Computer Vision Il - Lecture 5

Contour based Tracking
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Course Outline

e Single-Object Tracking
> Background modeling
» Template based tracking
» Color based tracking
> Contour based tracking
» Tracking by online classification
» Tracking-by-detection

e Bayesian Filtering
e Multi-Object Tracking

e Articulated Tracking
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Recap: Mean-Shift
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o Objective: Find the densest region

Slide by Y. Ukrainitz & B. Sarel



RWTH
Recap: Using Mean-Shift on Color Models

e Two main approaches

1. Explicit weight images
- Create a color likelihood image, with pixels

weighted by the similarity to the desired
color (best for unicolored objects).

- Use mean-shift to find spatial modes of the likelihood.

0.35

2. Implicit weight images
- Represent color distribution by a histogram. .

- Use mean-shift to find the region that has the
most similar color distribution.

Probability
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Slide credit: Robert Collins B. Leibe



Mean-Shift on Weight Images

e |deal case

> Want an indicator function that returns 1 for pixels on the
tracked object and O for all other pixels.

e Instead
> Compute likelihood maps

~ Value at a pixel is proportional to the likelihood
that the pixel comes from the tracked object.

e Likelihood can be based on
~ Color
> Texture
> Shape (boundary)
> Predicted location
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Recap: Mean-Shift Tracking

e Mean-Shift finds the mode of an explicit likelihood image

Kernel weight Weight from the :

o ta : Offset of pixel a
evaluated at likelihood image to Kk l ¢
offset (a — x) at pixel a O Kerne’ center x

l

=> Mean-shift computes the weighted mean of all
shifts (offsets), weighted by the point likelihood

and the kernel function centered at x.
B. Leibe

* >. K@ x)u(a)(a - x)
'iq—’ Ax =

: 2 K(a—x)w(a)
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= Sum over all pixels a L

S under kernel K Normalization
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Recap: Explicit Weight Images

e Histogram backprojection

- Histogram is an empirical estimate of p(color | object) = p(c | o)
p(clo)p(o)
. Bayes’ rule says: p(o|c) =
p(c)

- Simplistic approximation: assume p(0)/p(c) is constant.
= Use histogram h as a lookup table to set pixel values in the
weight image.

- If pixel maps to histogram bucket i, set weight for pixel to h(7).

7
Slide credit: Robert Collins B. Leibe Image source: Gary Bradski
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RWTH
Recap: Scale Adaptation in CAMshift

Mean shift window
initialization
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Image source: http://docs.opencv.org/trunk/doc/py_tutorials/py_video/py_meanshift/py_meanshift.html



Recap: Tracking with Implicit Weight Images

Target Model Target Candidate
(centered at 0) (centered at y)
q:{qu}u—lm Zlquzl p.(y):{pu(y)}uzl..m leuzl

Similarity oS i
Function: f(y)_f[q’p(yﬂ
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Slide by Y. Ukrainitz & B. Sarel B. Leibe
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Recap: Comaniciu’s Mean-Shift

e Color histogram representation

target model: a4 =1uty=1m

target candidate: P(y) = 10u(¥) Fumi

e Measuring distances between histograms
> Distance as a function of window location y

d(y)=+/1—p[p(¥).4] ,

- where j(y) is the Bhattacharyya coefficient

ﬁcy:‘ =p [ﬁ(y)= E]] = Z_: .ﬁu'{yz"f?u -

Slide credit: Robert Collins B. LeIDe

10



<
-—
"
(]
£
£
-
(7p)
c
L)
2
>
-
(]
-
-
(o
£
(o]
(&)

Recap: Comaniciu’s Mean-Shift

e Compute histograms via Parzen estimation

du=0C)_k(lIx|*) [b(x}) — 4] ,
=1

HF—}Q

) 5bxs) — ] |

- where k() is some radially symmetric smoothing kernel profile,
x; is the pixel at location ¢, and b(x;) is the index of its bin in
the quantized feature space.

e Consequence of this formulation
> Gathers a histogram over a neighborhood

~ Also allows interpolation of histograms centered around an
off-lattice location.

Slide credit: Robert Collins B. Leibe
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RWNTH
Recap: Result of Taylor Expansion

e Simple update procedure: At each iteration, perform

LIS .
e el

Y1 = S g (HEI_}LH )

> which is just standard mean-shift on (implicit) weight image w,.

where g{z) = —F'(x).

