

Computer Vision II - Lecture 2

Background Modeling

22.04.2014

Bastian Leibe

RWTH Aachen

http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de

Announcements

- Course webpage
 - http://www.vision.rwth-aachen.de/teaching/
 - Slides will be made available on the webpage
- L2P electronic repository
 - Exercises and supplementary materials will be posted on the L2P

- Please subscribe to the lecture on the Campus system!
 - Important to get email announcements and L2P access!
 - Bachelor students please also subscribe

RWTHAACHEN UNIVERSITY

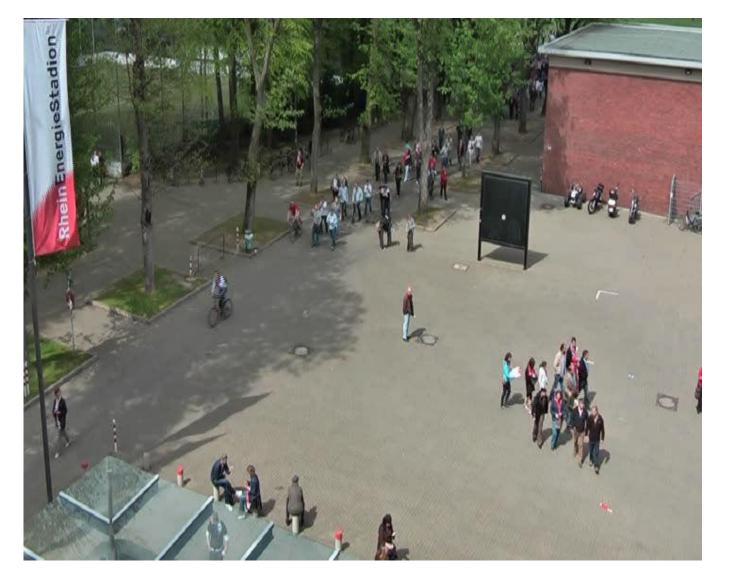
Course Outline

- Single-Object Tracking
 - Background modeling
 - Template based tracking
 - Color based tracking
 - Contour based tracking
 - Tracking by online classification
 - Tracking-by-detection
- Bayesian Filtering
- Multi-Object Tracking
- Articulated Tracking

Topics of This Lecture

- Motivation: Background Modeling
- Simple Background Models
 - Background Subtraction
 - Frame Differencing
- Statistical Background Models
 - Single Gaussian
 - Mixture of Gaussians
 - Kernel Density Estimation
- Practical Issues and Extensions
 - Background model update
 - False detection suppression
 - Shadow suppression
 - Applications

Motivation: Tracking from Static Cameras



Motivation

Goals

- Want to detect and track all kinds of objects in a wide variety of surveillance scenarios.
- \Rightarrow Need a general algorithm that works for many scenarios.
- Video frames come in at 30Hz. There is not much time to process each image.
- ⇒ Real-time algorithms need to be very simple.

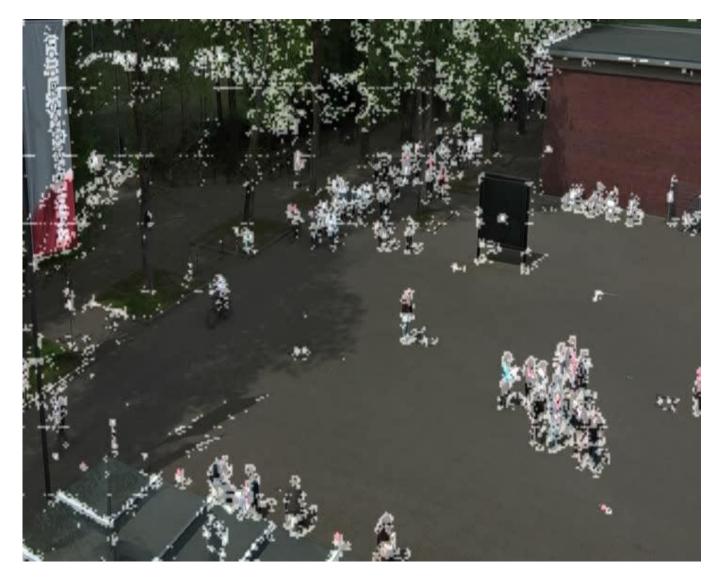
Assumptions

- The camera is static.
- Objects that move are important (people, vehicles, etc.).

Basic Approach

- Maintain a model of the static background.
- Compare the current frame to this model to detect objects.

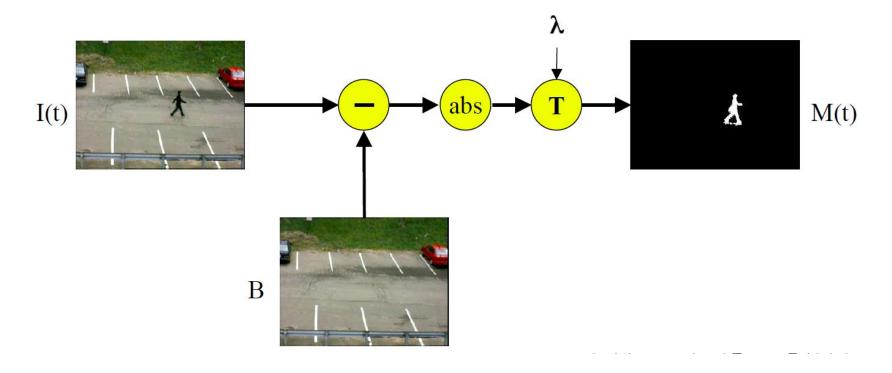
Background Modelling Results



Topics of This Lecture

- Motivation: Background Modeling
- Simple Background Models
 - Background Subtraction
 - Frame Differencing
- Statistical Background Models
 - > Single Gaussian
 - Mixture of Gaussians
 - Kernel Density Estimation
- Practical Issues and Extensions
 - Background model update
 - False detection suppression
 - Shadow suppression

Simple Background Subtraction



Procedure

- Background model is a static image (without any objects).
- Pixels are labeled based on thresholding the absolute intensity difference between current frame and background.

