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Beyond Kalman Filters
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Course Outline

e Single-Object Tracking
> Background modeling
» Template based tracking
» Color based tracking
» Contour based tracking
» Tracking by online classification
» Tracking-by-detection

e Bayesian Filtering
> Kalman filters
> Particle filters
~ Case studies

e Multi-Object Tracking
e Articulated Tracking
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Figure from Isard & Blake

B. Leibe

Today: Beyond Gaussian Error Models
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Topics of This Lecture

e Recap: Kalman Filter
~ Basic ideas
> Limitations
> Extensions

e Particle Filters
~ Basic ideas
» Propagation of general densities
» Factored sampling

e Case study
> Detector Confidence Particle Filter
> Role of the different elements
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Recap: Tracking as Inference

e Inference problem

~ The hidden state consists of the true parameters we care about,
denoted X.

> The measurement is our noisy observation that results from the
underlying state, denoted Y.

> At each time step, state changes (from X, ; to X,) and we get a
new observation Y,.

e Our goal: recover most likely state X, given

» All observations seen so far.
> Knowledge about dynamics of state transitions.

B. Leibe
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Slide credit: Kristen Grauman
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Recap: Tracking as Induction

e Base case:

> Assume we have initial prior that predicts state in absence of
any evidence: P(X,)

- At the first frame, correct this given the value of Y =y
e Given corrected estimate for frame ¢:

> Predict for frame t+1

» Correct for frame t+1

ct correct

P
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Recap: Prediction and Correction o

e Prediction:

P(Xt | Yor -+ yt—l): I P(Xt | Xt—l)P(Xt—l | Yor---s yt—l)dxt—l

N J N\ /
Y e

Dynamics Corrected estimate
model from previous step

e Correction: , ,
Observation Predicted

model estimate

/ > N J%
P(Y, [ X)P(X, | Yore-r Vi)

Py, I XOP(X( ] Yoo Vea JAX,

B. Leibe

P(Xt|yo,...,yt):J.
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Recap: Linear Dynamic Models

e Dynamics model
- State undergoes linear tranformation D, plus Gaussian noise

X, ~ N (DtXt—l’zdt )

e Observation model
» Measurement is linearly transformed state plus Gaussian noise

Y, ~ N(I\/Itxt,zmt)
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RWNTH
Recap: Constant Velocity Model (1D)

e State vector: position p and velocity v

— (greek letters
X — P: Pe=Pra® (At)vt_l e denote noise
t V, V.=V, +¢ terms)
. |1 At} p, .
X, = D,X,_; +nolise = + noise
0 1]|v,

e Measurement is position only
y, = Mx, +noise =1 O{ Pt

Vi

+ noise
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RWTH
Recap: Constant Acceleration Model (1D)

e State vector: position p, velocity v, and acceleration a.

I P, | Pi = Py t (At)vt_1 +& (greek letters
denote noise
X =| Vi v, =V, +(Aha, + & terms)
4, | =28 ,+¢
1 At 0 p.,
X, =DxX_+noise=|0 1 At|v,_ [+noise
0 0 1ja,
e Measurement is position only
_ 0 _
y,=Mx +noise=[1 0 0] v, |+noise
B. Leibe a’[

Slide credit: S. Lazebnik, K. Grauman — —
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Recap: General Motion Models

e Assuming we have differential equations for the motion
» E.g. for (undampened) periodic motion of a pendulum

d2
-
dt
e Substitute variables to transform this into linear system

: p=p  p=P _4°p
CE’ 1 2 dt p3 — dtz
§ e Then we have
E i Py | Dit = Pria ™ (At) Poi g+ € 1 At O]
i X =| Pay 0, = Py F(A) P, ,+E Di=[ 0 1 At
g— | Pai_ D5 = =P +6 -1 0 0_
O
&

B. Leibe




Recap: The Kalman Filter

Know corrfected state from Receive medsurement Know prediction of state,

measurements up to the >Update distribution
current one over current state.

- Predict distribution over
next state. / \

Time update Measurement update
S (“Predict”) (“Correct”)
‘,:{ P(Xt‘y01-°'1yt—1) P(Xt‘yo,...®)
=
=8 Mean ar.ld std. dev. Time advances: t++ Mean and std. dev.
- of predicted state: of corrected state:
8 - - + +
é H; Oy H; Oy
o
S | 12

B. Leibe

Slide credit: Kristen Grauman



<
-—
"
(]
=
£
-
(7p)
c
L)
2
>
-
(]
-
-
(o
=
(o]
O

Recap: General Kalman Filter (>1dim)

e What if state vectors have more than one dimension?