- Let’s look at the weight image more closely. For each pixel x,
This is only 1
Z d [b(xi) — u] once in the
summation

= If pixel x,’s value maps to histogram bucket B, then

W; = \/QB/pB(YO)

Slide credit: Robert Collins B. Leibe
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Today: Contour based Tracking

<
F
.
Q
=
=
-
(7))
c
S
IQ
>
-
Q
-
-
o
=
o
O

13

Image source: Yuri Boykov

B. Leibe



Topics of This Lecture

e Deformable contours
> Motivation
> Contour representation

e Defining the energy function
» External energy
> Internal energy

e Energy minimization
» Greedy approach
> Dynamic Programming approach

e Extensions
» Tracking
> Level Sets
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Deformable Contours

e Given
> Initial contour (model) near desired object

M. Kass, A. Witkin, D. Terzopoulos. Snakes: Active Contour Models,
IJCV1988.
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Slide credit: Kristen Grauman B. Leibe Image source: Yuri Boykov



http://www.cs.ucla.edu/~dt/papers/ijcv88/ijcv88.pdf
http://www.cs.ucla.edu/~dt/papers/ijcv88/ijcv88.pdf
http://www.cs.ucla.edu/~dt/papers/ijcv88/ijcv88.pdf
http://www.cs.ucla.edu/~dt/papers/ijcv88/ijcv88.pdf

Deformable Contours

e Given
> Initial contour (model) near desired object

e Goal

~ Evolve the contour to fit the exact object
boundary

e Main ideas

» Iteratively adjust the elastic band so as to be near image
positions with high gradients, and

~ Satisfy shape “preferences” or contour priors
> Formulation as energy minimization problem.

M. Kass, A. Witkin, D. Terzopoulos. Snakes: Active Contour Models,
IJCV1988.
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Slide credit: Kristen Grauman B. Leibe Image source: Yuri Boykov



http://www.cs.ucla.edu/~dt/papers/ijcv88/ijcv88.pdf
http://www.cs.ucla.edu/~dt/papers/ijcv88/ijcv88.pdf
http://www.cs.ucla.edu/~dt/papers/ijcv88/ijcv88.pdf
http://www.cs.ucla.edu/~dt/papers/ijcv88/ijcv88.pdf
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UNIVERSITY
Deformable Contours: Intuition
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Slide credit: Kristen Grauman ubloaded imaages/HandBand?2-795868 .JPG
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Why Do We Want Deformable Shapes? o

e Motivations

> Some objects have similar basic form, but some variety in
contour shape.
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Slide credit: Kristen Grauman B. Leibe
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Why Do We Want Deformable Shapes7

e Motivations

> Some objects have similar basic form, but some variety in
contour shape.

> Non-rigid, deformable objects can change their shape over time,
e.g. lips, hands...
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Slide credit: Kristen Grauman B. Leibe Image source: M. Kass et al., 1988




RO INVERSITY
Why Do We Want Deformable Shapes?

e Motivations

> Some objects have similar basic form, but some variety in
contour shape.

> Non-rigid, deformable objects can change their shape over time,
e.g. lips, hands...

> Contour shape may be an important cue for tracking
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Slide credit: Kristen Grauman B. Leibe Image source: Julien Jomier
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Topics of This Lecture

e Defining the energy function
> External energy
» Internal energy

B. Leibe

21



Contour Representation

e Discrete representation

> We’ll consider a discrete representation of the contour,
consisting of a list of 2D point positions (“vertices”).

(X01y0 Vi :(Xi’yi)1
for 1=0,1,....n-1
(Xg Y1)

» At each iteration, we’ll have the option
to move each vertex to another nearby
location (“state”).
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Slide credit; Kristen Grauman B. Leibe
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Fitting Deformable Contours

e How to adjust the current contour to form the new
contour at each iteration?

~ Define a cost function (“energy” function) that says how good
a candidate configuration is.

» Seek next configuration that minimizes that cost function.

. ﬁ | ﬁ
Y @)

i | TN | o\ )
initial intermediate final

Slide credit; Kristen Grauman B. Leibe
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Energy Function

e Definition
» Total energy (cost) of the current snake @

E ota = Einternar + E

total Interna external

e Internal energy

~ Encourage prior shape preferences: e.g., smoothness,
elasticity, particular known shape.

e External energy

» Encourage contour to fit on places where image structures
exist, e.g., edges.