Background Subtraction Results

- Observation
 - Background subtraction does a reasonable job of extracting the object shape if the object intensity/color is sufficiently different from the background.
- What are the limitations of this simple procedure?

RWTHAACHEN UNIVERSITY

Background Subtraction: Limitations

- Outdated reference frame
 - Objects that enter the scene and stop continue to be detected...
 ...making it difficult to detect new objects that pass in front of them.

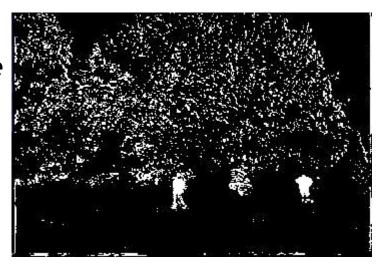
- If part of the assumed static background starts moving...
 - ...both the object and its negative ghost (the revealed background) are detected.

RWTHAACHEN UNIVERSITY

Background Subtraction: Limitations

Illumination changes

Background subtraction is sensitive to illumination changes and unimportant scene motion (e.g., tree branches swaying in the wind).

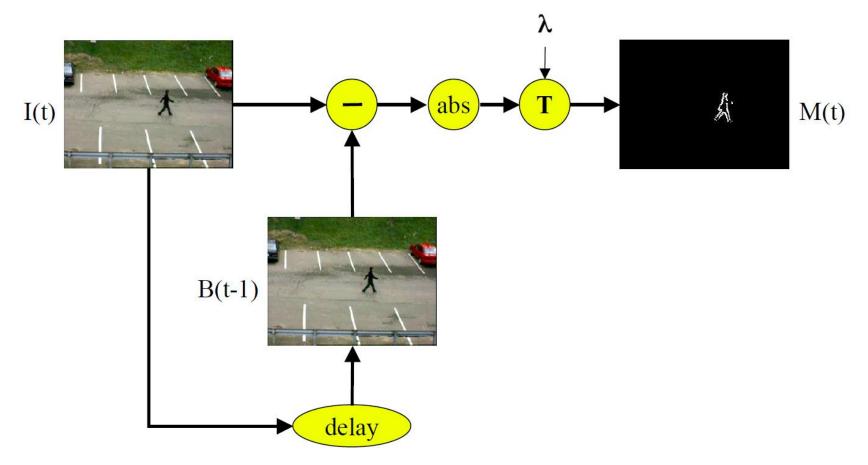


Global threshold

A single, global threshold for the entire scene is often suboptimal.

⇒ Need adaptive model with local decisions

Simple Frame Differencing



- Other idea
 - Background model is replaced with the previous image.

Frame Differencing Observations

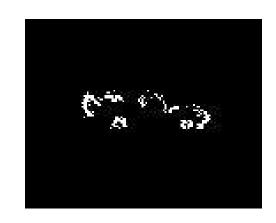
Advantages

- Frame differencing is very quick to adapt to changes in lighting or camera motion.
- Objects that stop are no longer detected.
- Objects that start up no longer leave behind ghosts.

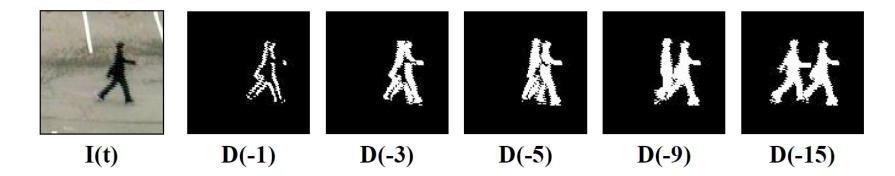
A. The second se

Limitations

- Frame differencing only detects the leading and trailing edge of a uniformly colored object.
- Very few pixels on the object are labeled.
- Very hard to detect an object moving towards or away from the camera.