PREDICT ¢ ‘ CORRECT

X, = DX

% =Dx{,Df +Z,

K =M MM+, )
“Kalman gain’=--j=mmmmmmmmmeme ! “residyial”

6= Ky M)

Z: :(I _KtMt) ¢

More weight on residual
when measurement error

for derivations,
see F&P Chapter 17.3

Slide credit: Kristen Grauman

B. Leibe

covariance approaches 0.

Less weight on residual as
a priori estimate error
covariance approaches 0.

13



RWNTH
Resources: Kalman Filter Web Site

http://www.cs.unc.edu/~welch/kalman

e Electronic and printed references
> Book lists and recommendations

~ Research papers
> Links to other sites
> Some software

e News

i

measurement z= 0

Angle (Non-Linear)

e Java-Based KF Learning Tool
> On-line 1D simulation
> Linear and non-linear
~ Variable dynamics
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http://www.cs.unc.edu/~welch/kalman
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Remarks

e Try it!

> Not too hard to understand or program

e Start simple
> Experimentin 1D
> Make your own filter in Matlab, etc.

e Note: the Kalman filter “wants to work”
~ Debugging can be difficult
~ Errors can go un-noticed

Slide adapted from Greg Welch
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RWTHAACHEN
. . UNIVERSITY
Topics of This Lecture

e Recap: Kalman Filter
~ Basic ideas
> Limitations
> Extensions
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RWTH
Extension: Extended Kalman Filter (EKF)

e Basic idea

> State transition and observation model don’t need to be linear
functions of the state, but just need to be differentiable.

X =T (xq.u)+e
Yi =h(Xt)—|—§

> The EKF essentially linearizes the nonlinearity around the
current estimate by a Taylor expansion.

e Properties

> Unlike the linear KF, the EKF is in general not an optimal
estimator.

- If the initial estimate is wrong, the filter may quickly diverge.

> Still, it’s the de-facto standard in many applications
- Including navigation systems and GPS

B. Leibe
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RWNTH
Kalman Filter - Other Extensions

e Unscented Kalman Filter (UKF)

> Further development of EKF

- Probability density is approximated by nonlinear transform of a
random variable.

~ More accurate results than the EKF’s Taylor expansion approx.

e Ensemble Kalman Filter (EnKF)

> Represents the distribution of the system state using a collection
(an ensemble) of state vectors.

> Replace covariance matrix by sample covariance from
ensemble.

~ Still basic assumption that all prob. distributions involved are
Gaussian.

» EnKFs are especially suitable for problems with a large number
of variables.

18
B. Leibe



RWNTH
Even More Extensions

K‘S‘Witching linear dynamical
system (SLDS):

Bt ™~ My 4
2 = AP, 1 4 e (2¢)
Yy = Cwy + wy

uzt ~ N(0,23)) w, ~ N(0, R)

e Switching Linear Dynamic System (SLDS)

- Use a set of £ dynamic models AY),.... A%), each of which
describes a different dynamic behavior.

> Hidden variable z, determines which model is active at time <.
- A switching process can change z, according to distributionm,, ..
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Topics of This Lecture

e Particle Filters
~ Basic ideas
» Propagation of general densities
» Factored sampling

B. Leibe

Today: only main ideas

Formal introduction
next Tuesday



When Is A Single Hypothesis Too Limiting?

Initial position Prediction Measurement Update

A Y, A Y,
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Slide credit: Kristen Grauman Figure from Thrun & Kosecka



RWTH
When Is A Single Hypothesis Too Limiting?

Initial position Prediction Measurement Update
Yy Y Yy Yy
o Q @ @
e Consider this example: nput video

say we are tracking the
face on the right using a
skin color blob to get our
measurement.
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&
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Figure from Thrun & Kosecka

Slide credit; Kristen Grauman B. Leibe



RWTH
When Is A Single Hypothesis Too Limiting?