= Good fit between current deformable contour and target shape
in the image will yield a low value for this cost function.
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Slide credit; Kristen Grauman B. Leibe
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External Image Energy

e How do edges affect snap of
rubber band?

> Think of external energy from image
as gravitational pull towards areas of
high contrast.

- (Magnitude of gradient)

—(Gu(1)2 +Gy(1)?)
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Slide credit: Kristen Grauman B. Leibe
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UNIVERSITY
External Image Energy

e Gradient images G, (x,y) and G, (X,Y)

r " \ \ ;'/"
2P0 e O OO gnN -

e External energy at a point on the curve is:
Eexternal(v) — _( | Gx (V) |2 T | Gy (V) |2 )

e External energy for the whole curve:

n-1
Eexternal - = Zl Gx (Xi , y|) |2 + | C':'y(Xi , y|) |2
=0

Slide credit; Kristen Grauman B. Leibe
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Internal Energy: Intuition

What are the underlying boundaries
in this fragmented edge image?

Slide credit; Kristen Grauman B. Leibe

And in this one?

28
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Internal Energy: Intuition

e A priori, we want to favor
> Smooth shapes
> Contours with low curvature

~ Contours similar to a known shape, etc. to balance what is
actually observed (i.e., in the gradient image).

Slide credit; Kristen Grauman B. Leibe
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Internal Energy

e Common formulatoin

» For a continuous curve, a common internal energy term is the
“bending energy”.

» At some point v(s) on the curve, this is:

2 2 2
Einternai(V(S)) dv p —d Y
internal\V\S)) = & [——| I+
ds| |d°s
Tension, Stiffness,
Elasticity Curvature

Slide credit; Kristen Grauman B. Leibe
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Internal Energy

e For our discrete representation,

( X3, ,1"'3)

Vi = (Xi , yi) i=0... n-1 (s ¥17)
dV d2V

ds ~ Visl | @z(v

V)=V, =Vi) =Viy =2V +v

i+1

- Note these are derivatives relative to position - not spatial
image gradients.

Slide credit; Kristen Grauman B. Leibe
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Internal Energy

e For our discrete representation,

( X3, ,1"'3)

(X17, vi7)

v. =(X, V) 1=0...n-1

dv d°v
s =V, 1 —V; 4 *(Vig—vi)—(Vi—vig) =via —2vi+vy
e Internal energy for the whole curve:
n-1
2 2
Einternal - Z o Hvi+1 _ViH T IB Hvi+1 _Zvi +Vi—1H
i=0

» Why do these reflect tension and curvature?

Slide credit; Kristen Grauman B. Leibe
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Example: Compare Curvature

Ecurvature (Vi) = Hvi+1 o 2Vi T Vi—le

= (Xi,1 —2X + Xi—1)2 + (Vi —2Y; + Yi—1)2

(2,2)
O O ¢
(1,1) (3,1) (1,1) O © Gh
B3—-22)+ 1)+ (1 —2(5) +1)? B—-2(2)+ 1)+ (1 —-2(2) +1)?
= (—8)% = 64 =(=2)*=4

, 33
Slide credit: Kristen Grauman B. Leibe
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Penalizing Elasticity

e Current elastic energy definition uses a discrete
estimate of the derivative:

n-1

Eelastic - Z aHviﬂ_Vin

1=0

n-1
= o Z(Xi+1 %)+ (Y — Vi)
~0

(X0, V0)
What is a possible problem

(X3 13) with this definition?

Slide credit; Kristen Grauman B. Leibe
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Penalizing Elasticity

e Current elastic energy definition uses a discrete
estimate of the derivative:

n-1 )
Eelastic — i+1 Vi
1=0
e Instead: N1 2
= - ((Xi+1_xi)2+(yi+1_yi)2_d)
i=0

where d is the average distance

between pairs of points - updated at
each iteration.

, 35
Slide credit: Kristen Grauman B. Leibe



Dealing with Missing Data

e Effect of Internal Energy

~ Preference for low-curvature, smoothness helps dealing with
missing data

. ‘ ' j‘ Illusory contours found!