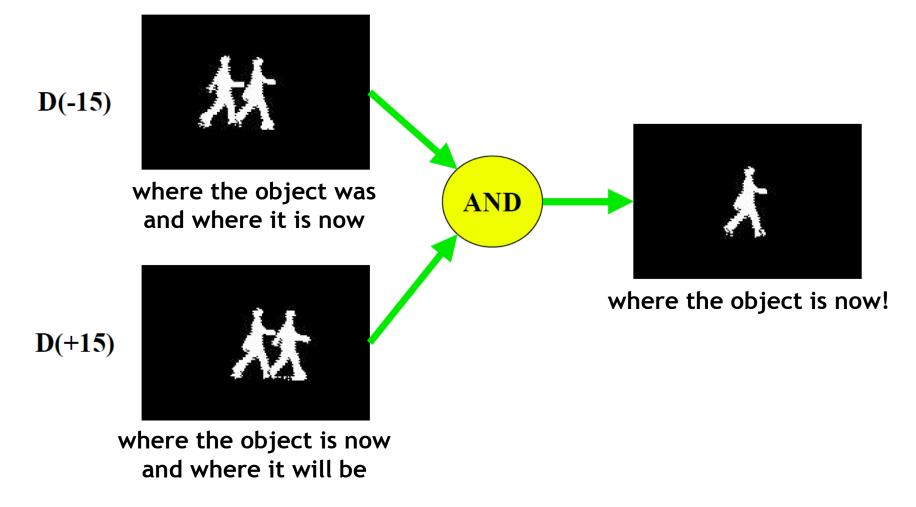
Differencing and Temporal Scale



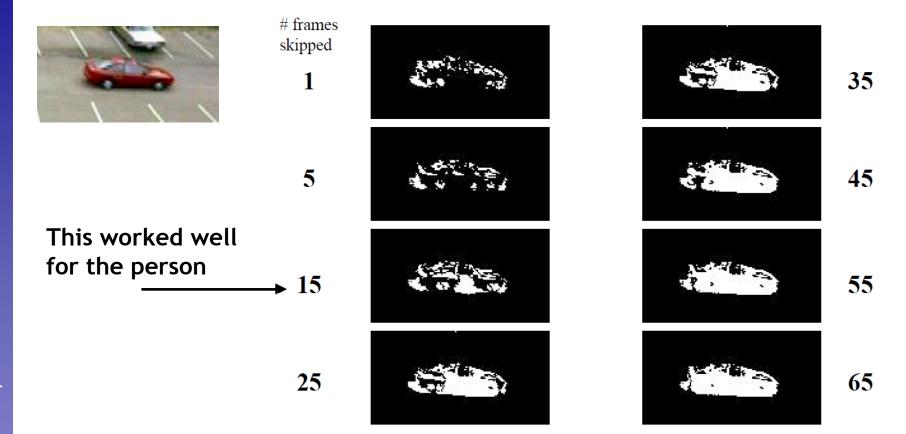
- More general formulation
 - > Define $D(N) = \|I(t) I(t+N)\|$
- Effect of increasing the temporal scale
 - More complete object silhouette, but two copies of the object (one where it used to be, one where it is now).

Three-Frame Differencing

Improved approach to handle this problem



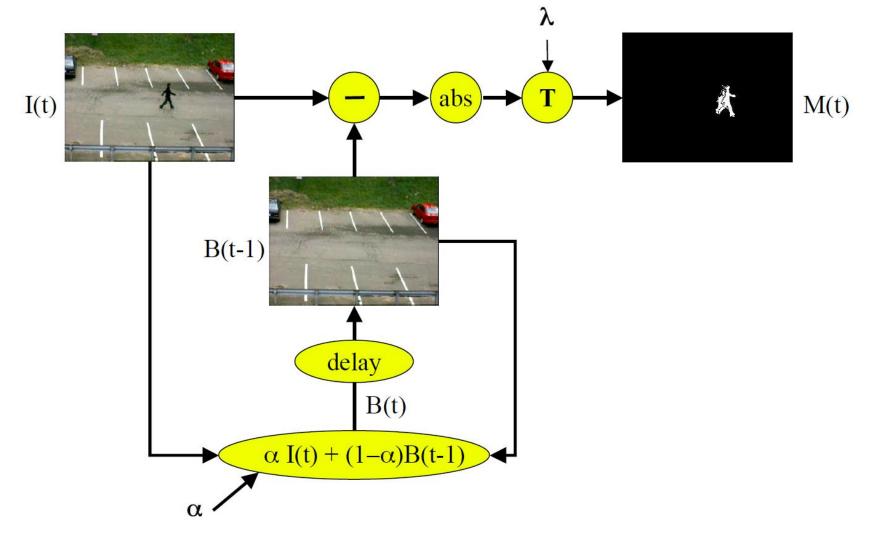
Three-Frame Differencing



Problem

Choice of good frame-rate for three-frame differencing depends on size and speed of object.

Adaptive Background Subtraction



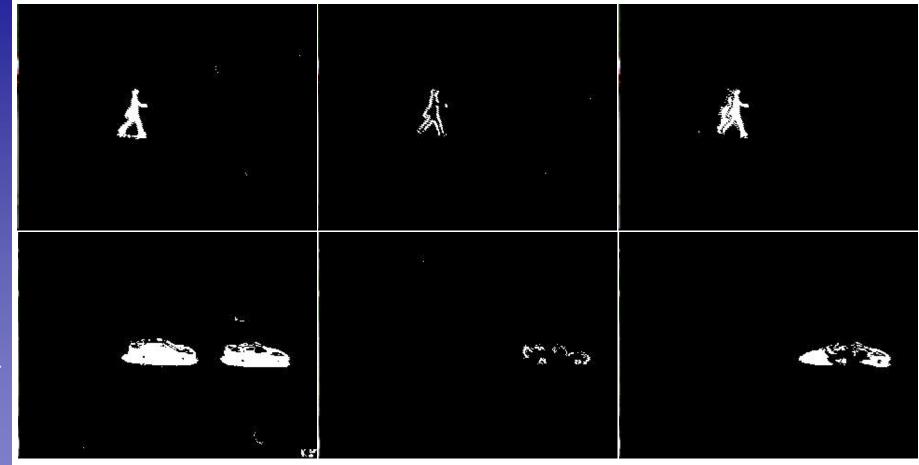
imes Current image is "blended" into the background model with lpha.