Initial position Prediction Measurement Update
Yy Y Ya Yy
o Q @ @
e Consider this example: Inpu video

say we are tracking the
face on the right using a
skin color blob to get our
measurement.
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Figure from Thrun & Kosecka
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Propagation of General Densities

m

A
plx)

=

plx)

AN

o
-

reactive effect of measurement

Slide credit: Svetlana Lazebnik

i
p(x)

Y

stochastic diffusion

plx)

Y

B. Leibe
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Factored Sampling

A
Probability

posterior
density

@ weighted

W

o @ @O .. o State ™

-

e |dea: Represent state distribution non-parametrically
- Prediction: Sample points from prior density for the state, P(X)
- Correction: Weight the samples according to P(Y | X)

P(yt | Xt)P(Xt | Yoi- -, yt—l)
P(yt | Xt)P(Xt | yO""’ yt—l)dxt

P(Xt|yo,...,yt):J.
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Figure from Isard & Blake

Slide credit: Svetlana Lazebnik B. Leibe
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Particle Filtering

e (Also known as Sequential Monte Carlo Methods)

e Idea

> We want to use sampling to propagate densities over time
(i.e., across frames in a video sequence).

> At each time step, represent posterior P(X,| Y,) with
weighted sample set.

> Previous time step’s sample set P(X;.,| Y;.;) is passed to next
time step as the effective prior.

Slide credit: Svetlana Lazebnik B. Leibe
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Particle Filtering

Start with weighted
samples from previous

. time step

Sample and shift
—Q : according to dynamics

| model
diffuse

Spread due to

: : : randomness; this is pre-
observatfion diCted denSity P(Xt | Yt-1)
density \ P ]

RS I A N M TN measure Weight the samples
- ~- according to observation
density

Arrive at corrected
density estimate
P(X:1Y¢)

M. Isard and A. Blake, CONDENSATION -- conditional density propagation for
visual tracking, IJCV 29(1):5-28, 1998
B. Leibe
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http://www.robots.ox.ac.uk/~ab/abstracts/ijcv98.html
http://www.robots.ox.ac.uk/~ab/abstracts/ijcv98.html
http://www.robots.ox.ac.uk/~ab/abstracts/ijcv98.html
http://www.robots.ox.ac.uk/~ab/abstracts/ijcv98.html
http://www.robots.ox.ac.uk/~ab/abstracts/ijcv98.html

RWTH
Particle Filtering - Visualization

Code and video available from

http://www.robots.ox.ac.uk/~misard/condensation.html

B. Leibe
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http://www.robots.ox.ac.uk/~misard/condensation.html

Particle Filtering Results

?

0ms

400 ms

800 ms

1200 ms

1600 ms

2000 ms

2400 ms

Time

2800 ms

i 'E ;

http://www.robots.ox.ac.uk/~misard/condensation.html
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Figure from Isard & Blake

B. Leibe


http://www.robots.ox.ac.uk/~misard/condensation.html

Particle Filtering Results

e Some more examples

http://www.robots.ox.ac.uk/~misard/condensation.html
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Videos from Isard & Blake

B. Leibe


http://www.robots.ox.ac.uk/~misard/condensation.html

Obtaining a State Estimate

 Note that there’s no explicit state estimate maintained,
just a “cloud” of particles

e Can obtain an estimate at a particular time by querying the
current particle set
e Some approaches

> “Mean” particle
- Weighted sum of particles
- Confidence: inverse variance

» Really want a mode finder—mean of tallest peak
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RWTHAACHEN
. . . UNIVERSITY
Condensation: Estimating Target State

‘ﬂ_'
®
S
S
=)
n From Isard & Blake, 1998
= State samples Mean of weighted
-5—’, (thickness proportional to weight) state samples
£
o
=
Q.
S
S
43
B. Leibe

Slide credit: Marc Pollefeys Figures from Isard & Blake



Summary: Particle Filtering

e Pros:
~ Able to represent arbitrary densities

» Converging to true posterior even for non-Gaussian and
nonlinear system

~ Efficient: particles tend to focus on regions with high probability

> Works with many different state spaces
- E.g. articulated tracking in complicated joint angle spaces

> Many extensions available
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Summary: Particle Filtering

e Cons / Caveats:

~ #Particles is important performance factor
- Want as few particles as possible for efficiency.
- But need to cover state space sufficiently well.

- Worst-case complexity grows exponentially in the dimensions
> Multimodal densities possible, but still single object

- Interactions between multiple objects require special treatment.

- Not handled well in the particle filtering framework
(state space explosion).