<
-—
"
(]
=
£
-
(7p)
c
L)
2
>
-
(]
-
-
(o
=
(o]
O

_ 36
Slide credit: Kristen Grauman B. Leibe Image source: Kass et al., 1988




UNIVERSITY
Extending the Internal Energy: Shape I|>r1 rs

e Shape priors

~ |If object is some smooth variation on
a known shape, we can use a term that
will penalize deviation from that shape:

n-1
A N2
Einternal T=a: Z (Vi o Vi)
1=0

where {V.} are the points of the known
shape.
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Slide credit: Kristen Grauman B. Leibe
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Putting Everything Together...

e Total energy

E

~ with the component terms

n—1
Eevternal = — Zl G, (X, ;) °/+ ] G, (%, ;) B
i—0

— E

Interna

HYE

total external

n-1
Einternal = Z
1=0

Behavior can be controlled by adapting the weights a, 5, ~.

Slide credit; Kristen Grauman B. Leibe
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Total Energy

e Behavior varies as a function of the weights
> E.g., a weight controls the penalty for internal elasticity.

large o medium o small o
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Slide credit: Kristen Grauman B. Leibe Image source: Yuri Boykov




Summary: Deformable Contours
e A simple elastic snake is defined by:

» A set of N points,
> An internal energy term (tension,
bending, plus optional shape prior)

> An external energy term (gradient-based)

e To use to segment an object:
-~ Initialize in the vicinity of the object

> Modify the points to minimize the total
energy

> How can we do this minimization?
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Slide credit: Kristen Grauman B. Leibe Figure source: Yuri Boykov
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Topics of This Lecture

e Energy minimization
> Greedy approach
~ Dynamic Programming approach

B. Leibe

41
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Energy Minimization

e Several algorithms have been proposed to fit
deformable contours
~ Greedy search
~ Variational approaches
> Dynamic programming (for 2D snakes)

> o0 0

e We'll look at two of them in the following...

Slide credit; Kristen Grauman B. Leibe
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Energy Minimization: Greedy

e Greedy optimization

~ For each point, search window around it
and move to where energy function is
minimal.

~ Typical window size, e.g., 5x5 pixels

e Stopping criterion

~ Stop when predefined number of points
have not changed in last iteration,
or after max number of iterations.

 Note:
» Local optimization - need decent initialization!
» Convergence not guaranteed

Slide credit; Kristen Grauman B. Leibe
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RWNTH
Energy Minimization: Dynamic Programming

e Constraining the search space
> Limit possible moves to neighboring pixels

» With this form of the energy function, we can minimize using
dynamic programming, with the Viterbi algorithm.

= Optimal results in the local search space defined by the box.

A. Amini, T.E. Weymouth, R.C. Jain. Using Dynamic Programming
for Solving Variational Problems in Vision, PAMI, Vol. 12(9), 1990. 44

Slide credit: Kristen Grauman Figure source: Yuri Boykov
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http://dx.doi.org/10.1109/34.57681
http://dx.doi.org/10.1109/34.57681
http://dx.doi.org/10.1109/34.57681
http://dx.doi.org/10.1109/34.57681
http://dx.doi.org/10.1109/34.57681
http://dx.doi.org/10.1109/34.57681
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RWTH
Energy Minimization: Dynamic Programming

e Dynamic Programming optimization
~ Possible because snake energy can be rewritten as a sum of pair-
wise interaction potentials:

Eotar (V13 V1)

EtotaI(V11 ©e Vn)

\_

Slide credit: Kristen Grauman

n-1

= Z E (v vig)

=1

/ > Or sum of triple interaction potentials

n—1

= Z E(viVivia)

1=1

B. Leibe

_/

45
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Snake Energy: Pairwise Interactions

e Total energy .
Etotal(xl""’Xmyl""’yn) = _ZlGx(Xi’yi)|2+|Gy(xi’yi)|2
=1

[
n_

1
+ a Z(Xi+1 %)+ (i — Vi)
1

i
- Rewriting the above with v, = (x,, y.):

n-1 n-1
B (Virava) = =D IGO)IF + D lIvia—w P
1 =1

> Pairwise formulation

Etotal(vl’ *e "Vn) — El(vl’vz) + EZ (VZ’V3) Tt En—l(vn—l’vn)

—Vi ”2

where E (v, vi,)= —IIGW) " +allv

i+1
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Slide credit; Kristen Grauman B. Leibe
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Viterbi Algorithm

e Main idea:
- Determine optimal state of predecessor, for each possible state
~ Then backtrack from best state for last vertex

Etotal — El(vl’VZ) + E2 (V2 ! VS) t...F En—l(vn—l’vn)
.g “El(vl,vz)“‘Ez (VZ,V32“E3 (v3,v4?“ E, (v4,vrl)‘
states g

E(1)=0 E,(1) E.(1) E, () E, (1)

1 - @
2 El(z)Ma e
E(3)=0 n‘3)
_ E,(m)=0 n‘m)

Complexity: O(nm?) vs. brute force search _____ ? 47

Slide credit: Kristen Grauman, adapted from Yuri Boykov



RWNTH
Summary: Dynamic Programming

e Dynamic Programming solution
> Limit possible moves to neighboring pixels (discrete states).
» Find the best joint move of all points using Viterbi algorithm.