Adaptive Background Subtraction

Properties

- More responsive to changes in illumination and camera motion.
- Small, fast-moving objects are well-segmented, but they leave behind short "trails" of pixels.
- Objects that stop and ghosts left behind by objects that start both gradually fade into the background.
- The centers of large, slow-moving objects start to fade into the background, too!
- > This can be fixed by decreasing the blend parameter α , but then it takes longer for ghost objects to disappear...

Comparisons



BG Subtraction

Frame Differencing

Adaptive BG Subtract.

Discussion

- Background subtraction / Frame differencing
 - Very simple techniques, historically among the first.
 - Straight-forward to implement, fast to test out.
 - We've seen some fixes for the most pressing problems.
- Remaining limitations
 - Rather heuristic approach.
 - Leads to relatively poor foreground/background decisions.
 - Optimal temporal scale still depends on object size and speed.
 - Global threshold is often suboptimal for parts of the image.
 - ⇒ Very fiddly in practice, requires extensive parameter tuning.
- Let's try to come up with a better founded approach
 - Using a statistical model of background probability...

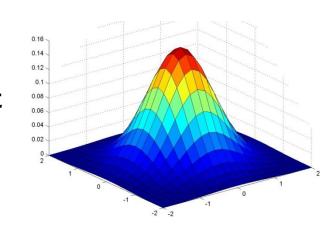
Topics of This Lecture

- Motivation: Background Modeling
- Simple Background Models
 - Background Subtraction
 - Frame Differencing
- Statistical Background Models
 - Single Gaussian
 - Mixture of Gaussians
 - Kernel Density Estimation
- Practical Issues and Extensions
 - Background model update
 - False detection suppression
 - Shadow suppression

Gaussian Background Model

Statistical model

- Value of a pixel represents a measurement of the radiance of the first object intersected by the pixel's optical ray.
- With a static background and static lighting, this value will be a constant affected by i.i.d. Gaussian noise.



Idea

Model the background distribution of each pixel by a single Gaussian centered at the mean pixel value:

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2} |\boldsymbol{\Sigma}|^{1/2}} \exp \left\{ -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right\}$$

- Test if a newly observed pixel value has a high likelihood under this Gaussian model.
- ⇒ Automatic estimation of a sensitivity threshold for each pixel.

Recap: Maximum Likelihood Approach

- Computation of the likelihood
 - > Single data point: $p(x_n|\theta)$
 - Assumption: all data points $X = \{x_1, \dots, x_n\}$ are independent

$$L(\theta) = p(X|\theta) = \prod_{n=1}^{N} p(x_n|\theta)$$

Log-likelihood

$$E(\theta) = -\ln L(\theta) = -\sum_{n=1}^{\infty} \ln p(x_n|\theta)$$

- Estimation of the parameters θ (Learning)
 - Maximize the likelihood (=minimize the negative log-likelihood)
 - \Rightarrow Take the derivative and set it to zero.

$$\frac{\partial}{\partial \theta} E(\theta) = -\sum_{n=1}^{N} \frac{\frac{\partial}{\partial \theta} p(x_n | \theta)}{p(x_n | \theta)} \stackrel{!}{=} 0$$

B. Leibe

RWTHAACHEN UNIVERSITY

Recap: Maximum Likelihood Approach

For a 1D Gaussian, we thus obtain

$$\hat{\mu} = \frac{1}{N} \sum_{n=1}^{N} x_n$$

"sample mean"

• In a similar fashion, we get

$$\hat{\sigma}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \hat{\mu})^2$$

"sample variance"

- $\hat{\theta}=(\hat{\mu},\hat{\sigma})$ is the Maximum Likelihood estimate for the parameters of a Gaussian distribution.
- Note: the estimate of the sample variance is *biased*. Better use $1 \quad \sum_{i=1}^{N}$

$$\tilde{\sigma}^2 = \frac{1}{N-1} \sum_{n=1}^{N} (x_n - \hat{\mu})^2$$

B. Leibe

Online Adaptation (1D Case)

- Once estimated, adapt the Gaussians over time
 - > We can compute a running estimate over a time window

$$\hat{\mu}^{(t+1)} = \hat{\mu}^{(t)} + \frac{1}{N} x^{(t+1)} - \frac{1}{N} x^{(t+1-T)}$$

$$(\tilde{\sigma}^2)^{(t+1)} = (\tilde{\sigma}^2)^{(t)} + \frac{1}{N-1} (x^{(t+1)} - \hat{\mu}^{(t+1)})^2$$

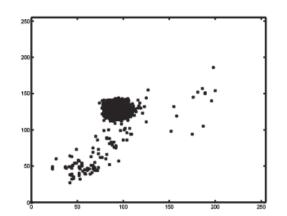
$$- \frac{1}{N-1} (x^{(t+1-T)} - \hat{\mu}^{(t+1)})^2$$

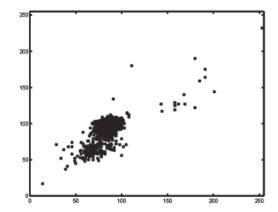
→ However, distribution is non-stationary (and newer values are more important) ⇒ better use Exponential Moving Average filter

$$\hat{\mu}^{(t+1)} = (1 - \alpha)\hat{\mu}^{(t)} + \alpha x^{(t+1)}$$
$$(\tilde{\sigma}^2)^{(t+1)} = (1 - \alpha)(\tilde{\sigma}^2)^{(t)} + \alpha (x^{(t+1)} - \hat{\mu}^{(t+1)})^2$$

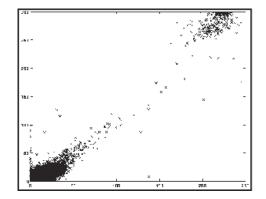
with a fixed learning rate α .