B. Leibe
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Topics of This Lecture

e Case study
> Detector Confidence Particle Filter
> Role of the different elements

B. Leibe
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Computer Vision Il, Summer’14

CI-FN
UNIVERSITY
Challenge: Unreliable Object Detectors

e Example:
~ Low-res webcam footage (320x240), MPEG compressed

Detector input Tracker output
| e

37“, \

ma
Inny

How to get from here...\y..to here?



CHEN
UNIVERSITY
Tracking based on Detector Confidence

(using ISﬁd'etector) (ing HOG detectr)
e Detector output is often not perfect

» Missing detections and false positives
> But continuous confidence still contains useful cues.

e |ldea employed here:

> Use continuous detector confidence to track persons over time.
48
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RWTHAACHEN
. UNIVERSITY
Main ldeas

e Detector confidence particle filter

~ Initialize particle cloud on
strong object detections.

~ Propagate particles using
continuous detector confidence
as observation model.

 Disambiguate between
different persons EEan:
. Train a person-specific classifier [ & %

with online boosting.

> Use classifier output to distinguish
between nearby persons.
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Detector Confidence Particle Filter

e State: L= {I: Y, u, 1”}

e Motion model (constant velocity) N
(,y)e = (z,y)i—1+ (u,v)i—1 - At + €2 )
(u,v)e = (u,V)t—1 + E(uw) T

e Observation model
werp = plyelzy”) =

B I(tr) pn(p—d*)+ [y de(p) - poltr) +n - cur(p)

Discrete Detector Classifier
detections confidence confidence
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When Is Which Term Useful?
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CHEN
UNIVERSITY

Each Observation Term Increases Robustness!

Observation Model Terms MOTP MOTA FN FP ID Sw.
1: Det+DetConf+Class 70.0% 72.9% 26.8% 0.3% 0
2: Det+DetConf 64.0% 54.5%  28.2% 17.2% 5
3: Det+Class 65.0% 55.3% 31.3% 13.4% 0

4: Det 67.0% 40.9% 30.7% 28.0% 10

Detector only

CLEAR MOT scores
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CHEN
UNIVERSITY

Each Observation Term Increases Robustness!

Observation Model Terms MOTP MOTA FN FP ID Sw.
1: Det+DetConf+Class 70.0% 72.9% 26.8% 0.3% 0
| 2: Det+DetConf 64.0% 54.5% 28.2% 17.2% 5 |
3: Det+Class 65.0% 55.3% 31.3% 13.4% 0
4: Det 67.0% 40.9%  30.7%  28.0% 10

Detector
+ Confidence

B. Leibe

CLEAR MOT scores
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CHEN
UNIVERSITY

Each Observation Term Increases Robustness!

Observation Model Terms MOTP MOTA FN FP ID Sw.
1: Det+DetConf+Class 70.0% 72.9% 26.8% 0.3% 0
2: Det+DetConf 64.0% 54.5%  28.2% 17.2%
| 3: Det+Class 65.0%  55.3% 31.3% 13.4% 0o |
4: Det 67.0% 40.9%  30.7%  28.0% 10
Detector
+ Classifier
#
—
.
Q
=
=
-
(7))
c
O
2
P
.
(]
P
2
= CLEAR MOT scores
(@)
O
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CHEN
UNIVERSITY

Each Observation Term Increases Robustness!

Observation Model Terms MOTP MOTA ( FIN FP 1D Sw.
| 1: Det+DetConf+Class 70.0% 72.9% | 26.8%  0.3% 0| )

2: Det+DetConf 64.0% 54.5% | 282% 17.2% 5

3: Det+Class 65.0%  55.3% | 31.3% 13.4% 0

4: Det 67.0%  40.9% \30.7% 28.0% 10

Detector \
+ Confidence False negatives,

x@l + Classifier false positives,
I and ID switches
S decrease!
=)
%)
=
)
£
>
| &9
3
2
= CLEAR MOT scores
)
&)
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Qualitative Results
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Remaining Issues

e Some false positive initializations at wrong scales...
> Due to limited scale range of the person detector.
- Due to boundary effects of the person detector.
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RWTH
References and Further Reading

e A good tutorial on Particle Filters

> M.S. Arulampalam, S. Maskell, N. Gordon, T. Clapp. A Tutorial
on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian
Tracking. In IEEE Transactions on Signal Processing, Vol. 50(2),
pp. 174-188, 2002.

e The CONDENSATION paper

> M. Isard and A. Blake, CONDENSATION - conditional density
propagation for visual tracking, IJCV 29(1):5-28, 1998

_ 60
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