~ Iterate until optimal position for each point is the center of
the box, i.e., the snake is optimal in the local search space
constrained by boxes.
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Slide credit: Kristen Grauman [Amini, Weymouth, Jain, 1990] Figure source: Yuri Boykov




RWTH
Energy Minimization: Dynamic Programming

e Limitations
~ DP can be applied to optimize an open-ended shake

E, (Vy, V) + By (V3 Vs) et Ey 4 (Y, 4, ,)

Vl ) °® [ ° L vV
® p o o n

< L
g ~ For a closed snake, a loop is introduced into the energy
=)
:“ El(vl’V2)+ EZ(VZ’V3)+"'+ En—l(vn—l’vn) En (Vn’vl)
c
:% V”;l ® o e ® @ Workaround:
; an : 1) Fix v, and solve for rest .
‘g’_ Vi e o & ® @ 2) Fix an intermediate node
£ Va2 v, Va at its position found in
o

(1), solve for rest.
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Topics of This Lecture

e Extensions
» Tracking
> Level Sets
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Tracking via Deformable Contours

e Idea

1. Use final contour/model extracted at frame ¢ as an initial
solution for frame ¢t-+1

2. Evolve initial contour to fit exact object boundary at frame t+41
3. Repeat, initializing with most recent frame.

Tracking Heart Ventricles
(multiple frames)
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Tracking via Deformable Contours

e Many applications
~ Traffic monitoring, surveillance
> Human-computer interaction
> Animation
» Computer assisted diagnosis in medical imaging
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Limitations

e Limitations of Dynamic Contours
> May over-smooth the boundary

~ Cannot follow topological changes of objects
© - 00 - U
)~ G &
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Limitations

e External energy

> Snake does not really “see” object boundaries in the image
unless it gets very close to them.

I
image gradients VI are large
only directly on the boundary

Slide credit; Kristen Grauman B. Leibe
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Workaround: Distance Transform

e External energy can instead be taken from the distance
transform of the edge image.

Original Distance|transform

Value at (X,Y) tells how
far that position is from
the nearest edge point
(or other binary image
structure)

>> help bwdist
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Discussion

e Pros:
~ Useful to track and fit non-rigid shapes
~ Contour remains connected
~ Possible to fill in “subjective” contours
Flexibility in how energy function is defined, weighted.

Y

e Cons:

> Must have decent initialization near true boundary,
may get stuck in local minimum.

» Parameters of energy function must be set well based on
prior information

> Discrete optimization
> Unable to handle topological changes

Slide credit: Kristen Grauman B. Leibe
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Extension: Level Sets

e Main idea

> Instead of explicitly representing
the contour to track, model it
implicitly as the zero-level set
of a continuous embedding
function ®(x).

> Evolve the embedding function
in order to better fit the image
content.

» Leads to variational approaches.

e Advantages
> Continuous optimization, easier to handle
> Can naturally cope with topological changes

> Not restricted to contour information, can also incorporate

region information (color, texture, motion, disparity, etc.)
B. Leibe
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Region-based Level Set Tracking

e Using a color mode to separate fg and bg regions

C. Bibby, I. Reid, Robust Real-Time Visual Tracking using Pixel-Wise
Posteriors, ECCV’08.
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Summary

e Deformable shapes and active contours are useful for

~ Segmentation: fit or “snap” to boundary in image
» Tracking: previous frame’s estimate serves to initialize the next

e Fitting active contours:
- Define terms to encourage certain shapes, smoothness, low
curvature, push/pulls, ...

> Use weights to control relative influence of each component
cost

> Can optimize 2d snakes with Viterbi algorithm.

e Image structure (esp. gradients) can act as attraction
force for interactive segmentation methods.

. 59
Slide credit: Kristen Grauman B. Leibe



<
-—
"
(]
=
£
-
(7p)
c
L)
2
>
-
(]
-
-
(o
=
(o]
(&)

RWTH
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