Problem: Complex Distributions





RG scatter plots of the same pixel taken 2 min apart



Bi-modal distribution caused by specularities on the water surface

⇒ A single Gaussian is clearly insufficient here...

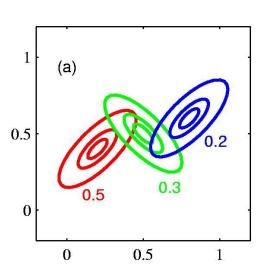
Problem: Adaptation Speed, Sensitivity

- If the background model adapts too slowly...
 - Will construct a very wide and inaccurate model with low detection sensitivity
- If the model adapts too quickly...
 - Leads to inaccurate estimation of the model parameters
 - The model may adapt to the targets themselves (especially slow-moving ones)
- Design trade-off
 - Model should adapt quickly to changes in the background process and detect objects with high sensitivity.
 - How can we achieve that?

MoG Background Model

Improved statistical model

- Large jumps between different pixel values because different objects are projected onto the same pixel at different times.
- While the same object is projected onto the pixel, small local intensity variations due to Gaussian noise.



Idea

Model the color distribution of each pixel by a mixture of K Gaussians K

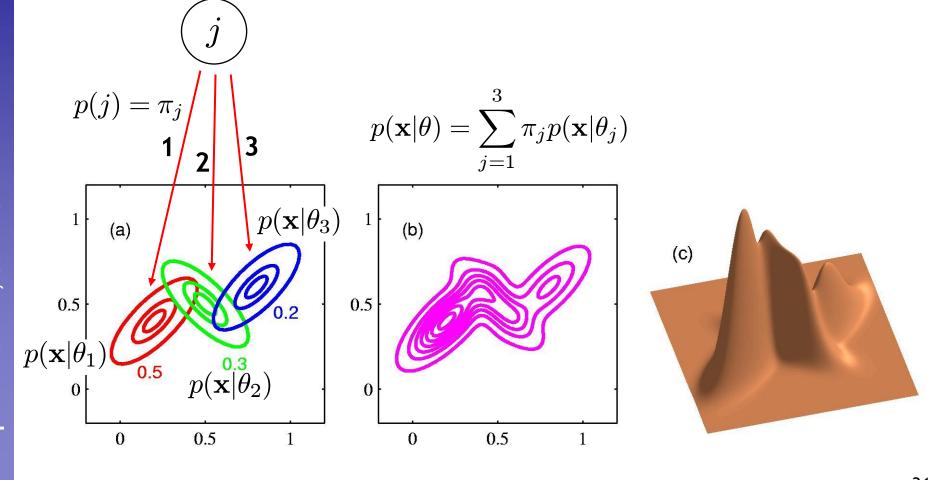
$$p(\mathbf{x}) = \sum_{k=1}^{n} \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

- Evaluate likelihoods of observed pixel values under this model.
- Or let entire Gaussian components adapt to foreground objects and classify components as belonging to object or background.

Recap: Mixture of Gaussians

"Generative model"

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$



Recap: EM Algorithm

- Expectation-Maximization (EM) Algorithm
 - E-Step: softly assign samples to mixture components

$$\gamma_j(\mathbf{x}_n) \leftarrow \frac{\pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}{\sum_{k=1}^N \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)} \quad \forall j = 1, \dots, K, \quad n = 1, \dots, N$$

M-Step: re-estimate the parameters (separately for each mixture component) based on the soft assignments

$$\hat{N}_{j} \leftarrow \sum_{n=1}^{N} \gamma_{j}(\mathbf{x}_{n})$$
 = soft number of samples labeled j

$$\hat{\pi}_{j}^{\mathrm{new}} \leftarrow \frac{\hat{N}_{j}}{N}$$

$$\hat{\mu}_{j}^{\mathrm{new}} \leftarrow \frac{1}{\hat{N}_{j}} \sum_{n=1}^{N} \gamma_{j}(\mathbf{x}_{n}) \mathbf{x}_{n}$$

$$\hat{\Sigma}_{j}^{\mathrm{new}} \leftarrow \frac{1}{\hat{N}_{j}} \sum_{n=1}^{N} \gamma_{j}(\mathbf{x}_{n}) (\mathbf{x}_{n} - \hat{\boldsymbol{\mu}}_{j}^{\mathrm{new}}) (\mathbf{x}_{n} - \hat{\boldsymbol{\mu}}_{j}^{\mathrm{new}})^{\mathrm{T}}$$

32

RWTHAACHEN UNIVERSITY

Stauffer-Grimson Background Model

- Very popular model
 - Used in many tracking approaches
 - Suitable for long-term observations (finding patterns of activity)

