
 

 Design p such that f/p is bounded. 

 Effect: get more samples in “important” areas of f,  

i.e., where f is large. 

16 
B. Leibe Image source: C.M. Bishop, 2006 Slide adapted from Michael Rubinstein 
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Proposal Distributions: Other Uses 

• Similar Problem 

 For many distributions, sampling directly from p(z) is difficult. 

 But we can often easily evaluate p(z) (up to some normalization 

factor Zp): 

 
 

• Idea 

 Take some simpler distribution q(z) as proposal distribution 

from which we can draw samples and which is non-zero. 

17 
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p(z) =
1

Zp

~p(z)

Slide credit: Bernt Schiele Image source: C.M. Bishop, 2006 
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Recap: Importance Sampling 

• Idea 

 Use a proposal distribution q(z) from which it is easy to draw 

samples and which is close in shape to f. 

 Express expectations in the form of a finite sum over samples 

{z(l)} drawn from q(z). 

 

 

 

 

 

 

 with importance weights 

 

18 
B. Leibe Slide credit: Bernt Schiele 

rl =
p(z(l))

q(z(l))

Image source: C.M. Bishop, 2006 
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Illustration of Importance Factors 

 

 

 

 

 

 

 

 
 

• Goal: Approximate target density f 

20 
B. Leibe Figure source: Thrun, Burgard, Fox 
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Illustration of Importance Factors 

 

 

 

 

 

 

 

 
 

• Goal: Approximate target density f 

 Instead of sampling from f directly, we can only sample from g. 

21 
B. Leibe Figure source: Thrun, Burgard, Fox 
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Illustration of Importance Factors 

 

 

 

 

 

 

 

 
 

• Goal: Approximate target density f 

 Instead of sampling from f directly, we can only sample from g. 

 A sample of f is obtained by attaching the weight f/g to each 

sample x. 
22 

B. Leibe Figure source: Thrun, Burgard, Fox 
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Interpretation for Tracking 

 

 

 

 

 

 

 

 
 

• Goal: Approximate target density f 

 Instead of sampling from f directly, we can only sample from g. 

 A sample of f is obtained by attaching the weight f/g to each 

sample x. 
23 

B. Leibe Figure source: Thrun, Burgard, Fox 

Tracking application:  

Posterior from the 

previous frame 

Tracking application:  

Posterior of the 

current frame 
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Importance Sampling for Bayesian Estimation 

 

 

 

 

• Applying Importance Sampling 

 Characterize the posterior pdf using a set of samples (particles) 

and their weights 

 
 

 Then the joint posterior is approximated by  

 

24 
B. Leibe Slide adapted from Michael Rubinstein 
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Importance Sampling for Bayesian Estimation 

 

 

 

 

• Applying Importance Sampling 

 Draw the samples from the importance density q(x0:t | y1:t) with 

importance weights 

 
 

 Sequential update (after some calculation) 
 

– Particle update 

 

– Weight update 
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Sequential Importance Sampling Algorithm 

function  

 
 

for  i = 1:N 
 

 

 

 

 

 

 

 

 

 

 

 

end 

for  i = 1:N 

 
 

end 
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Sample from proposal pdf 

Update weights 

Update norm. factor 

Normalize weights 

Initialize 

Slide adapted from Michael Rubinstein 
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Sequential Importance Sampling Algorithm 

function  

 
 

for  i = 1:N 
 

 

 

 

 

 

 

 

 

 

 

 

end 

for  i = 1:N 

 
 

end 

 
27 

B. Leibe 

Sample from proposal pdf 

Update weights 

Update norm. factor 

Normalize weights 

Initialize 

Slide adapted from Michael Rubinstein 

For a concrete algorithm, 

we need to define the 

importance density q(.|.)! 
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Choice of Importance Density 

• Most common choice 

 Transitional prior 

 

 

 With this choice, the weight update equation simplifies to  
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B. Leibe Slide adapted from Michael Rubinstein 
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SIS Algorithm with Transitional Prior 

function  

 
 

for  i = 1:N 
 

 

 

 

 

 

 

 

 

 

 

 

end 

for  i = 1:N 

 
 

end 

 
29 

B. Leibe 

Sample from proposal pdf 

Update weights 

Update norm. factor 

Normalize weights 

Initialize 

Slide adapted from Michael Rubinstein 
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SIS Algorithm with Transitional Prior 

function  

 
 

for  i = 1:N 
 

 

 

 

 

 

 

 

 

 

 

 

end 

for  i = 1:N 

 
 

end 
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Sample from proposal pdf 

Update weights 

Update norm. factor 

Normalize weights 

Initialize 

Slide adapted from Michael Rubinstein 

Draw     from noise distribution  
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The Degeneracy Phenomenon 

• Unavoidable problem with SIS 

 After a few iterations, most particles have negligible weights. 

 Large computational effort for updating particles with very small 

contribution to p(xt | y1:t). 