C. Stauffer, W.E.L. Grimson, <u>Adaptive Background Mixture Models for</u> Real-Time Tracking, CVPR 1998.

33

Stauffer-Grimson Background Model

Idea

ightarrow Model the distribution of each pixel by a mixture of K Gaussians

$$p(\mathbf{x}) = \sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}_n | m{\mu}_k, m{\Sigma}_k)$$
 where $m{\Sigma}_k = \sigma_k^2 \mathbf{I}$

- > Check every new pixel value against the existing K components until a match is found (pixel value within $2.5~\sigma_k$ of μ_k).
- If a match is found, adapt the corresponding component.
- Else, replace the least probable component by a distribution with the new value as its mean and an initially high variance and low prior weight.
- > Order the components by the value of w_k/σ_k and select the best B components as the background model, where

$$B = \arg\min_{b} \left(\sum_{k=1}^{b} \frac{w_k}{\sigma_k} > T \right)$$

Stauffer-Grimson Background Model

Online adaptation

- Instead of estimating the MoG using EM, use a simpler online adaptation, assigning each new value only to the matching component.
- Let $M_{k,t}=1$ iff component k is the model that matched, else 0.

$$\pi_k^{(t+1)} = (1 - \alpha)\pi_k^{(t)} + \alpha M_{k,t}$$

Adapt only the parameters for the matching component

$$\mu_k^{(t+1)} = (1 - \rho)\mu_k^{(t)} + \rho x^{(t+1)}$$

$$\Sigma_k^{(t+1)} = (1 - \rho)\Sigma_k^{(t)} + \rho (x^{(t+1)} - \mu_k^{(t+1)})(x^{(t+1)} - \mu_k^{(t+1)})^T$$

where

$$\rho = \alpha \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

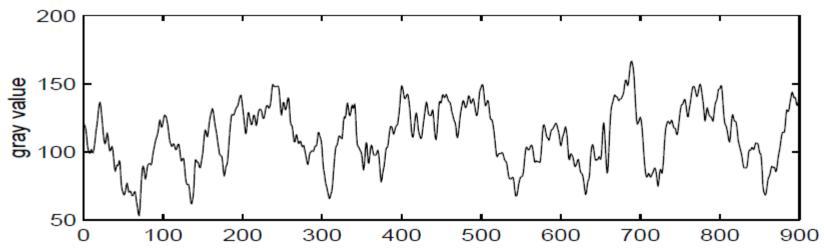
(i.e., the update is weighted by the component likelihood)

Discussion: Stauffer-Grimson Model

Properties

- Static foreground objects can be integrated into the mixture
 - Advantage: This doesn't destroy the existing background model.
 - If an object is stationary for some time and then moves again, the distribution for the background still exists
 - ⇒ Quick recovery from such situations.
- Ordering of components by w_k/σ_k
 - Favors components that have more evidence (higher w_k) and a smaller variance (lower σ_k).
 - ⇒ Those are typically the best candidates for background.
- Model can adapt to the complexity of the observed distribution.
 - If the distribution is unimodal, only a single component will be selected for the background.
 - \Rightarrow This can be used to save memory and computation.

Problem: Outdoor Scenes

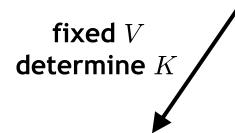


- Dynamic areas
 - Waving trees, rippling water, ...
 - Fast variations
 - ⇒ More flexible representation needed here.

Recap: Kernel Density Estimation

- Estimating the probability density from discrete samples
 - Approximation:

$$p(\mathbf{x}) pprox rac{K}{NV}$$

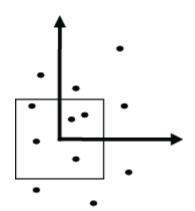


 $\begin{array}{c} \text{fixed } K \\ \text{determine } V \end{array}$

Kernel Methods

K-Nearest Neighbor

- Kernel methods
 - Example: Determine the number K of data points inside a fixed hypercube...



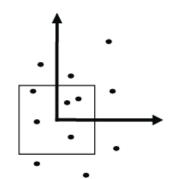
38

Recap: Kernel Density Estimation

Parzen Window

> Hypercube of dimension D with edge length h:

$$k(\mathbf{u}) = \begin{cases} 1, & |u_i \cdot \frac{1}{2}, & i = 1, \dots, D \\ 0, & else \end{cases}$$



"Kernel function"

$$K = \sum_{n=1}^{N} k(\frac{\mathbf{x} - \mathbf{x}_n}{h}) \qquad V = \int k(\mathbf{u}) d\mathbf{u} = h^d$$

Probability density estimate:

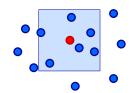
$$p(\mathbf{x}) \approx \frac{K}{NV} = \frac{1}{Nh^D} \sum_{n=1}^{N} k(\frac{\mathbf{x} - \mathbf{x}_n}{h})$$

39

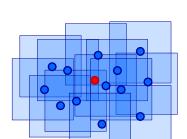
Recap: Parzen Window

Interpretations

1. We place a kernel window k at location \mathbf{x} and count how many data points fall inside it.



2. We place a kernel window k around each data point \mathbf{x}_n and sum up their influences at location \mathbf{x} .



- ⇒ Direct visualization of the density.
- Still, we have artificial discontinuities at the cube boundaries...
 - We can obtain a smoother density model if we choose a smoother kernel function, e.g. a Gaussian

Kernel Background Modeling

- Nonparametric model of background appearance
 - Very flexible approach, can deal with large amounts of background motion and scene clutter

A. Elgammal, D. Harwood, L.S. Davis, Non-parametric Model for Background Subtraction, ECCV 2000.

Kernel Background Modeling

- Nonparametric density estimation
 - $\,\,{}^{}_{}$ Estimate a pixel's background distribution using the kernel density estimator $K(\cdot)$ as

$$p(\mathbf{x}^{(t)}) = \frac{1}{N} \sum_{i=1}^{N} K(\mathbf{x}^{(t)} - \mathbf{x}^{(i)})$$

m > Choose K to be a Gaussian $\mathcal N(0,\, m \Sigma)$ with $m \Sigma = \mathrm{diag}\{\sigma_j\}$. Then

$$p(\mathbf{x}^{(t)}) = \frac{1}{N} \sum_{i=1}^{N} \prod_{j=1}^{d} \frac{1}{\sqrt{2\pi\sigma_j^2}} e^{-\frac{1}{2} \frac{(x_j^{(t)} - x_j^{(i)})^2}{\sigma_j^2}}$$

- A pixel is considered foreground if $p(\mathbf{x}^{(t)}) < heta$ for a threshold heta.
 - This can be computed very fast using lookup tables for the kernel function values, since all inputs are discrete values.
 - Additional speedup: partial evaluation of the sum usually sufficient

Results Kernel Background Modeling

• Performance in heavy rain

RWTHAACHEN UNIVERSITY

Results Kernel Background Modeling

Results for color images

- Practical issues with color images
 - Which color space to use?

Topics of This Lecture

- Motivation: Background Modeling
- Simple Background Models
 - Background Subtraction
 - Frame Differencing
- Statistical Background Models
 - Single Gaussian
 - Mixture of Gaussians
 - Kernel Density Estimation
- Practical Issues and Extensions
 - Background model update
 - False detection suppression
 - Shadow suppression
 - Applications

Practical Issues: Background Model Update

- Kernel background model
 - $\,\,>\,\,$ Sample N intensity values taken over a window of W frames.
- FIFO update mechanism
 - Discard oldest sample.
 - > Choose new sample randomly from each interval of length W/N frames.
- When should we update the distribution?
 - Selective update: add new sample only if it is classified as a background sample
 - Blind update: always add the new sample to the model.

Updating Strategies

Selective update

- > Add new sample only if it is classified as a background sample.
- Enhances detection of new objects, since the background model remains uncontaminated.
- But: Any incorrect detection decision will result in persistent incorrect detections later.
- \Rightarrow Deadlock situation.

Blind update

- Always add the new sample to the model.
- Does not suffer from deadlock situations, since it does not involve any update decisions.
- But: Allows intensity values that do not belong to the background to be added to the model.
- \Rightarrow Leads to bad detection of the targets (more false negatives).

Solution: Combining the Two Models

Short-term model

- Recent model, adapts to changes quickly to allow very sensitive detection
- ightarrow Consists of the most recent N background sample values.
- Updated using a selective update mechanism based on the detection mask from the final combination result.

Long-term model

- Captures a more stable representation of the scene background and adapts to changes slowly.
- $\,\,>\,\,$ Consists of N samples taken from a much larger time window.
- Updated using a blind update mechanism.

Combination

Intersection of the two model outputs.

Extension: False Detection Suppression

Problem

Small camera motion (e.g., due to wind swaying) may still result in false detections.

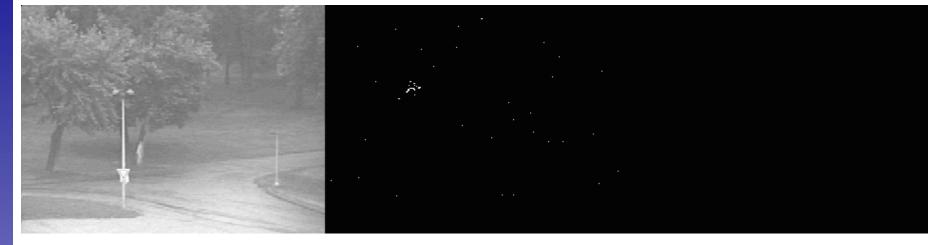
Workaround

> Consider a small circular neighborhood (e.g., 5×5) $Ne(\mathbf{x})$ and evaluate the pixel under each neighbor's background model $B_{\mathbf{y}}$:

$$p_{\text{Ne}}(\mathbf{x}^{(t)}) = \max_{\mathbf{y} \in \text{Ne}(\mathbf{x})} p(\mathbf{x}^{(t)}|B_{\mathbf{y}})$$

- Threshold p_{Ne} to determine the foreground pixels.
- \Rightarrow Eliminates many false detections, but also some true ones.
- To avoid losing true detections, add the constraint that an entire connected component must have moved from a nearby location, not only some of its pixels.

Effect of False Detection Suppression



Original video

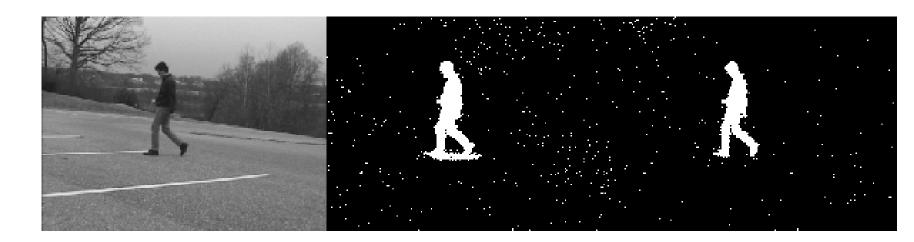
Without false detection suppr.