 

• Measure of degeneracy 

 Effective sample size 

 

 

 

 

 Uniform:   Neff = N 

 Severe degeneracy: Neff = 1 

31 
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Resampling 

• Idea 

 Eliminate particles with low importance weights and increase 

the number of particles with high importance weight. 

 

 

 

 The new set is generated by sampling with replacement from 

the discrete representation of p(xt | y1:t) such that 
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Resampling 

• How to do that in practice? 

 We want to resample               from the discrete pdf given by  
 

the weighted samples                    . 

 

 I.e., we want to draw N new samples               with replacement 
 

where the probability of drawing      is given by      . 

 

• There are many algorithms for this 

 We will look at two simple algorithms here... 
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Inverse Transform Sampling 

• Idea 

 It is easy to sample from a discrete distribution using the 

cumulative distribution function                             . 

 
 

36 
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• Idea 

 It is easy to sample from a discrete distribution using the 

cumulative distribution function                             . 

 
 

• Procedure 

1. Generate uniform u in  

the range [0,1]. 

2. Visualize a horizontal  

line intersecting the  

bars. 

3. If index of intersected  

bar is j, output new  

sample xj. 

Inverse Transform Sampling 

37 
B. Leibe Slide adapted from Robert Collins 
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More Efficient Approach 

• From Arulampalam paper: 
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Basic idea: choose one initial 

small random number; deter- 

ministically sample the rest 

by “crawling” up the cdf.  

This is O(N)! 

Slide adapted from Robert Collins 
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Generic Particle Filter 

function  
 

Apply SIS filtering 
 

Calculate Neff 
 

if  Neff < Nthr 
 

 

 

 
 

end 

 

• We can also apply resampling selectively 

 Only resample when it is needed, i.e., Neff is too low. 

 Avoids drift when there the tracked state is stationary. 
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Other Variant of the Algorithm 

function  

 
 

for  i = 1:N 
 

 

 

 

 

 

 

 

end 

for  i = 1:N 

 

 

 
 

end 
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Generate new samples 

Update weights 

Resample 

Initialize 

Slide adapted from Michael Rubinstein 

Sample 

Draw i with probability 

Add      to Xt 
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Other Variant of the Algorithm 

function  

 
 

for  i = 1:N 
 

 

 

 

 

 

 

 

end 

for  i = 1:N 

 

 

 
 

end 
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Important property: 

Slide adapted from Michael Rubinstein 

Sample 

Draw i with probability 

Add      to Xt 

Particles are distributed 

according to pdf from 

previous time step. 

Particles are distributed  

according to posterior  

from this time step. 
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Particle Filtering: Condensation Algorithm 

Start with weighted 

samples from previous 

time step 
 

Sample and shift 

according to dynamics 

model 
 

Spread due to 

randomness; this is pre-

dicted density p(xt|yt-1) 
 

Weight the samples 

according to observation 

density 
 

Arrive at corrected 

density estimate  

p(xt|yt) 
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M. Isard and A. Blake, CONDENSATION -- conditional density propagation for 

visual tracking, IJCV 29(1):5-28, 1998 

Slide credit: Svetlana Lazebnik Figure source: M. Isard & A. Blake 

http://www.robots.ox.ac.uk/~ab/abstracts/ijcv98.html
http://www.robots.ox.ac.uk/~ab/abstracts/ijcv98.html
http://www.robots.ox.ac.uk/~ab/abstracts/ijcv98.html
http://www.robots.ox.ac.uk/~ab/abstracts/ijcv98.html
http://www.robots.ox.ac.uk/~ab/abstracts/ijcv98.html


P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

C
o

m
p

u
te

r 
V

is
io

n
 I

I,
 S

u
m

m
e
r’

1
4

 

Summary: Particle Filtering 

• Pros: 

 Able to represent arbitrary densities 

 Converging to true posterior even for non-Gaussian and 

nonlinear system 

 Efficient: particles tend to focus on regions with high probability 

 Works with many different state spaces 

– E.g. articulated tracking in complicated joint angle spaces 

 Many extensions available 
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Summary: Particle Filtering 

• Cons / Caveats: 

 #Particles is important performance factor 

– Want as few particles as possible for efficiency. 

– But need to cover state space sufficiently well. 

 Worst-case complexity grows exponentially in the dimensions 

 Multimodal densities possible, but still single object 

– Interactions between multiple objects require special treatment. 

– Not handled well in the particle filtering framework 

(state space explosion). 
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References and Further Reading 

• A good description of Particle Filters can be found in 

Ch.4.3 of the following book 

 S. Thrun, W. Burgard, D. Fox. Probabilistic  

Robotics. MIT Press, 2006. 

 

 

• A good tutorial on Particle Filters 

 M.S. Arulampalam, S. Maskell, N. Gordon, T. Clapp. A Tutorial  

on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian 

Tracking. In IEEE Transactions on Signal Processing, Vol. 50(2), 

pp. 174-188, 2002. 
 

• The CONDENSATION paper 

 M. Isard and A. Blake, CONDENSATION - conditional density 

propagation for visual tracking, IJCV 29(1):5-28, 1998 
 

B. Leibe 
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