With false detection suppr.

Results

> Effects of camera wind shaking are almost entirely suppressed

Extension: Shadow Suppression



- Shadows are often detected together with the objects
 - Leads to poor localization, should be avoided.
 - Idea: Shadowed regions should have the same color as the neighboring background, only the intensity is lower.
 - ⇒ Use chromaticity coordinates to remove shadows.

Color Normalization

- One component of the 3D color space is intensity
 - If a color vector is multiplied by a scalar, the intensity changes, but not the color itself.
 - This means colors can be normalized by the intensity.
 - Intensity is given by I=R+G+B:
 - "Chromatic representation"

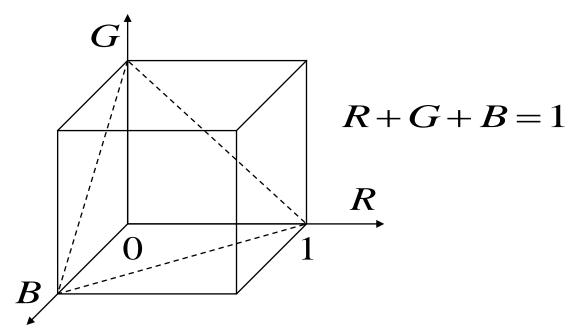
$$r = \frac{R}{R + G + B} \qquad g = \frac{G}{R + G + B}$$

$$b = \frac{B}{R + G + B}$$

Chromaticity Coordinates

Observation:

- > Since R+G+B=1, only 2 parameters are necessary
- > E.g., one can use R and G and obtains B=1-R-G



- Caveat: cannot distinguish between white and gray anymore!
- \Rightarrow Use the normalized (r,g) coordinates, but keep the lightness

$$s = R + B + G$$
 as third coordinate $\Rightarrow (r,g,s)$

Shadow Removal Procedure

Idea

- Let < r, g, s > be the expected background pixel color and $< r_t, g_t, s_t >$ be the observed one.
- > Shadows or highlights affect the expected pixel lightness within certain bounds $\alpha \leq s_t/s \leq \beta$.

Procedure

> Select the subset B of relevant sample points for each pixel from the stored set A, i.e. those samples that could produce the observed lightness if affected by shadows:

$$B = \left\{ x_i | x_i \in A \land \alpha \le \frac{s_t}{s_i} \le \beta \right\}$$

Apply the regular kernel background model based on this subset B using only the (r,g) color components.

Effect of Shadow Suppression

Original video

Without shadow suppr.

With shadow suppr.

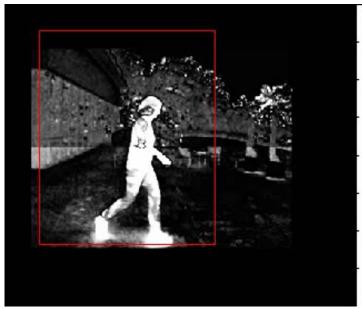
Topics of This Lecture

- Motivation: Background Modeling
- Simple Background Models
 - Background Subtraction
 - Frame Differencing
- Statistical Background Models
 - Single Gaussian
 - Mixture of Gaussians
 - Kernel Density Estimation
- Practical Issues and Extensions
 - Background model update
 - False detection suppression
 - Shadow suppression
 - Applications

Applications: Visual Surveillance

- Background modeling to detect objects for tracking
 - Extension: Learning a foreground model for each object.

Applications: Articulated Tracking





- Background modeling as preprocessing step
 - Track a person's location through the scene
 - Extract silhouette information from the foreground mask.
 - Perform body pose estimation based on this mask.

Summary

Background Modeling

- Fast and simple procedure to detect moving object in static camera footage.
- Makes subsequent tracking much easier!
- ⇒ If applicable, always make use of this information source!

We've looked at two models in detail

- Adaptive MoG model (Stauffer-Grimson model)
- Kernel background model (Elgammal et al.)
- Both perform well in practice, have been used extensively.

Many extensions available

- Learning object-specific foreground color models
- Background modeling for moving cameras
- **>** ...

References and Further Reading

More information on density estimation in Bishop's book

Gaussian distribution and ML: Ch. 1.2.4 and 2.3.1-2.3.4.

Mixture of Gaussians: Ch. 2.3.9 and 9

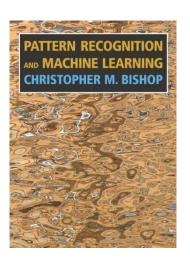
Nonparametric methods: Ch. 2.5.

More information on background modeling:

Visual Analysis of Humans: Ch. 3

C. Stauffer et al., Adaptive Background Models for Real-Time Tracking, CVPR'98

> A. Elgammal et al., Non-parametric Model for Background Subtraction, ECCV'00



Christopher M. Bishop Pattern Recognition and Machine Learning Springer, 2006

T. Moeslund, A. Hilton, V. Krueger, L. Sigal Visual Analysis of Humans: Looking at People Springer, 2011

